
SPECIAL SECTION ON ARTIFICIAL INTELLIGENCE IN CYBERSECURITY

Received June 24, 2019, accepted July 30, 2019, date of publication August 8, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2934012

SMASH: A Malware Detection Method Based
on Multi-Feature Ensemble Learning

YUSHENG DAI 1, (Student Member, IEEE), HUI LI1, YEKUI QIAN2,

RUIPENG YANG 2, AND MIN ZHENG3
1School of Electronics and Information, Northwestern Polytechnical University, Xi’an 710129, China
2National Digital Switching System Engineering and Technological R&D Center (NDSC), Zhengzhou 450001, China
3Henan Institute of Information Security Company Ltd., Xuchang 461000, China

Corresponding authors: Yusheng Dai (daiyusheng@mail.nwpu.edu.cn) and Yekui Qian (qyk1129@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61571364, and in part by the Innovation

Foundation for Doctoral Dissertation of Northwestern Polytechnical University under Grant CX201952.

ABSTRACT With the increasing variants of malware, it is of great significance to detect malware and ensure

system security effectively. The existing malware dynamic detection methods are vulnerable to evasion

attacks. For this situation, we propose a malware dynamic detection method based onmufti-feature ensemble

learning. Firstly, the method adopts the combination of software features such as API call sequence with

high detection precision and low-level hardware features such as resistance to evasion the memory dump

grayscale and hardware performance counters. Secondly, we improve each feature based on the original

research. We select a more advanced classifier model to improve the detection precision of a single feature.

Finally, an ensemble learning algorithm composed of multiple classification algorithms detects malware,

the multi-features can describe malware behavior from multi-dimensions to improve detection performance.

We use a large number of malware sample dataset to experiment, and the results show that our detection

method can obtain good detection precision rate, and is better than other recently proposed dynamic detection

methods in anti-evasion performance.

INDEX TERMS Anti-evasion, dynamic detection, hardware features, memory dump.

I. INTRODUCTION

With the continuous development of information technology,

cybercrime is a serious threat to the economic, military and

other important areas of various countries. Malware is one

of the important factors that undermine Internet security.

Malware has grown rapidly in both quantity and categories

compared with foretime. New malware, especially Advanced

Persistent Threat (APT), is more and more difficult to be

detected by current defection technologies.

The main ways of detecting malware include dynamic

detection and static detection [1]. Dynamic detection can

effectively monitor the running behavior and state of mal-

ware, and has received extensive attention from researchers.

However, dynamic detection is vulnerable to evasion

attacks [2]. According to the different detection system mod-

els, malware authors can set different countermeasures to

evade detection according to the detection model. At present,

there are a large number of malware dynamic detection

The associate editor coordinating the review of this manuscript and
approving it for publication was Chi-Yuan Chen.

studies, and a good detection rate can be obtained [3]–[11],

but malware with evasion behavior cannot be effectively

handled. Commonly used dynamic detection evasion meth-

ods use code reuse technical against detectors [12]–[14] or

use mimicry attack to evade detectors [15], [16]. Smutz and

Stavrou [17] proposed the method of using mutual agree-

ment analysis combined with ensemble learning for eva-

sion malware detection. On the PC platform, using API call

sequences is more effective than behavior-based dynamic

detection methods for characterizing malware [18]. How-

ever the software itself has the same defect density [19],

the method of using software features for detection is vulner-

able to evasion attacks. In addition, the detector of dynamic

detection itself can obtain enough evasion details through

the black box test [17]. Due to the shortcomings of dynamic

detection that are easily evasion, some recent studies focus

on malware detection based on hardware features to avoid

the lack of software features. Demme et al. [20] demon-

strated that malware can be effectively detected by extract-

ing hardware performance counter (HPC) information in

dynamic detection. Based on research by Demme et al.,

112588 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
VOLUME 7, 2019

https://orcid.org/0000-0003-3211-3862
https://orcid.org/0000-0002-7373-393X


Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

Khasawneh et al. [21], [22] developed an integration method

featuring a variety of HPC information for malware detec-

tion. However, the above-mentioned that using only hardware

feature method cannot fully describe the characteristics of

malware, resulting in a low detection rate, and is vulnerable

to evasion attacks aiming at performance counters as classi-

fication features.

Aiming at the defects of dynamic detection and the short-

comings of insufficient hardware detection rate, in this paper,

we proposes an ensemble learning method (SMASH) that

combines software and hardware features, extracts API call

sequence of malware, hardware performance counters and

memory dump [23] as detector features, and builds different

types of feature vectors. Wherein, the software features make

up for the lack of hardware feature detection precision, and

the hardware feature compensation software features are vul-

nerable evasion. An existing neural network with excellent

detection performance is used as a detector, so that each

feature corresponds to a specific detector for malware clas-

sification, and all the detection results are voted to determine

the maliciousness of the tested sample.

This paper mainly contributes 3 points as follows: (1)

1) We propose a method that combines software and hard-

ware features, API call sequences as software features,

HPC and memory dump grayscale images as hardware

features. This method describe malware behavior from

multi-dimensions, and can effectively combat the eva-

sion of malware.

2) We use advanced neural networks to improve the detec-

tion performance of each feature separately. Combine

the results of each feature detection to determine the

weight of the ensemble detector through experiments,

and determine the test results by voting in the end.

3) The effectiveness of this method is verified by using

actual malware and malware samples with evasion per-

formance for experimental evaluation.

The remaining sections of this paper are structured

as follow: Section 2 summarizes the related work;

Section 3 describes the SMASH method in detail, namely

the feature extraction method and algorithm model;

Section 4 evaluates our method from the detection perfor-

mance and the anti-evasion performance; Section V con-

cludes the full text and proposes further work.

II. LITERATURE REVIEW

Malware detection is mainly divided into static detection

and dynamic detection [1]. The static detection method gen-

erally adopts the disassembly mode, which can understand

the program from the grammar and semantics. It has the

advantages of simple and efficient. Arp et al. [24] used mul-

tiple vector combinations based on semantics and syntax

to detect malware for Android and document files. Kapoor

and Dhavale [25] disassemble executable files and generate

control flow graphs, then extract features from n-grams and

extract features grading, and finally used information gain to

feature dimensionality reduction and using machine learning

algorithms to detect malware. Nguyen et al. [26] proposed

an enhanced form of control flow graph, and converted the

control flow graph into an image, then used deep learning

to detect malware. However, these methods are subject to

defects in static detection. Nataraj et al. [27] and Nataraj

and Manjunath [28] first proposed a method for converting

a malware file into a grayscale image, and used the texture

feature of the image to classify the malware, and visual

method is used to compensate for the static test vulnerable

to confuse and encryption methods, but still cannot solve the

problem of padding code.

Dynamic detection technology can effectively overcome

the shortcomings of static analysis technology, and it

attracts extensive attention because it can monitor the

behavior of samples while the program is running [29].

The studies on malware dynamic detection have attracted

extensive attention [7]–[10], and all have obtained good

detection accuracy. The common detection features in

dynamic detection include behavior-based malware dynamic

detection [3]–[6], and dynamic detection studies using API

call sequences [11], [30], [31], all of which use software

features to detect malware. Since the API call sequence is

easy to be extracted and has relatively high detection accu-

racy, the malicious behavior of the tested sample can be

fully described, but malware with evasion behavior in these

work cannot be effectively detected. In the study of malware

detection, as the malware itself has functionality, it is rel-

atively difficult to provide suitable countermeasures. Such

confrontation is called analog attack [32]. Currently, research

on mimicry attack of malware includes [16], [33], [34], and

these attacks use PDF as an attack payload to evade the

detector.

Recently, there are quite a few research methods based on

hardware features. As there is no essential difference between

the software and general software regarding the vulnerability,

they are vulnerable to different degrees of confrontation.

Demme et al. [20] found that collecting performance counter

information of malware at runtime can effectively distin-

guish malware through offline analysis and verify the effec-

tiveness of using hardware performance counter. By using

HPC and its related events, Tang et al. [19] demonstrated

that using off-line unsupervised analysis method can also

effectively analyze new types of malware or family evolu-

tion. Ozsoy et al. [35], [36] and Khasawneh et al. [21], [22]

adopted the two-level detection method, they use a variety

of low-level hardware features for pre-detection, raise the

weight of suspicious files, and recheckwith software detector.

However, themalware behavior cannot be described perfectly

by using the hardware detection method, because the features

are too single. The study by Zhou et al. [37] shows that HPC

cannot effectively correspond to the upper API in describing

malicious behavior, resulting in a decrease in accuracy. The

study byDas et al. IEEEexample:das2019sok shows that HPC

may also be exploited by an attacker to cause an evasion of

detection. Dai et al. [23] used HOG extracted from memory

VOLUME 7, 2019 112589



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

dump grayscale image as a feature to verify the validity of

the feature classification detection, which could effectively

describe the malware to some extent.

Most of the above methods focus on detection accuracy,

while there is less concern about the evasion of malware.

Smutz and Stavrou, [17] proposed the use of mutual agree-

ment analysis combined with multiple classifier collection,

and hope it can combat the evasion from the detector, but

using only software features for detecting malicious software

with evasion behavior still results in undetermined detection.

Khasawneh et al. [38] designed a hardware detector, used

performance counters as features and re-training resilient

method to resist the evasion attack. However, using only

hardware features still has a problem of a low detection rate.

III. SMASH METHOD

The SMASH method proposed in this paper mainly has three

steps. The first step is to use dynamic sandbox to extract

the three features of malware, namely API call sequence,

memory dump grayscale image and performance counter

count; the second step is to train and predict each feature in

a specialized classifier; the final step is to perform integrated

computing of the test results to determine the maliciousness

of the input samples. The experimental process is shown

in Fig. 1.

A. API SEQUENCE EXTRACTION

The software features used in the SMASH method of this

paper are based on the API call sequence method, and the

API call sequence can demonstrate the optimal detection

performance on the PC platform [18]. By monitoring all

the ring0 level API functions executed by the malware in

the dynamic sandbox, the sequence of function execution is

extracted as a feature for malware classification and detection

work. In this paper, the API call sequence is used as a feature,

word2vec is used to convert the malware API call sequence

into a vector, and a multi-layer BiGRU network is used to

detect malware.

In this paper, the cuckoo sandbox [39] is used to extract all

the features ofmalware samples, includingAPI call sequence,

memory dump files, and HPCs. Here we use the report pack-

age of the cuckoo sandbox to get the API call sequence of

malware samples. Due to the different call order of different

kinds of application APIs, the calling combination of some

functions will appear more frequently in malware. In order to

convert the obtained API sequence into a feature vector that

can be recognized by the algorithm, the word2vec method is

used in processing API sequence in this paper.

The corpus of CSDMC 2010 API [30] is used in

our word2vec method. Combined with the data sam-

ple API sequence used in the experiment, a hierarchical

softmax-based CBOW model is used. The extracted API

sequence form a text sequence f = {w1,w2,w3, . . . ,wn}

according to the call sequence, where wn represents the

word vector of the corresponding function, and set maxi-

mum distance between the current and predicted function

is c = 2. Therefore, the front and back for each word in the

text sequence f can be calculated:

context(w)n =
1

2c

2c∑

i=i

wi (1)

In v(context(w)n) ∈ R
m, wi is the i-th neighbor of w,

and m is the word vector length. Then, through the gradi-

ent rise, after setting 20 iterations, a set of vectors V =

{label, v1, v2, v3, . . . , vn} related to the sample API sequence

is finally output in combination with the label, and each word

vector value is mapped to the file accordingly. Other APIs are

filled with 0 to form fixed length vector VS .

B. MEMORY DUMP GRAYSCALE IMAGE EXTRACTION

The first hardware feature used by the SMASH method is

the grayscale image converted by the memory dump file.

Memory dump can store more information, so it can describe

the behavior of malware more comprehensively, and can

effectively detect malware with evasion behavior to a certain

extent (Dai et al. [23]). Memory dump refers to the volatile

data extracted from the computer physical memory and swap

page, and it is the important data used in memory forensics

this computer branch science. Memory dump usually has full

memory dump, core dump, process dumps, and so on. Here

we extract and analyze the sample process memory dump file

to determine whether this process is malicious.

The memory dump of a process typically contains the

dynamic link libraries (DLLs), environment variables, pro-

cess heaps, thread stacks, data segments, and text segments

required by the process. In order to extract the transferred

files, we extract the latest memory dump at a fixed time in

the cuckoo sandbox and extract it into the sandbox’s Host

system. In order to make the detector correctly recognize the

read dump data, we map the dump file to fixed-size grayscale

images.

A given dump file is read from the beginning of the

file with 8 bit unsigned int as step size and converted

into a one-dimensional array in whole. The computer’s

single-channel grayscale image has a maximum gray level

of 256. Each byte is read sequentially from a one-dimensional

array and converted to single-channel PNG format file

according to fixed line width.

Since the memory size of dump file generated by each

sample is inconsistent, in order to get grayscale image with

consistent size and the image is not significantly distorted,

the bicubic interpolation is used to compress the grayscale

image. During the processing of grayscale image, cubic inter-

polation is performed on the 16 pixels in the adjacent 4 × 4

area, taking into account not only the grayscale effect of 4

directly adjacent points, but also the effect of rate of change

for gray value between adjacent points. The bicubic interpo-

lation of 4 × 4 pixels is expressed as follows:

p(x, y) =

3∑

i=0

3∑

j=0

aijx
iyj (2)

112590 VOLUME 7, 2019



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

FIGURE 1. SMASH method architecture.

FIGURE 2. Example of sample dump grayscale image.

where (x, y) is the pixel point to be interpolated in grayscale

image, and aij is the 4 × 4 neighborhood point around pixel

point. The tagged feature data VG = {label,A224×224} can be

obtained by outputting the image to a grayscale image with

equal side length. Fig. 2 shows the example of sample dump

grayscale image extracted by different families.

C. LOW-LEVEL FEATURE EXTRACTION

Hardware low-level features include architectural features

and micro-architectural features. This work refers to the work

of Demme et al. [20] and Ozsoy et al. [35], [36], using the

hardware performance counter of CPU as the features used

in our SMASH method.

We programmatically implant a soft probe on the guest

side of cuckoo to read the CPU’s Model Specific Reg-

isters (MSR). We set virtualized performance counters

in virtual machine, and MSR can record the current

CPU performance status. Three fixed performance coun-

ters (instruction retired, unhalted core cycle, etc.), and four

optional event performance counters. The capturing runtime

behavior of performance counters using hardware can be

used to identify malicious software and to ensure that minor

changes in malicious software duringmonitoring process will

not significantly interfere with the detection process.

According to the characteristics of different architec-

tural events [19] and with reference to the conclusions

of [20], [35], [36], combined with the data used in our exper-

iments, we only select three counters that can reflect the

optimal performance as hardware features of HPC. Total per-

formance status of CPU is denoted as VP, Instructions Retired

is denoted as VIR, and Unhalted Core Cycle is denoted as

VUC . The sampling frequency is about 3,000k clock cycles

under 3.2 GHz CPU, which is a relatively reasonable sam-

pling frequency under Windows system. Excessive sampling

frequency will cause higher expenditure and further increase

the sampling noise.

D. CLASSIFICATION MODEL

1) BIGRU NEURAL NETWORK

In this work, the extracted API call sequence feature vec-

tor and low-level hardware feature vector are correlated in

time. Therefore, the multi-layer BiGRU network is selected

VOLUME 7, 2019 112591



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

FIGURE 3. Two-layer BiGRU network structure.

to detect the API sequence features and low-level hardware

features. GRU is a variant of recurrent neural network, and

LSTM neural network is similar to it. Because it is applicable

to the characteristics of detecting sequential characteristic

and has fewer parameters than LSTM, it is easy for conver-

gence.

Fig. 3 shows the overview of network structure for training

feature data in this work. API sequence or hardware perfor-

mance counter feature vector X = {x1, . . . , xi, . . . , xn} is

input in model, and xi is the input of a certain time point.

In order to calculate a GRU cell hidden layer output hi, first it

is required to calculate the updated gate zi and reset gate ri in

the cell, and user ri to calculate the h̃i of candidate memory

cell, then finally obtain the hi output of current cell. The

calculation process of single GRU cell is as follows:

zi = σ (Wzxi + Uzhi−1) (3)

ri = σ (Wrxi + Urhi−1) (4)

h̃i = tanh(Wxi + U (ri ∗ hi−1)) (5)

hi = (1 − zi) ∗ hi−1 + zi ∗ h̃i (6)

where hi−1 is the cell status information of the previous

moment, andW ,U is weight matrix. In our network, a GRU

cell represents the API in a feature vector, or the value of

a hardware feature at the current time. Bilaterally used to

calculate the relationship between the features ‘‘past’’ and

‘‘future’’ to increase the number of GRU layers, so as to

increase the learning ability of the whole network, and the

data is more and more abstract. In combination with the use

of two-layer BiGRU in above content, the state of upper layer

is used as input to each GRU cell in the next layer.

The maximum pooling layer is used to process information

of hidden layer. Probability output is achieved from the data

obtained after pooling passing through the fully connected

layer and then through softmax function. The overhead of

the BiGRU network used in the method is measured by

the parameter quantity and the computing power, wherein

the parameter quantity is about 21.56M, and the computing

power is counted using the number of floating-point opera-

tions, and the computing power is about 4.32GFlops.

2) VGG19

In section 4.2, we have extracted the grayscale image mapped

by malware memory dump. This paper uses convolutional

neural network to classify the grayscale image of memory

dump. Convolutional Neural Network is a multi-layer neural

network structure that is composed of input layer, convolu-

tion layer, pooling layer, fully connected layer and output

layer. The input layer inputs the grayscale image of memory

dump; The pooling layer extracts the features of grayscale

image; The pooling layer uses the local correlation principle

of image to reduce the volume of data to be processed; The

output layer maps the features to final predicted results. Next,

the VGG19 network used in our work will be described.

a: CONVOLUTION LAYER

the output of the upper layer can be the input of the current

convolution layer. In order to improve the expression ability

of network model, the nonlinear activation function is intro-

duced. The forward propagation of convolution layer k can

be expressed as: Ck = σ (Ck−1 ∗W k + bk ). Where W is the

high-dimensional tensor of convolution kernel, b is bias, and

Relu is used as activation function σ .

b: POOLING LAYER

Pooling function uses the overall statistical characteristics of

the adjacent output at a position to replace the network output

at the position, which can carry out dimension reduction on

the output of previous convolution layer and remain most

outputs unchanged in the meantime. Set pooling function as

the maximum sampling, and use the sliding window of 2× 2

with a step of 2.

Fully connected layer and output layer: All the

two-dimensional feature maps outputted by the convolution

layer are spliced into one-dimensional feature vector as the

input of fully connected layer. The fully connected layer

obtains the output hk = σ (W khk−1 + bk ) of Layer k by

the weighted sum of input and the activation function. Here,

the activation function still uses Relu, and W is the weight

matrix of the current layer, while b is bias. The final output

layer, based on the output of the previous fully connected

layer, uses softmax function regression to convert the results

of neural network forward propagation into probability dis-

tribution.

The convolutional neural network used for grayscale

images in this work uses a single channel image as input. The

network model is shown in Table 1, wherein, stride is the step

length of convolution kernel movement, pad is padding, true

112592 VOLUME 7, 2019



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

TABLE 1. VGG19 model.

is using 0 for padding, false is no padding; Function is the

function used by the current layer.

The overhead of our VGG19 network model is measured

by parameter quantity and the computing power, where the

parameter quantity is about 139.56M, and the computing

power is about 17.31GFlops.

3) ALGORITHM INTEGRATION

Since a single detector uses a single algorithm and is easy to

be attacked by reverse analysis mechanism to some extent,

we combine all the detectors to improve the overall complex-

ity and detection performance of the detector. We apply mul-

tiple features to different detectors and combine the decisions

made by all detectors into the final decision, as shown in the

training and detection phases of Fig. 1.

The method of integrating multiple algorithms is called

ensemble learning, which is suitable for integrating the deci-

sions made by multiple individual detectors into a complete

decision, so in the work, all the results of detector are subject

to integrated voting method to detect if an unknown sample is

malicious. We use a weighted voting method for any sample

x, and our detection results for t detectors are respectively

{h1(x), h2(x), . . . , ht−1(x), ht (x)}. We set each feature, taking

the performance as the original weight, and then fine-tuning

according to the experimental results to choose the opti-

mal weight. The final predicting outcomes can be obtained

according to different weights of detectors. The expression is

shown in the following formula, where ωi is the weight of the

i-th detector.

H (x) =

t∑

i=1

ωihi(x) (7)

TABLE 2. Dataset category.

IV. EXPERIMENTAL EVALUATION

A. EXPERIMENTAL ENVIRONMENT AND DATASET

The computer environment of sandbox environment running

is using CPU of Intel(R) Core(TM) i5-6500 @3.20GHz;

using 8GB DDR3 memory The Host machine of cuckoo

sandbox is installed under Ubuntu16.04 system environment

with Guest machine using Windows7 32-bit operating sys-

tem, 2GB memory.

SMASH method runs on a graphic workstation with hard-

ware environment using CPU of Intel Core (TM) i7-6800K

processor chip; 32GB dual channel DDR4 memory; The

graphics card is Nivdia 1080Ti with 11GB of video memory.

The malware dataset used in this paper comes from

OpenMalware [40] and the use of malware is authorized with

a total of about 27k malware samples and an acquisition

range of 2013-2015; The evasion sample data is about 100,

collected in 2016-2017 and written by ourself. All samples

can be classified into 214 families by VirusTotal [41] accord-

ing to their families. The classification according to malware

functions and the quantity information used in the experiment

can be found in Table 2.

B. EVALUATION CRITERION

This experiment uses accuracy (Accuracy = TP+TN
TP+FP+TN+FN

),

precision (Precision = TP
TP+FP

), recall (Recall = TP
TP+FN

)

and F1-Score (F1 − Score =
(2∗Precision∗Recall)
(Precision+Recall)

) these four

indicators to measure the effectiveness of classification using

the method in this paper combined with machine learning,

wherein, the TP, FP, TN and FN respectively represent true

positive, false positive, true negative and false negative cases.

Accuracy refers to the quantity of data which is classified

correctly by the classifier in the classification process, while

recall refers to the quantity of data that can be found in

all correct data. As the accuracy and recall in classification

process is a pair of contradictory measures, the use of F1-

Score can effectively balance the accuracy and recall, and

the closer to 1 of F1-Score numerical value means better

classifier performance.

Meanwhile, we use the ROC (Receiver Operating Charac-

teristic) curve and AUC (Area Under Curve) area to reveal the

performance of each feature on different detectors, integrate

the overall detection performance of detectors, and evaluate

the performance of detectors on malware dataset with evasion

features.

VOLUME 7, 2019 112593



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

TABLE 3. Indicator performance of multiple features.

FIGURE 4. Multiple features use the accuracy of different detectors.

C. SMASH METHOD EVALUATION

1) FEATURE EVALUATION

In the experiment, we take 80% of the samples in all

available malware as a training set and take 20% of the

samples as a test set. In SMASH experiment, we use an

integrated detector (Random Forest, RF) and a universal

detector (multilayer perceptron, MLP) to compare the same

features so as to verify the performance of each feature in

malware detection. The different features shown in Fig. 4 use

the accuracy histograms of the two detectors. Table 3 lists

the best detection rate, recall, and F1-Score for each

feature.

It can be seen from Fig. 4 that no matter which detector is

used, the accuracy of usingAPI sequence as a feature to detect

malware is better than the hardware feature. Regardless of

the classification in accordance with family or detection, API

sequence feature can show good performance. In terms of

hardware features, the detection rate combining the memory

dump grayscale image and the overall performance counter

of CPU shown in Table 3 is relatively close, and the accuracy

is high, whereas the detection rates of other performance

counter features are relatively low. On the whole, the features

we selected as input data of detector should have a high

detection rate.

2) CLASSIFIER EVALUATION

We use API call sequence and low-level hardware perfor-

mance counters as features, and use BiGRUneural network as

a detector; use memory dump grayscale image extracted by

TABLE 4. Comparison of single classifier and SMASH results.

FIGURE 5. Performance comparison of three classifiers.

malware as a feature, and use VGG19 convolutional neural

network as a detector. Meanwhile, we select two widely

used classifier, support vector machine (SVM) and random

forest (RF) to train and test the features extracted in the exper-

iment using integrated approach respectively. The experiment

verifies the detection rate of each classifier and compareswith

the detection rate of SMASH method. The results are shown

in Table 4:

In this group of experiments, we use a BiGRU neural

network to detect malware API sequences and use VGG19 to

detect malware memory dump grayscale image. It can be

seen from the accuracy and F1-Score that the detection

rate is higher compared with the use of random forest and

multi-layer perceptron in Table 3. As can be seen from

Table 4, using BiGRU in combination with three HPC fea-

tures are superior to the mean value of single performance

counter’s optimal performance in Table 3. In terms of inte-

grated detector, we use support vector machine and random

forest. Each individual detector corresponds to a feature, and

it is compared with SMASH method based on the result of

weighted sum. SMASH method can reach 96.9% and 98.1%

on the accuracy and F1-Score.

Fig. 5 shows the ROC curves of three integrated detectors.

The x-axis of ROC curve image is the False Positive Rate

and the y-axis is the True Positive Rate. It can be seen from

the figure that, the AUC value of SMASH method is about

0.98, which is about 4% higher compared with that of support

vector machine method and random forest method using

integration.

112594 VOLUME 7, 2019



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

FIGURE 6. Detection performance of Non-op instruction block injection.

D. ANTI-EVASION PERFORMANCE EVALUATION

The same family of malware constantly generates new sam-

ples, which is an evasion process itself [17], and meanwhile,

as the detectormethod ages, for the newly generatedmalware,

the detection rate will be greatly affected [42]. Usually the

author of malware will use a special or general attack strategy

to evade or bypass the defense system of targeted victim

according to the defense strategy of the target attacked. Our

experiments imitate the evasion behavior and assume that the

attacker knows nothing about our detector, i.e. the black box

testing.

1) RANDOMIZE INSTRUCTION INJECTION

In the experiment, we set malware evasion type to ran-

domly injected instruction malware in a way of inserting

invalid instructions to avoid detection. In a way of inserting

invalid instruction block, we randomly insert non-operational

instruction block into the code, and the number of ran-

dom insertions is gradually increased. AUC area is used as

the annotation to measure the performance of each feature,

as shown in Fig. 6.

As can be seen from the figure, HPC is greatly affected

by inserting invalid instruction block, but API sequence and

grayscale image methods are less affected. Due to the inser-

tion of invalid instruction, the count of performance counter

is distorted during the same sampling period and detector per-

formance is degraded. Whereas the API operation sequence

and grayscale image resist evasion attacks on a relatively

large scale.

2) BENIGN INSTRUCTION INJECTION

Injecting benign instruction to reduce the detector’s detec-

tion rate of malware is another evasion method. In the

experiment, we set the function that can reflect benign

behavior to be injected into malware, and the number

of function injections is gradually increased, as shown

in Fig.7.

FIGURE 7. Detection performance of benign function injection.

TABLE 5. Comparison with other methods.

It can be seen from the figure that, the detection perfor-

mance of API sequence will be seriously affected by injecting

benign function, while HPC and memory dump grayscale

image are relatively less affected. It is a challenge in dynamic

detection that benign API sequence is introduced to affect

API detector performance. We use memory dump grayscale

image as a feature, which is able to effectively defend against

such attacks. Because API occupies text segments inmemory,

and this part is only a part of process memory, there are still

other related data that can be used as a feature to express

sample maliciousness.

Therefore, it can be seen from the experimental results

of random injection no-op blocks (Fig. 6) and injection

benign function (Fig. 7), our SMASH method can effectively

against two evasion attacks, in which memory dump pro-

vides higher anti-evasion performance contribution. Since the

memory dump basically contains no invalid instructions, and

the instructions in the memory are stored in the text segment,

it is only part of thememory and has little effect on the process

memory. However, memory dump has a large gap with API

call sequence in detection precision, so using memory dump

image can alleviate the evasion attack of malware to a certain

extent.

3) COMPARISON WITH OTHER RESEARCH

In order to verify the effectiveness of ourmethod, we compare

the research of Smutz and Stavrou [17] with the Ensamble

HMD of Khasawneh et al. [22] using our dataset, and the

optimum results are taken. See Table 5.

It should be pointed out that Ensamble HMD is a

hardware-based detector, and our recurring experiments use

VOLUME 7, 2019 112595



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

only the malware features used in this research and the

offline universal detector (neural network) method in this

research. Since it is soft probe we use, and some noise

may also be introduced when acquiring HPC, the difference

between the two experiment settings is not counted therein.

As can be seen from the table, the multi-featured integrated

detector used in our SMASH method has the highest accu-

racy.

V. CONCLUSION

The existing dynamic detection method based on software

features cannot effectively deal with the problem of mal-

ware evasion, and the detection method based on hardware

features also suffers from imitation attacks against features

and detectors. In response to this problem, this paper pro-

poses software and hardware features combining API feature

sequence, memory dump grayscale image, hardware per-

formance counter, etc., and uses the corresponding neural

network to detect malware for each feature. By improving

the detector model for each feature and using the ensemble

learning method, the detection precision of malware can be

optimized, and the detection accuracy can be as high as

97.8%. The effectiveness of the method proposed in this

paper is verified by using different types of malware and

the malware containing evasion behavior. In the experiment,

the detection precision decreased by no more than 3%, and

the performance against evasion attacks is slightly better

than other recent studies. In future work, we will research

the types of malware that are currently difficult to detect

(COOP, Powershell, etc.), which are considered to be highly

threatening in current research.

ACKNOWLEDGMENT

The authors would like to thank the editor and the anonymous

referees for their constructive comments.

REFERENCES

[1] N. Idika and A. P. Mathur, ‘‘A survey of malware detection techniques,’’

Purdue Univ. West Lafayette, IN, USA, Tech. Rep., 2007, vol. 48.

[2] A. Bulazel and B. Yener, ‘‘A survey on automated dynamic malware

analysis evasion and counter-evasion: PC, mobile, and Web,’’ in Proc. 1st

Reversing Offensive-Oriented Trends Symp., 2017, p. 2.

[3] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, ‘‘MADAM:

Effective and efficient behavior-based Android malware detection and

prevention,’’ IEEE Trans. Depend. Sec. Comput., vol. 15, no. 1,

pp. 83–97, Jan./Feb. 2018.

[4] Y. Ding, X. Xia, S. Chen, and Y. Li, ‘‘A malware detection method based

on family behavior graph,’’ Comput. Secur., vol. 73, pp. 73–86, Mar. 2018.

[5] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, ‘‘Malware

detection with deep neural network using process behavior,’’ in Proc. IEEE

40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2, Jun. 2016,

pp. 577–582.

[6] S. S. Hansen, T. M. T. Larsen, M. Stevanovic, and J. M. Pedersen,

‘‘An approach for detection and family classification of malware based on

behavioral analysis,’’ in Proc. Int. Conf. Comput. Netw. Commun. (ICNC),

Feb. 2016, pp. 1–5.

[7] B. Alsulami, A. Srinivasan, H. Dong, and S. Mancoridis, ‘‘Lightweight

behavioral malware detection for windows platforms,’’ in Proc. 12th Int.

Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2017, pp. 75–81.

[8] M. Yousefi-Azar, L. G. C. Hamey, V. Varadharajan, and S. Chen, ‘‘Malyt-

ics: A malware detection scheme,’’ IEEE Access, vol. 6, pp. 49418–49431,

2018.

[9] B. Athiwaratkun and J. W. Stokes, ‘‘Malware classification with LSTM

and GRU language models and a character-level CNN,’’ in Proc.

IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP), Mar. 2017,

pp. 2482–2486.

[10] B. J. Kwon, V. Srinivas, A. Deshpande, and T. Dumitraş, ‘‘Catch-

ing worms, trojan horses and PUPs: Unsupervised detection of silent

delivery campaigns,’’ 2016, arXiv:1611.02787. [Online]. Available:

https://arxiv.org/abs/1611.02787

[11] A. G. Kakisim, M. Nar, N. Carkaci, and I. Sogukpinar, ‘‘Analysis and

evaluation of dynamic feature-based malware detection methods,’’ in Proc.

Int. Conf. Secur. Inf. Technol. Commun. Springer, 2018, pp. 247–258.

[12] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and

M. Winandy, ‘‘Return-oriented programming without returns,’’ in Proc.

17th Conf. Comput. Commun. Secur., 2010, pp. 559–572.

[13] E. Bosman and H. Bos, ‘‘Framing signals—A return to portable shell-

code,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 243–258.

[14] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz,

‘‘Counterfeit object-oriented programming: On the difficulty of preventing

code reuse attacks in C++ applications,’’ in Proc. IEEE Symp. Secur.

Privacy, May 2015, pp. 745–762.

[15] D. Bruschi, L. Cavallaro, and A. Lanzi, ‘‘An efficient technique for pre-

venting mimicry and impossible paths execution attacks,’’ in Proc. IEEE

Int. Perform. Comput. Commun. Conf., Apr. 2007, pp. 418–425.

[16] D.Maiorca, D. Ariu, I. Corona, and G. Giacinto, ‘‘A structural and content-

based approach for a precise and robust detection of malicious PDF files,’’

in Proc. Int. Conf. Inf. Syst. Secur. Privacy (ICISSP), Feb. 2015, pp. 27–36.

[17] C. Smutz and A. Stavrou, ‘‘When a tree falls: Using diversity in ensemble

classifiers to identify evasion in malware detectors,’’ in Proc. NDSS, 2016.

[18] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,

and L. Cavallaro, ‘‘DroidScribe: Classifying Android malware based

on runtime behavior,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),

May 2016, pp. 252–261.

[19] A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomaly-

based malware detection using hardware features,’’ in Proc. Int. Workshop

Recent Adv. Intrusion Detection. Springer, 2014, pp. 109–129.

[20] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman,

S. Sethumadhavan, and S. Stolfo, ‘‘On the feasibility of online Malware

detection with performance counters,’’ ACM SIGARCH Comput. Archit.

News, vol. 41, no. 3, pp. 559–570, 2013.

[21] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and

D. Ponomarev, ‘‘Ensemble learning for low-level hardware-supported mal-

ware detection,’’ in Proc. Int. Symp. Recent Adv. Intrusion Detection.

Springer, 2015, pp. 3–25.

[22] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. A. Ghazaleh, and

D. V. Ponomarev, ‘‘EnsembleHMD: Accurate hardware malware detectors

with specialized ensemble classifiers,’’ IEEE Trans. Depend. Sec. Comput.,

to be published.

[23] Y. Dai, H. Li, Y. Qian, and X. Lu, ‘‘A malware classification method based

on memory dump grayscale image,’’ Digit. Invest., vol. 27, pp. 30–37,

Dec. 2018.

[24] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and

C. Siemens, ‘‘DREBIN: Effective and explainable detection of Android

malware in your pocket,’’ in Proc. NDSS, vol. 14, 2014, pp. 23–26.

[25] A. Kapoor and S. Dhavale, ‘‘Control flow graph based multiclass malware

detection using bi-normal separation,’’ Defence Sci. J., vol. 66, no. 2,

pp. 138–145, 2016.

[26] M. H. Nguyen, D. Le Nguyen, X. M. Nguyen, and T. T. Quan, ‘‘Auto-

detection of sophisticated malware using lazy-binding control flow graph

and deep learning,’’ Comput. Secur., vol. 76, pp. 128–155, Jul. 2018.

[27] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware

images: Visualization and automatic classification,’’ in Proc. 8th Int. Symp.

Vis. Cyber Secur., 2011, p. 4.

[28] L. Nataraj and B. S. Manjunath, ‘‘SPAM: Signal processing to analyze

malware [applications corner],’’ IEEE Signal Process. Mag., vol. 33, no. 2,

pp. 105–117, Mar. 2016.

[29] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated

dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv.,

vol. 44, no. 2, p. 6, 2012.

[30] (Mar. 2018). Sequence Intent Classification Using Hierarchical Attention

Networks. [Online]. Available: https://www.microsoft.com/developerblog/

2018/03/06/sequence-intent-classification/

[31] I. Kwon and E. G. Im, ‘‘Extracting the representative API call patterns of

malware families using recurrent neural network,’’ in Proc. Int. Conf. Res.

Adapt. Convergent Syst., 2017, pp. 202–207.

112596 VOLUME 7, 2019



Y. Dai et al.: SMASH: A Malware Detection Method Based on Multi-Feature Ensemble Learning

[32] K. Wang, J. J. Parekh, and S. J. Stolfo, ‘‘Anagram: A content anomaly

detector resistant to mimicry attack,’’ in Proc. Int. Workshop Recent Adv.

Intrusion Detection. Springer, 2006, pp. 226–248.

[33] D. Maiorca, I. Corona, and G. Giacinto, ‘‘Looking at the bag is not enough

to find the bomb: An evasion of structural methods for malicious pdf files

detection,’’ in Proc. 8th SIGSAC Symp. Inf. Comput. Commun. Secur.,

2013, pp. 119–130.

[34] N. Rndic and P. Laskov, ‘‘Practical evasion of a learning-based classi-

fier: A case study,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014,

pp. 197–211.

[35] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,

and D. Ponomarev, ‘‘Hardware-based malware detection using low-

level architectural features,’’ IEEE Trans. Comput., vol. 65, no. 11,

pp. 3332–3344, Nov. 2016.

[36] M. Ozsoy, C. Donovick, I. Gorelik, N. Abu-Ghazaleh, and D. Ponomarev,

‘‘Malware-aware processors: A framework for efficient online malware

detection,’’ in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.

(HPCA), Feb. 2015, pp. 651–661.

[37] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, ‘‘Hardware

performance counters can detect malware: Myth or fact?’’ in Proc. Asia

Conf. Comput. Commun. Secur., 2018, pp. 457–468.

[38] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, ‘‘RHMD:

Evasion-resilient hardware malware detectors,’’ in Proc. 50th Annu.

IEEE/ACM Int. Symp. Microarchit. (MICRO), Oct. 2017, pp. 315–327.

[39] Cuckoo Sandbo. Accessed: May 16, 2018. [Online]. Available:https://

cuckoosandbox.org/

[40] Openmalware. Accessed: Apr. 5, 2018. [Online]. Available: http://

malwarebenchmark.org/

[41] Virustotal. Accessed: May 18, 2018. [Online]. Available: https://

www.virustotal.com/

[42] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,

and L. Cavallaro, ‘‘Transcend: Detecting concept drift in malware clas-

sification models,’’ in Proc. 26th Secur. Symp. Secur. (USENIX), 2017,

pp. 625–642.

YUSHENG DAI received the B.S. degree in com-

puter science and technology from Zhengzhou

University, Zhengzhou, China, in 2011, and the

M.S. degree in software engineering from the

Beijing Institute of Technology, Beijing, China,

in 2015. He is currently pursuing the Ph.D.

degree with Northwestern Polytechnical Univer-

sity, Xi’an, China. His research interests include

malware analysis and machine learning.

HUI LI received the B.S. degree in electrical

engineering, the M.S. degree in circuits and sys-

tems, and the Ph.D. degree in system engineer-

ing from Northwestern Polytechnical University,

Xi’an, China, in 1991, 1996, and 2006, respec-

tively. He joined the School of Electronic Infor-

mation, Northwestern Polytechnical University,

in 1993, and was promoted to Associate Professor,

in 2002. Since 2008, he has been a Professor with

the School of Electronic Information, Northwest-

ern Polytechnical University. His research interests include communication

signal processing, massiveMIMO,mmWave communications, avionics inte-

grated system simulation, and multi-sensor information fusion.

YEKUI QIAN received the Ph.D. degree in tech-

nology of computer application from the Univer-

sity of Science and Technology, Nanjing, China,

in 2010. He is currently an Associate Professor.

His research interest includes cyberspace security.

RUIPENG YANG received the B.S. degree in

computer science and technology from the Henan

Institute of Finance and Economics, Zhengzhou,

China, in 2005, and the M.S. degree in technol-

ogy of computer application, in 2008. She is cur-

rently pursuing the Ph.D. degree with the National

Digital Switching System Engineering and Tech-

nological R&D Center, Zhengzhou. Her research

interests include signal processing and pattern

recognition.

MIN ZHENG received the B.S. degree in cryptog-

raphy engineering from the Zhengzhou Engineer-

ing and Technology Academy, Zhengzhou, China,

in 1996. He is currently with the Henan Insti-

tute of Information Security Company Ltd. He is

also a Senior Engineer, mainly engaged in

cryptography and information security.

VOLUME 7, 2019 112597


	INTRODUCTION
	LITERATURE REVIEW
	SMASH METHOD
	API SEQUENCE EXTRACTION
	MEMORY DUMP GRAYSCALE IMAGE EXTRACTION
	LOW-LEVEL FEATURE EXTRACTION
	CLASSIFICATION MODEL
	BIGRU NEURAL NETWORK
	VGG19
	ALGORITHM INTEGRATION


	EXPERIMENTAL EVALUATION
	EXPERIMENTAL ENVIRONMENT AND DATASET
	EVALUATION CRITERION
	SMASH METHOD EVALUATION
	FEATURE EVALUATION
	CLASSIFIER EVALUATION

	ANTI-EVASION PERFORMANCE EVALUATION
	RANDOMIZE INSTRUCTION INJECTION
	BENIGN INSTRUCTION INJECTION
	COMPARISON WITH OTHER RESEARCH


	CONCLUSION
	REFERENCES
	Biographies
	YUSHENG DAI
	HUI LI
	YEKUI QIAN
	RUIPENG YANG
	MIN ZHENG


