
Smartwatch-Based Biometric Gait Recognition

Andrew H. Johnston and Gary M. Weiss
Department of Computer and Information Science, WISDM Laboratory

Fordham University
441 East Fordham Road, Bronx NY 10458

{ajohnston9, gaweiss}@fordham.edu

Abstract

The advent of commercial smartwatches provides an in-
triguing new platform for mobile biometrics. Like their
smartphone counterparts, these mobile devices can perform
gait-based biometric identification because they too contain
an accelerometer and a gyroscope. However, smartwatches
have several advantages over smartphones for biometric
identification because users almost always wear their watch
in the same location and orientation. This location (i.e.
the wrist) tends to provide more information about a user’s
movements than the most common location for smartphones
(pockets or handbags). In this paper we show the feasibility
of using smartwatches for gait-based biometrics by demon-
strating the high levels of accuracy that can result from
smartwatch-based identification and authentication mod-
els. Applications of smartwatch-based biometrics range
from a new authentication challenge for use in a multi-
factor authentication system to automatic personalization
by identifying the user of a shared device.

1. Introduction
The modern smartwatch contains multiple sensors, sub-

stantial computing power, and the ability to communicate
with smartphones and similar devices via Bluetooth. It
is a relatively recent development; perhaps the first truly
modern smartwatch, the Pebble, became available in 2013.
Many additional smartwatches were released in 2014, most
of which operate with Android phones and run the Android
Wear subsystem. These watches include the LG G Watch,
Moto 360, Samsung Gear Live, and Sony Smartwatch 3.
While sales of these devices have been modest, the intro-
duction of the Apple Watch in April 2015 has greatly in-
creased the interest in such devices. While it is unclear
whether smartwatches will become as ubiquitous as smart-
phones, market projections indicate that in the year 2020
nearly 400 million smartwatches will ship and thus repre-
sent a 25-fold increase over 2014 sales [1].

Like their smartphone counterparts, most modern smart-
watches include both an accelerometer and gyroscope sen-
sor, so that they may support similar capabilities and ap-
plications, such as health applications that require sensor-
based activity recognition. Accelerometer and gyroscope
sensors are ideal for gait-based biometrics; our prior work
has shown that these sensors can enable smartphones to im-
plement gait-based biometrics [2]. In this paper we show
that smartwatches are similarly capable of performing gait-
based identification and authentication. The identification
task uses a single predictive model to identify a user within
a group of users. The authentication task uses a per-user
predictive model to determine if an unknown user is a
“match” or is an imposter.

The study described in this paper utilizes smartwatches
to collect and store sensor data which is ultimately sent to
a server for processing. Android-based smartwatches and
smartphones are used because they are currently the most
readily-available smartwatches. More specifically, the ex-
periments in this study utilize Samsung Galaxy S3 phones
and LG G watches largely due to their low cost. Although
our collection is limited to just one model of a watch, the
data collected should be comparable to what would have
been collected from any other smartwatch running the An-
droid Wear subsystem.

Smartwatch-based biometrics is of great interest because
of the relatively low cost of smartwatches, the fact that the
device can be worn and carried with you (i.e. is mobile),
and because it can transmit data and results to other devices
via Bluetooth or, with the assistance of a paired smartphone,
via the Internet. The smartwatch also has several important
advantages over a smartphone and other mobile devices for
gait-based biometrics. Primarily, smartwatches are almost
always worn in the same location and in the same orien-
tation (unlike smartphones, smartwatches running the An-
droid Wear subsystem do not reorient the screen if the user
holds it upside down, guaranteeing the user wears it in a
specific orientation). This is a huge advantage over smart-
phones, where both the location and orientation of the de-



vice may vary depending on the user, what the user is wear-
ing, and the activity that the user is performing. Changing
the location of the device on the body will reduce the effec-
tiveness of the biometric models and some locations sim-
ply may not generate a suitable biometric signature. The
location issue for smartphones is especially prevalent with
women, because unlike men they will often carry the phone
“off-body”, such as in a pocket book. Further, in the case of
the smartwatch, there is an added advantage resulting from
the most common place on the body that the device will be
carried: the wrist. If a user is walking, much more move-
ment occurs at the wrist than at the most common smart-
phone location (upper thigh in a pant pocket) and hence it
should prove superior for biometric identification.

Smartwatch-based gait biometrics can support several
important applications. A smartwatch-based biometric sys-
tem can serve as the foundation for a delegated authentica-
tion system. For example, as a user approaches his smart-
house, his smartwatch could transmit its accelerometer and
gyroscope sensor readings to the house, which would then
compare the readings to past readings and open the door if
they match. Gait-based biometrics can also be employed
in a two-factor authentication scheme, thereby serving as a
supplemental biometric mechanism to augment or replace
traditional modalities of fingerprint and facial recognition.

This paper is organized as follows. Related work is in-
troduced and discussed in Section 2. Section 3 describes
the procedure for collecting the training data from the users,
and how this data is transformed into a format suitable for
conventional classification algorithms. The methodology
for generating the identification and authentication models
is then described in Section 4 and the results of these exper-
iments are presented and analyzed in Section 5. Finally, in
Section 6 we describe our conclusions and planned exten-
sions to the research.

2. Related Work
Although this paper describes the first use of commercial

smartwatches for gait-based biometrics, there is a substan-
tial amount amount of prior work on gait-based biometrics
in general. Most gait-based biometric work can be cate-
gorized as machine vision-based or wearable sensor-based,
though there is some work on biometrics using floor-based
sensors [3]. The work described in this paper falls under
the wearable sensor-based category and hence we focus on
work in that area. It should be pointed out that the ma-
chine vision-based approach [4, 5] has the advantage that
it does not inherently impose requirements on the subject
and in fact can be employed without the subject’s consent
or even knowledge. Such systems are of particular interest
in the field of surveillance, where video-based monitoring
systems (e.g. CCTV) are already in place. Thus, for exam-
ple, vision-based gait recognition can be used to supplement

face recognition biometrics in airports or other venues with
special security requirements.

There are numerous wearable sensor-based systems for
gait recognition, although most of these systems do not use
commercially available devices. One system, which uti-
lized 36 test subjects, produced good results using an ac-
celerometer placed on the belt, at the subject’s back [6].
Another consisted of 21 test subjects and used a tri-axial
accelerometer-based device attached to the user’s right
lower leg [7]. Yet another system used two wireless sensors
to collect tri-axial accelerometer and a bi-axial gyroscope
readings from the ankles of four users [8].

More recent systems have utilized smartphones for gait
recognition. An early effort placed a smartphone on the
right hip of 6 test subjects and was able to achieve a 93.1%
recognition rate [9]. However, this recognition rate was
only achievable by taking specific steps to calibrate the ori-
entation of the device with the user’s posture. Another sim-
ilar study, which used the Google G1 phone, also placed
the smartphone at the hip of 51 test subjects and was able
to produce an Equal Error Rate of 20% [10]. Equal Er-
ror Rate (EER), a common metric for evaluating biometric
performance, is the rate at which the false acceptance rate
(i.e., the rate at which an imposter is incorrectly identified
as the authorized user) equals the false rejection rate (i.e.the
rate at which the authorized user is incorrectly identified as
an imposter). A slightly more recent effort used Android
smartphones with 36 test subjects, and employed continu-
ous wavelet transforms to achieve excellent results with an
EER of 1% [11].

A prior study from our lab, which employed Android
phones, achieved strong results using only common de-
scriptive statistical features and a 10-second sliding window
[2]. This system, which employed 36 test subjects, achieved
an identification rate of about 90% using a single 10 sec-
ond sample of accelerometer data, but was able to perfectly
identify all 36 users when using several 10 second sam-
ples. With respect to authentication, the system was able
to achieve an average positive authentication rate of 85.9%
and a negative authentication rate of 95.0% using a single
10 second sample; perfect authentication performance was
achieved when using multiple 10 second samples.

The work in this study extends prior research by con-
tinuing the movement toward commercial devices for gait-
based biometrics. This study employs more subjects than
most other research studies and our results are competitive
with, if not better than, most of the smartphone-based sys-
tems. Considering the advantages that we have identified
of smartwatches over smartphones, certain measures taken
in prior work (e.g. to calibrate the orientation of the phone
with the user’s posture or clip it to the hip in a fixed posi-
tion), which would not be realistic in everyday use, become
unnecessary.



3. Data Collection and Feature Extraction

This section describes the process for collecting training
data from the study participants, as well as the process for
extracting useful features and transforming the time-series
sensor data into examples that can be handled by conven-
tional classifier induction programs (e.g. decision trees).

3.1. Data Collection

The training data necessary for building the biometric
identification and authentication models is a sample of each
participant’s gait, as measured by the accelerometer and
gyroscope on the smartwatch. The data collection pro-
cess begins with participants enrolling in our study, which
is approved by Fordham University’s Institutional Review
Board, and granting written informed consent. This is nec-
essary because we are technically “experimenting” on hu-
man subjects and there is a very small risk of injury (i.e.
a participant could trip while walking). The participant
then answers a few survey questions (e.g. age, gender,
height, etc.), which are used to characterize our study pop-
ulation and can be used for more in-depth analyses in the
future. The participant then fastens a smartwatch on the
wrist of their non-dominant hand and places a Bluetooth-
paired smartphone in their pocket. Both devices run a sim-
ple custom-designed application that controls the data col-
lection process.

The application instructs the participant to input their
name on the phone, turn off the phone’s screen, and then
place the phone in their pocket. The participant is then
instructed to walk for several minutes, using their normal
gait, on a flat surface with relatively few turns. The smart-
phone instructs the smartwatch running our paired data col-
lection app to collect the accelerometer and gyroscope data
at 20Hz. Each sensor generates values for the x, y, and z
axes and appends a timestamp to the values. After 5 min-
utes the watch sends the data to the phone for transmission
to our research server (a local copy is retained on the phone
to preserve the data should transmission fail). After trans-
mission, both the smartwatch and the smartphone vibrate to
notify the user that the data collection process is complete
and they can stop walking.

3.2. Feature Extraction and Data Transformation

There are several ways to prepare the raw sensor data
before using it for biometrics. Some gait-based biometric
work utilizes the data within the time domain [12, 13, 14],
but other successful systems map the time-series sensor data
into examples using a sliding window approach, which per-
mits the use of conventional classifier induction systems
that cannot handle time-series data. This study utilizes
the same sliding window approach employed in our prior
smartphone-based study [2]. The transformation process

partitions the time-series sensor data into 10 second non-
overlapping windows and then generates relatively simple
features based on the data in the window. The accelerome-
ter and gyroscope features are generated independently, but
using the same feature encoding schemes. All features ex-
cept one are based on the sensor values for a single axis,
but 3 versions of each feature are generated corresponding
to the 3 axes associated with the sensor data. Because the
data is sampled at 20Hz and the window size is 10 seconds,
there are 200 time-series values per axis per window, and
600 sensor values per window. This holds for both the ac-
celerometer and the gyroscope sensor. Each of these 600
time-series values is transformed into 43 features using the
feature encodings described below; they are also used in
our prior smartphone-based biometric study [2]. The value
in subscripts specifies how many features of the given type
are generated.

• Average[3]: Average sensor value (each axis)

• Standard Deviation[3]: Standard deviation (each axis)

• Average Absolute Difference[3]: Average absolute
difference between the 200 values and the mean of
these values (each axis)

• Time Between Peaks[3]: Time between peaks in the
sinusoidal waves associated formed by the data as de-
termined by a simple algorithm (each axis)

• Binned Distribution[30]: The range of values is deter-
mined (maximum − minimum), 10 equal-sized bins
are formed, and the fraction of the 200 values within
each bin is recorded. (each axis)

• Average Resultant Acceleration[1]: For each of the
200 sensor samples in the window, take the square root
of the sum of the squares of the x, y, and z axis values,
and then average them.

Each example, which represents 10 seconds of data, is
appended with an numerical ID value that uniquely identi-
fies each participant. This ID field serves as the class value
for the identification task while it is mapped into a binary
valued class variable for authentication tasks.

4. Experiment Methodology
This section describes the methodology used for running

the biometric identification and authentication experiments.

4.1. Dataset

The experiments utilize sensor data collected from 59
study participants, of which 57% are male and 43% are fe-
male. The participants range in age from 18 to 39, with
a majority being college-aged (i.e. 18-23). As described
in Section 3, the smartwatch accelerometer and gyroscope



sensor data were collected at a rate of 20Hz for both sensors.
A single raw sensor record includes the data for the 3 axes
for one sensor. Our raw data set contains 650,458 of these
records (half for each sensor). Given that there are 200 of
these records per 10 second window, this corresponds to 4.5
hours of data per sensor. This equates to 4.6 minutes of data
per user (the average is less than 5 minutes because we only
collected 2 minutes of data from the first few users before
raising the limit). Note that the classifier induction algo-
rithms do not operate on the raw data, but the transformed
data.

4.2. Classifier Induction Algorithms

The WEKA data mining suite [15] is freely available
and implements a large number of classifier induction al-
gorithms. This study utilizes the following four WEKA
algorithms: Multilayer Perceptron (MLP), Random Forest,
Rotation Forest, and Naive Bayes. The Multilayer Percep-
tron algorithm is a neural network algorithm, Random For-
est and Rotation Forest are ensembles of decision trees, and
Naive Bayes is a probabilistic classifier based on Bayes’
Theorem. These models are all suitable for real-time bio-
metric identification because they can be generated and
evaluated rapidly.

4.3. Identification Experiments

The biometric identification task is to identify a user
from a pool of users based on a sample of their sensor data.
This requires a sample of data from all users in the popula-
tion that can be used in the training phase. The experiments
for this task are quite simple. The transformed datasets as-
sociated with the accelerometer and gyroscope data are each
used to train and evaluate biometric identification models,
using 10-fold cross validation. For this task the class vari-
able is the User ID and there are 59 class values, one per
participant. A set of experiments is conducted for each of
the 4 algorithms and 2 sensors, such that there are 8 (i.e.
(4× 2)) sets of experiments performed.

4.4. Authentication Experiments

In authentication, each user has their own authentication
model (i.e. classifier), and when a sample of sensor data is
provided, the task is determine if the sample belongs to the
user or to an imposter. Authentication is a specialized case
of identification, but rather than identifying the imposter,
authentication seeks to distinguish the imposter from the le-
gitimate user.

The authentication experiments create and evaluate a
model for each of the 59 participants in the study. In each
case, the first half of the user’s data is used in the training
set, and the second half is used in the testing set. Then eight
random users are chosen and one minute of data is chosen
from a random position for each of these users. Four of the

random users are placed into the training set and the other
four are placed into the test set (as was done in a prior re-
search study [11]). The authentication model is then built
using each of the four algorithms mentioned; the process is
then repeated for the other sensor.

5. Results
This section presents and analyzes the results for the ex-

periments described in the previous section. The identifica-
tion results are presented first, followed by the authentica-
tion results.

5.1. Identification Results

The identification experiments, as described in Sec-
tion 4.3, involve building a single predictive model to iden-
tify a specific user from a set of users. At the lowest level,
our results are based on identifying each user based on a sin-
gle 10 second sample (referred to as an instance) of walking
data. However, we can improve our results by using more
than a single instance and then employing a majority voting
scheme to identify the user (we call this the “Most Predicted
User” scheme). In order to demonstrate how this scheme
works, and to provide greater insight into the results, a con-
fusion matrix generated by WEKA for this identification
task is presented in Table 1. The actual confusion matrix
is a 59 × 59 matrix, but due to space limitations Table 1
shows the results only for the first ten users (i.e. the up-
per left quadrant of the matrix). The results in this table are
based on an identification model generated from accelerom-
eter data and using the Random Forest algorithm.

User 1 2 3 4 5 6 7 8 9 10
1 7 0 0 0 0 0 0 0 0 0
2 0 17 0 0 5 0 0 0 0 0
3 0 0 27 0 0 0 0 0 0 0
4 0 0 0 9 0 1 0 0 0 0
5 0 4 0 0 20 0 0 0 0 0
6 0 0 1 1 0 26 1 0 0 0
7 0 0 0 0 0 2 23 0 0 0
8 0 0 1 0 1 0 1 20 0 0
9 0 0 0 0 0 0 0 0 11 0

10 0 0 0 0 0 0 0 0 0 28
Table 1. Partial confusion matrix

The rows in Table 1 correspond to the actual users and
the columns to the predicted users, so that the values in the
diagonal (noted in boldface) correspond to correct identifi-
cations and all other values correspond to errors. The re-
sults clearly indicate that the model usually identifies the
user (the number of total predictions varies because differ-
ent amounts of labeled data were collected from different
users). Based only on these partial results we could com-
pute the accuracy for identifying a single user or the accu-
racy aggregated over all 10 users. For example, the accuracy



for identifying User 1 is 100% (7/7) while the accuracy for
identifying User 2 is 77% (17/22). The overall accuracy
would be simply the total number of correct predictions di-
vided by the total number of predictions. These “raw ac-
curacies” are so named as they are based off of a single
10 second instance. The accuracies computed solely from
Table 1 are clearly optimistic estimates since the matrix is
not complete and hence there will be errors that are not ac-
counted for. Nonetheless, even from this partial matrix it is
clear that the diagonal values tend to be the largest values.

In our identification scenario we assume that all of the
sensor data from a device comes from the same user, so it
is feasible to use multiple 10 second instances to make a
prediction. Thus, we can use a simple strategy to improve
the identification performance: set the identity of the user to
the most frequently predicted user[2]. Based on our partial
data in Table 1, for User 2 we make one prediction based on
the 22 instances of data and identify the user as User 2. In
this case the accuracy improves from 77% to 100% as the
5 errors no longer impact the final identification. This strat-
egy requires a larger sample of data but yields dramatically
improved performance.

We now turn to the full set of experimental results. Ta-
ble 2 shows the raw accuracy results (i.e. using a single
instance) for the two different sensors using the four classi-
fication algorithms. These results show that even a 10 sec-
ond instance is sufficient to identify a user most of the time,
especially if one uses the accelerometer data and a method
other than Naive Bayes (note the accelerometer sensor data
is clearly more informative than the gyroscope data). These
results far outperform the “strawman” approach of predict-
ing the most common class (i.e. the user with the great-
est number of instances), which would yield an accuracy of
only 1.96%.

Sensor Naive Random Rotation MLP Avg.
Bayes Forest Forest

Accel 66.8% 82.9% 84.0% 83.1% 79.2%
Gyro 52.4% 59.0% 66.4% 70.5% 62.1%

Table 2. Identification accuracy using a 10 second instance

The corresponding results interpreted with the Most Pre-
dicted User strategy are shown in Table 3. This strategy
always leads to perfect results. Based on our visual inspec-
tion of the full confusion matrices, and based on the fact that
there usually is not a second user who gets nearly as many
“votes” as the actual user, we believe that for our population
of 59 users, we could get perfect identification accuracy us-
ing fairly small samples of data.

5.2. Authentication Results

The results for the authentication experiments described
in Section 4.4 are presented in this section. Table 4 provides
the accuracy results for our authentication models. Recall

Sensor Naive Random Rotation MLP Avg.
Bayes Forest Forest

Accel 100% 100% 100% 100% 100%
Gyro 100% 100% 100% 100% 100%

Table 3. Identification accuracy using Most Predicted User

that these results are aggregated over all 59 of our authen-
tication models (i.e. one per subject) and all authentication
decisions presented here are based on a single 10 second
instance of walking data.

Sensor Naive Random Rotation MLP Avg.
Bayes Forest Forest

Accel 94.9% 98.3% 98.3% 98.0% 97.2%
Gyro 92.9% 93.8% 94.8% 94.6% 93.8%

Table 4. Authentication accuracy using a 10 second instance

The results in Table 4 indicate that smartwatch-based au-
thentication can be relatively accurate when using only a
single 10 second instance of data. We see that, consistent
with our identification results, the accelerometer sensor data
is more useful than the gyroscope data and the Naive Bayes
algorithm significantly underperforms the other algorithms.

Table 5 presents the EER results for authentication. The
EER rates are quite good and perform competitively with
the results from other biometrics studies, including several
studies that used smartphones (see Section 2).

Sensor Naive Random Rotation MLP Avg.
Bayes Forest Forest

Accel 4.5% 1.4% 2.5% 2.0% 2.6%
Gyro 9.6% 9.6% 7.0% 6.3% 8.1%

Table 5. Authentication EER results

6. Conclusions and Future Work
This paper described an effective system for performing

smartwatch-based biometric identification and authentica-
tion. It demonstrates that gait, as measured by commercial-
grade smartwatch sensors, is sufficient to identify an indi-
vidual with modest accuracy. Furthermore, a simple fixed-
width sliding window approach is shown to be sufficient
for representing the time-series sensor data. While the re-
sults are not necessarily sufficient to enable a smartwatch to
serve as a single means of identification or authentication,
the results are already strong enough for this technology
to participate in a biometrics system that utilizes multiple
identification or authentication mechanisms.

There are many ways to extend this work. This study
demonstrated that the accelerometer data is more useful
than the gyroscope data, but it is very possible that a fu-
sion of the data from these two sensors will yield improved
results. Similarly, the smartwatch sensor data can be fused



with the smartphone sensor data to see if having multiple
sources of data improves biometric performance. We have
also been experimenting with more sophisticated features,
which capture specific elements of a user’s gait, and plan
to investigate if these features can yield additional improve-
ments.

Another one of our goals for future work is to expand the
evaluation of this technology, so that it is applied to more
realistic situations. Thus, we plan to expand our user base
significantly, increase the diversity of the users (especially
with respect to age), and evaluate how the system operates
when the training and test samples are collected over longer
time frames. A key limitation of our current work is that the
data for each user is collected on a single day; preliminary
experiments indicate that our results degrade significantly
when the training and test data are collected from different
days. We are not quite sure about the specific reason for
this, but our future work will focus on identifying and ad-
dressing this issue, since to be useful a biometric system
must be able to function over reasonably long time inter-
vals. One final goal of our is to incorporate this biometrics
technology into a real-time system.
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