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SmashGuard: A Hardware Solution to
Prevent Security Attacks on the

Function Return Address
Hilmi Özdoganoglu, T.N. Vijaykumar, Carla E. Brodley, Benjamin A. Kuperman, and Ankit Jalote

Abstract—A buffer overflow attack is perhaps the most common attack used to compromise the security of a host. This attack can be

used to change the function return address and redirect execution to the attacker’s code. We present a hardware-based solution,

called SmashGuard, to protect against all known forms of attack on the function return addresses stored on the program stack. With

each function call instruction, the current return address is pushed onto a hardware stack. A return instruction compares its address to

the return address from the top of the hardware stack. An exception is raised to signal the mismatch. Because the stack operations and

checks are done in hardware in parallel with the usual execution of instructions, our best-performing implementation scheme has

virtually no performance overhead (because we are modifying hardware, it is impossible to guarantee zero overhead without an actual

hardware implementation). While previous software-based approaches’ average performance degradation for the SPEC2000

benchmarks is only 2.8 percent, their worst-case degradation is up to 8.3 percent. Apart from the lack of robustness in performance,

the software approaches’ key disadvantages are less security coverage and the need for recompilation of applications. SmashGuard,

on the other hand, is secure and does not require recompilation of applications.

Index Terms—Buffer overflow, function return address, hardware stack.

Ç

1 INTRODUCTION

COMPUTER security is critical in this increasingly net-
worked world. Attacks continue to pose a serious

threat to the effective use of computers and often disrupt
commercial services worldwide, resulting in embarrassment
and significant loss of revenue. While techniques for
protecting against malicious attacks have been confined
primarily to the domain of software, the increasing demand
for computer security presents a new opportunity for
hardware research. Recent examples are buffer overflow
protection features employed in processors byAMD [1], Intel
[2], and Transmeta Corporation [3]. These features can be
activated by Windows XP’s Data Execution Protection
mechanism [4] to block any attempt to execute code from
memory reserved for data only, i.e., the stack and the heap.
These efforts, although not complete solutions to buffer
overflows, are indicationsof the severityof theattacksand the
inclination toward hardware-based methods to find a
solution.

In this paper, we describe such an opportunity. We
propose microarchitectural support for automatic detec-
tion/prevention of what is perhaps the most prevalent
vulnerability today: attacks on the function return address

pointer. The most common example of an attack on the

function return address pointer is a buffer overflow attack

[5]. The Code Red [6] and Code Red II [7] worms of 2001,

the W32/Blaster [8] and W32/Nachi-A [9] worms of 2003,

and Sasser [10] of 2004 all exploited such a vulnerability in

Microsoft’s IIS [11], Windows RPC [12] implementation,

and Local Security Authority Subsystem Service (LSASS)

[10], respectively, to propagate themselves across the

Internet. Although it is fairly simple to fix an individual

instance of a buffer overflow vulnerability, it continues to

remain one of the most popular methods by which attackers

compromise a host (see Table 1). In 2002, buffer overflow

vulnerabilities were in 10 of the 31 advisories published by

CERT [13] and in five of the top 20 vulnerabilities compiled

by the SANS Institute [14]. In 2003, 17 out of 28 advisories

published by CERT [15] and 13 out of the top 20 vulner-

abilities compiled by the SANS Institute [16] have been on

buffer overflow vulnerabilities.
Buffer overflow attacks overwrite data on the stack and

can be used to redirect execution by changing the value

stored on the process stack for the return address of a

function call. We propose SmashGuard, a hardware-based

approach to detecting such attacks, in which we add a small

hardware stack to the pipeline. With each function call

instruction, the return address and the current stack frame

pointer1 are pushed onto the hardware stack. A return

instruction compares its return address against the address

from the top of the hardware stack. A mismatch indicates

an attack and raises an exception.
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1. We explain why we store the stack pointer to properly handle
setjmp()/longjmp() in Section 4.2.
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1.1 Contributions

SmashGuard is a novel hardware-based security technology

which provides a combination of advantages that none of the

software methods can provide alone. The advantages

SmashGuard provides are robust performance, broad secur-

ity coverage, application transparency, and low implementa-

tion cost. We discuss each of these benefits in turn.

. Robust Performance: Because the stack operations and
checks are done within CPU instructions and in
parallel with the usual execution of call and return
instructions, the best-performing SmashGuard im-
plementation scheme incurs virtually no perfor-
mance overhead.

. Security Coverage: Many software solutions do not
protect against all forms of attack on the return
address pointer. For instance, they may fail to
protect against attacks that overwrite the return
address indirectly. In contrast, SmashGuard protects
against all forms of attack on the return address
pointer.

. Transparency: Many software solutions’ key disad-
vantage is the need for recompilation of the source
code to protect the program. SmashGuard, on the
other hand, is a hardware modification with a kernel
patch that supports the hardware technology and,
therefore, protects all applications.

. Low Implementation Cost: Finally, the cost of our
solution is a modest 2 KB storage for the hardware
stack and a 2 KB storage for an internal table used by
our best-performing implementation scheme. The
addition of storage buffers and modifications to the
microarchitecture are basic steps of designing a new
processor version. In addition, since the stack is
accessed at instruction commit, which is not on the
execution path of instructions, the critical path of the
pipeline is not affected.

1.2 Paper Organization

In Section 2, we describe the vulnerability of the function

return address and the different ways in which an attacker

can exploit a vulnerability. In Section 3, we summarize

related work to point out their strengths and weaknesses,

both in terms of performance and functionality. Then, in

Section 4, we describe our proposed hardware solution in

detail. In Section 5, we present performance results. Finally,

in Section 6, we provide our conclusions and outline future

extensions to our work.

2 ANATOMY OF AN ATTACK

This section provides an overview of the vulnerability of

return address pointers on the stack and describes how

“stack smashing” attacks exploit this vulnerability to
execute the attacker’s code.

2.1 The Stack

Before describing the vulnerabilities and the attacks affect-
ing the function return address, we first briefly review the
memory organization of a process. On the left-hand side of
Fig. 1, we show the five logical areas of memory used by a
process. The text-only portion contains the program
instructions, literal pool, and static data. The stack is used
to implement functions and procedures and the heap is
used for memory that is dynamically allocated by the
process during runtime. During the function prologue, the
function arguments are pushed onto the stack in reverse
order and then the return address is pushed onto the stack.2

The return address holds the address of the instruction
immediately following the function call and is an address in
the program code section of the process’ memory space. The
prologue finishes by pushing on the previous frame pointer,
followed by the local variables of the function. The function
arguments, return address, previous frame pointer, and
local variables comprise a stack frame. Because functions can
be nested, the previous frame pointer provides a handy
mechanism for quickly deallocating space on the stack
when the function exits. During the function epilogue, the
return address is read off of the stack and the stack frame is
deallocated by moving the stack pointer to the previous
stack frame.

2.2 Vulnerability of the Function Return Address

The return address in a stack frame points to the next
instruction to execute after the current function returns
(finishes). This introduces a vulnerability that allows an
attacker to cause a program to execute arbitrary code. An
attacker can overwrite the function return address with one
of the exploit techniques explained in Section 2.3.1 to
redirect execution to the attacker’s code. When the function
exits, the program execution will continue from the location
pointed to by the stored return address. On successful
modification of the return address, the attacker can execute
commands with the same level of privilege as that of the
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2. Our discussion is based on the x86 architecture because it is widely
known; for other architectures, details will vary slightly.

Fig. 1. Process memory organization and the stack layout.

TABLE 1
Applications Detected Vulnerable to Buffer Overflow Attacks



attacked program. If the compromised program is running
as root, then the attacker can use the injected code to spawn
a root shell and take control of the machine. Recent exploits
fall into the category of worms [6], [8], [10].

2.3 Exploiting the Vulnerability

There are severalmethods for overwriting the function return
address and two targets to redirect execution. In this section,
we describe different vulnerabilities that allow an attacker to
overwrite the return address on the stack, possible targets to
which to redirect execution, and how the attacker can inject
the crafted exploit into the vulnerable code.

2.3.1 Overwriting the Return Address on the Stack

Buffer overflow attacks are the undesirable side effects of
unbounded string copy functions. The most common
examples from the C programming language are strcpy()
and gets(), which copy each character from a source
buffer to a destination buffer until a null or newline
character is reached, respectively. The vulnerability arises
because neither checks whether the destination buffer is
large enough to contain the source buffer’s contents. If the
destination buffer is a local variable (and, therefore, stored
on the stack frame), then an attacker can exploit this
vulnerability to overflow the buffer and overwrite a pointer
on the stack or the return address. Note that, for most
architectures (e.g., x86, SPARC, and MIPS), the stack grows
down from high to low addresses, whereas a string copy on
the stack moves up from low to high addresses. It is trivial
to overflow a buffer to overwrite the return address because
it is located above the local variables in that particular stack
frame. There are two types of buffer overflow attacks to
overwrite the function return address:

. Type 1: a local buffer (character array) is filled in
excess of its bounds (overflowed) to overwrite the
return address on the stack, which is adjacent3 to the
local buffer, or

. Type 2: a local buffer is overflowed to overwrite an
adjacent pointer variable with a pointer to the return
address on the stack. Then, the return address is
overwritten by an assignment to the pointer.

Format string attacks are relatively new and are
thought to have first appeared in mid-2000 [17]. We
provide a brief overview here, but, for details, the reader
is referred to [17], [18]. Similarly to a buffer overflow
attack, format string attacks modify the return address in
order to redirect the flow of control to execute the
attacker’s code. In the C programming language, format
strings allow the programmer to format inputs and
outputs to a program using conversion specifications.
For example, in the statement printf(“%s is %d years

old.”,name,age), the string in quotes is the format
string, %s and %d are conversion specifications, and name

and age are the specification arguments. When
printf() is called, a stack frame is created and the
specification arguments are pushed on the stack along
with a pointer to the format string. When the function
executes, the conversion specifiers will be replaced by the

arguments on the stack. The vulnerability arises because
programmers write statements like printf(string)

instead of the proper form: printf(“%s”,string). The
statements behave identically unless string contains
conversion specifiers. In that case, for each conversion
specifier, printf() will pop an argument from the stack.
For example, consider the following:

int foo1(char *str) { printf(str); }

If the user calls foo1() with an argument string “%08x.

%08x”, the function will pop two words from the stack and
display them in hex format with a dot (.) in between. Using
this technique, the attacker can dump the contents of the
entire stack. The key to this attack is the “%n” conversion
specifier, which pops four bytes off the stack and writes the
number of characters in the format string before “%n” to the
address pointed to by the popped four bytes. An attacker
can craft a format string with length (in bytes) equal to the
address of the exploit code, with the last four bytes (a 32-bit
address) identical to the address of the function return
address on the stack followed by a final “%n”. When the
format string is decoded by a printf(),4 the number of
bytes written thus far (this number is the address of the
shellcode) will be written to the address popped off the
stack, which will be the address of the function return
address. Note that length specifiers allow creation of
arbitrarily long format strings without needing the string
itself to be of equivalent length.

Like buffer overflow attacks, format string attacks can be
used to redirect execution to shellcode in the stack (or heap)
or to the system() call in libc. Format string attacks are
similar to Type 2 buffer overflow attacks in the sense that
the return address can be modified without touching
anything else on the stack, so methods that can prevent
Type 2 buffer overflow attacks can also prevent format
string attacks.

Integer Overflows. We find it valuable to mention
integer overflows in our discussion of attacks on the return
address because, even though they do not directly over-
write the function return address, they lead to other attacks
(which are generally buffer overflows). The behavior of an
integer overflow is undefined in ISO C99 standards and
most compilers ignore them. This becomes dangerous when
the integer that is overflowed is used to calculate the size of
a buffer or the index into an array. Unsigned integers do not
overflow but wrap around to 0. The example in Fig. 2
demonstrates a possible integer overflow attack that leads
to a buffer overflow attack. An attacker can bypass the
validation check at [a] and overwrite past the end of the
local buffer with two large unsigned numbers in size

and size2 that result in a number smaller than 256 when
added together. For a more detailed explanation, the reader
is directed to [19].

2.3.2 Where to Redirect Control

After an attacker overflows a buffer to overwrite the return
address, there are two ways to redirect execution to
compromise a host:
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3. Note that the frame pointer is stored between the local variables and
the return address on the stack.

4. Format string attacks are possible with various printf() family
functions.



. Shellcode. The most well-known method to redirect
execution is to overwrite the return address with an
address that points to a location in memory at which
the attacker has placed an exploit code. Exploit code is
a hexadecimal representation of machine instruc-
tions which most frequently either spawns a shell or
is a worm. Even though placing the exploit code into
the local buffer being overflowed is a common
technique, the code can alternatively be placed
above the return address on the stack or in the heap.
If the attacked program has root privilege, then,
when control is redirected to the injected exploit
code, the code is executed with root privileges.

A buffer overflow usually contains both execu-
table code as well as the address of where that code
is stored on the stack. Frequently, this is a single
string constructed by the attacker with the execu-
table code first, followed by enough repetitions of
the target address that the return address is over-
written. This requires knowing exactly where the
executable code will be stored or else the attack will
fail. Attackers get around this by prepending a
sequence of unneeded instructions (such as NOP) to
their string. This creates a ramp or sledge leading to
the executable code. Now, the modified return
address only needs to point somewhere in the ramp
to cause a successful attack. While it still takes some
effort to find the proper range, an attacker only
needs a close guess to hit the target.

. system() function. The second choice for redirecting
execution is called the return-to-libc attack. It was
invented to bypass protection methods that mark the
stack as nonexecutable [20], which prevents execu-
tion of code on the stack. The return-to-libc attack
eliminates the need for shellcode by redirecting
execution to the system() call to create a shell. All
the attack needs to do is copy the necessary
arguments for the system() call onto the stack
and change the return address to point to the library
address of system().

2.3.3 Methods of Inputting the Exploit Code

There are threemainways of injectingmalicious code into the
vulnerable program. These are 1) user input, 2) network
connection, and 3) environment variables. For example, a
program might ask for a user or file name from standard
input. If the program uses gets(), then a sufficiently large
user response could overflow the target buffer. An operating

systemmight utilize a small buffer for the handling of ICMP
echo packets (as they are normally quite small) and suffer an
overflow if an attacker sends an unusually large packet.
Similarly, if a program attempts to determine a user’s home
directory via the HOME environment variable, a malicious
usermight be able to cause an overflowby setting the value of
the variable to be an unusually long value.

3 RELATED WORK

Various tools and methods have been devised to stop these
attacks with varying levels of security advantage and
performance overhead. Solutions that trade off high levels
of security for better performance prove incomplete and are
eventually bypassed by attackers. On the other hand, high
security solutions seriously degrade the system perfor-
mance due to the high frequency of integrity checks and
high cost of software-based memory protection. Another
issue that diminishes the feasibility of these tools and
methods is their lack of transparency to user applications.
We have split the existing work into five groups: static and
dynamic analysis of source code, modifications to the
executable, modifications to the compiler, modification to
the system software, and hardware solutions. A thorough
list of all buffer overflow protection methods and tools is
available from The Buffer Overflow Page [21].

3.1 Static (and Dynamic) Analysis of Source Code

Static analysis techniques try to identify potentially danger-
ous pointer dereferences and unsafe function calls in the
source code. Because detecting buffer overflow vulnerabil-
ities statically is undecidable, these methods work on
heuristics and, therefore, are neither sound nor complete.
Several factors affect the inadequacy of static analysis:
difficulty of bounds checking, pointer analysis, interproce-
dural analysis, and unavailability of the program input at
compile time. There is a collection of freely available auditing
tools for C/C++ code, but Wilander and Kamkar [22] report
that static analysis tools do not have a sufficiently low false
positive rate to be of use to programmers; therefore, they are
merely used for security audits.

Wagner et al. [23] formulated the buffer overrun detection
problem as an integer constraint problem and used graph
theoretic techniques to solve the constraints. This technique
has a high rate of false alarms, cannot handle pointers, double
pointers, or aliasing. The reported analysis time for 32K lines
of C code is on the order of tens of minutes.

In a recent paper, Dor et al. [24] combined all known
types of static analysis methods to propose a tool, CSSV, for
statically detecting buffer overflows. Using procedural
analysis, CSSV in-lines the source code with annotations
that have pre, post, and side-effect conditions (which they
name “contracts”), analyzes pointer interaction, checks for
runtime string manipulation errors with assert(), and
finally performs conservative integer analysis. With respect
to related work, a 93 percent drop in the false alarm rate is
reported; however, manually writing contracts still renders
a high implementation cost.

Larochelle and Evans [25] proposed a static analysis tool
built upon LCLint with more expressive annotations.
Annotations are the semantic comments that specify the
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highest index that can be safely written to and read from in
a buffer. The annotations are used to detect inconsistencies
between the code written and its expected behavior. This
method does not detect all instances of vulnerabilities and
has a high rate of false alarms.

Dynamic checks inserted by static analysis analyze the
runtime contents of the variables during program execu-
tion. However, dynamic analysis is computationally more
complex than static analysis and better results come with
the price of increased computation time.

Haugh and Bishop [26] extended Wagner et al.’s [23]
method for dynamic execution. This method uses the
STOBO tool to convert the vulnerabilities in the source
code to the instrumented safe versions. The paper reports
that this method compares favorably to ITS4 and Wagner
et al.’s original method in that it detects more vulnerabilities
and has fewer false positives.

Yong and Horwitz [27] proposed a static analysis tool
with dynamic checks to protect C programs from attacks via
invalid pointer dereferences. The method has a low runtime
overhead, no false positives, requires no source code
modification, and protects against a wide variety of attacks
via bad pointer dereferences. The main idea is to use static
analysis to detect unsafe pointers and protect memory
regions that are not legitimate targets of these pointers. This
method maintains a mirror of the memory locations that can
be pointed to by unsafe pointers using one bit for every byte
of the memory to specify whether each mirrored byte is
write-safe, i.e., legitimate. The major drawback of this
approach is that it doubles application runtime.

Toth and Kruegel [28] proposed abstract payload
execution of HTTP requests to detect the NOP sledge,
which precedes the shellcode in most Type 1 buffer
overflows. Toth and Kruegel report only a 1.4 percent
increase in the client contention rate and 2.9 percent
decrease in client throughput. This method will only detect
attacks that use a NOP sledge with the shellcode.

3.2 Modification of the Executable

Bhatkar et al. [29] proposed a method called Address
Obfuscation that transforms the object file at link time (or
the executable at load time) to

1. randomize the base addresses of stack, heap, and
dynamically loaded libraries;

2. randomize the location of the routines and static
data in executables;

3. permute the order of local variables on stack, static
variables, and routines in shared libraries and
executables; and

4. insert random gaps in stack frames, between succes-
sive malloc buffers and between static variables.

This method, which is very similar to PaX [30] (except that
PaX is a kernel patch), requires no change to the OS or to the
compiler. Both of these methods are probabilistic methods
that only harden, but do not eliminate, the attacker’s
chances of success. This method also imposes a process
startup overhead.

Prasad and Chiueh [31] present a static binary translation
method that saves a redundant copy of the return address
on the stack in the return address repository (RAR) at the

function prologue, compares the saved return address with
the original at the function epilogue, and flags an exception
upon a mismatch. It is implemented by inserting a jump
instruction in the prologue and the epilogue to jump to the
corresponding code snippet and jump back to do the real
prologue and real epilogue. The paper reports a 3 percent
runtime performance overhead and 16K per process space
overhead. This method is not secure because the RAR is
protected with two mine zones,5 which makes this method
vulnerable to Type 2 attacks.

3.3 Modification of the Compiler

StackGuard6 [33], [34] is one of the earliest and most well-
known compiler-based solutions. The additional code
inserted at compile time places an integer of known value
(called a canary) between the return address and the local
variables on the stack at the function prologue. If a local
buffer on the stack is overflowed, the attacker must
overwrite the canary to reach the return address. Stack-
Guard supports two types of canaries. The random canary
method inserts a 32-bit random canary after the return
address in the function prologue and checks the integrity of
its value before using the return address at epilogue. The
terminating canary consists of four string termination
characters: null, CR, -1, and LF. Note that each one of
these characters is a terminating value for at least one
unbounded data copying function. If the attacker tries to
overwrite the canary with the same terminating values, the
overflow will never reach the return address because the
string copy will be terminated at the canary.

As pointed out by Bulba and Kil3r [35], StackGuard only
protects against Type 1 buffer overflows. In addition, it
requires recompilation of the source code. Because it
modifies the stack contents, programs dependent on the
stack structure (e.g., debuggers) may no longer work.
Finally, the random canary needs to be protected. For every
function call and return instruction executed, StackGuard
must write the random canary to the stack and compare it
on return. A varying performance overhead of 6-80 percent
is reported in [33], which is a function of the ratio of the
instructions required for the modified prologue and
epilogue to the number of original function instructions.

StackShield [36] is a compiler modification that provides
two different protection mechanisms for protecting the
return address. Global ret stack implements a separate stack
for the return addresses in a global array of 256 32-bit
entries. For each function call, the return address is pushed
onto both the program stack and the redundant global
stack. On function return, the return address stored on the
separate stack is used. Ret range check, a faster alternative to
global ret stack, saves the return address of the currently
executing function in a global long integer and then
compares it to the return address on the program stack
when the function returns. This method has a low over-
head; however, it leaves the global ret stack and global
return address vulnerable to Type 1 and Type 2 attacks. In
addition, return addresses from the program stack and the
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6. Microsoft also adopted a StackGuard-like mechanism in Visual
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redundant stack are not compared; therefore, attacks are
prevented but not detected.

Return Address Defender [37] creates a global integer
array called the Return Address Repository (RAR) that holds
the copies of the return addresses pushed on the stack.
There are two versions of RAD that differ in the amount
and cost of protection to the RAR. The first and less
expensive method,MineZone RAD, inserts two “minezones”
above and below the RAR and marks them as read-only
with the mprotect() system call. Any attempt by the
attacker to overflow a buffer and overwrite the RAR would
cause a trap and be denied by the OS. This method protects
against Type 1 buffer overflows, but can be defeated by
Type 2. The second version of RAD, Read-Only RAD, marks
the entire RAR as read-only with mprotect() to achieve
high security. This incurs a large overhead because, during
the function prologue, the RAR is marked as writable, the
return address is saved into the RAR, and then the RAR is
marked as read-only again. Similarly to MineZone RAD,
this method cannot prevent return-to-libc attacks which
overwrite function pointers on the stack.

Chiueh and Hsu report a performance degradation of
5-40 percent for Minezone RAD and up to 1,000 percent
degradation for the more secure Read-Only RAD [37].

ProPolice [38] is a gcc extension that utilizes a mechan-
ism similar to that in StackGuard, but with additional
features. It adds some protection against Type 2 attacks by
reordering the local variables stored on the stack such that
the buffers are right before the canary and, hence, cannot be
used in the same function’s scope to overwrite a pointer.
This tool was used to compile OpenBSD [39] and is part of
its distribution. ProPolice requires recompilation of the
source code and, like Stackguard, it modifies the stack
contents, so programs dependent on the stack structure
may no longer work.

PointGuard [40] is a compiler technique to defend
against attacks using pointers. A modification to gcc enables
pointers to be encrypted with a per-process XOR key while
in memory and to be decrypted only when they are loaded
into the registers. This technique requires recompilation of
source code and incurs up to 21 percent slowdown on
OpenSSL Speed benchmarks [41].

CRED (C Range Error Detector) [42] is a dynamic buffer
overflow detector implemented as an extension of the GNU
C compiler. CRED uses a bounds checking method that
replaces every out-of-bounds (OOB) pointer value with the
address of a special OOB object created for that value.
Tested on 20 open-source programs, CRED claims to avoid
the deficiencies of previous dynamic buffer overrun
detectors. CRED imposes 26 percent overhead and requires
recompilation of source code.

3.4 Modifications of the Library

FreeBSD Stack Integrity Patch (Libparanoia). Snarskii
posted a patch to FreeBSD [43] in 1997 to check the integrity
of the stack and later improved on the same idea and called
it Libparanoia [44]. The patch modifies the insecure libc
functions like strcpy() and sprintf() to kill the
process if the destination buffer contains a stack frame
pointer (FP).

Baratloo et al. [45], [46] and Tsai and Singh [47] proposed
two dynamically loadable library methods to protect
against buffer overflow attacks. Neither of these methods
require recompilation unless the program is statically
linked. The first method, Libsafe, intercepts all calls to
vulnerable library functions, such as strcpy() and
strcat(), and executes their safe versions which imple-
ment the same functionality as the original but employ
bounds checking to prevent buffer overflows. This method
estimates the upper bound on the size of the buffer to be the
end of the stack frame, so the return address cannot be
overwritten. Libsafe protects against Type 1 buffer over-
flows only since it still allows overwriting a pointer or a
function pointer in the local variables area of the stack
which can be used to modify the return address. Libverify,
on the other hand, is a runtime implementation of
StackGuard which inserts a function return address
verification code at execution time via a binary rewrite of
the process memory instead of at compile time. Libverify
also protects against only Type 1 buffer overflow attacks.

Baratloo et al. report an average overhead of 15 percent
for applications protected by Libsafe, Libverify, and
StackGuard.

FormatGuard [48] is a patch to glibc that provides
general protection against format bugs. FormatGuard uses
particular properties of GNU CPP (the C PreProcessor)
macro handling of variable arguments to extract the count
of actual arguments. The actual count of arguments is then
passed to a safe printf() wrapper. The wrapper parses
the format string to determine how many arguments to
expect and, if the format string calls for more arguments
than the actual number of arguments, it raises an intrusion
alert and kills the process. This method fails to protect
against calls to printf() when the correct number of
arguments is given, but they are not of the expected types,
i.e., if an integer is received when a double is expected. It
also fails if the call to printf() is implemented via a
function pointer or if the low level functions of printf()
(e.g., vsprintf()) are called directly or another I/O
library is used. FormatGuard imposes 37 percent overhead
on printf() calls, which result, in a 1.3 percent runtime
overhead for their set of benchmarks [48].

3.5 Modifications of the Kernel/OS

The first kernel-based solution, StackGhost [49], is a patch
to the OpenBSD 2.8 kernel under the Sun SPARC
architecture. Frantzen and Shuey performed experiments
on three methods for protecting the return address. The first
two XOR the return address on the stack with a cookie
before writing it on the stack and then XOR it again with the
same cookie before the return address is popped off the
stack. This method distorts any attack to the return address
but does not detect it; therefore, another method is used to
detect the attacks. In SPARC architecture, the memory is
four byte aligned and the least significant (LS) two bits are
always 0s. So, the two bits are set at the function prologue
and verified to be set at the epilogue. If the attacker is not
aware of this, they will inject a four byte aligned address in
the return address and, therefore, the attack will fail. But,
once the attacker figures this out, they can set the two
LS bits of the address that they want to jump to and then
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overwrite the return address with the modified address.
The XOR cookie method comes with two flavors, XOR
cookie per-kernel and XOR cookie per-process. Both of
these methods (especially per-kernel XOR cookie) are easily
bypassable since the cookie can be figured out if the
contents of the stack frame can be observed (e.g., using the
method in the format string attacks as described in
Section 2.3) and the return addresses are extracted from
the program binaries. Frantzen and Shuey report 17.44 per-
cent overhead for per-kernel XOR cookie and 37.09 percent
overhead for per-process XOR cookie.

To prevent execution of the shellcode on the stack, Solar
Designer proposed the Nonexecutable User Stack. This
solution, a Linux kernel patch from the Openwall Project
[20], can be bypassed with return-to-libc attacks or running
the shellcode somewhere in memory other than in the stack,
for instance, in the heap. To prevent return-to-libc attacks,
this patch also changes the default addresses of the shared
libraries in libc to contain a zero byte. It is difficult to
overwrite the return address with a value that contains a
zero byte (null) since a zero byte is a string terminator and
terminates string copying functions. This method, which
failed to pass Torvald’s approval [50] to be included in the
linux kernel, prevents attacks where the shellcode is
inserted in the stack and causes trampoline functions [51]
and debuggers to fail.

PaX [30] is a kernel patch that includes two protection
mechanisms. NOEXEC is a page-based mapping mechan-
ism which does not allow pages that are writable to also be
executable. This prevents injection and execution of code in
a process’s address space.7 Address Space Layout Rando-
mization (ASLR) is a technique that randomizes the
addresses of the libc functions (e.g., system), the function
return addresses, the base of the stack, and the heap.
Although this method makes it harder for the attacker to
predict the vulnerable memory addresses, it is fundamen-
tally a probabilistic method which also incurs a process
startup overhead.

3.6 Hardware Solutions

Independent of and concurrent to our proposal, there have
been two recent attempts to provide a hardware solution.

Xu et al. [53] proposed two methods for protection of the
function return address from being overwritten on the
stack. Split control and data stacks protects the return address
by storing it on the control stack, away from buffers in the
data stack that can be overflowed to overwrite the return
address. This approach can be implemented with either
compiler or hardware support. The compiler implementa-
tion has up to 23 percent overhead in SPECINT benchmarks
and 2 percent to 5 percent overhead for an FTP server. The
hardware implementation eliminates this overhead, but
would require an extra register and a change to the
instruction set semantics. The authors assume one page of
memory should be enough for every process and do not
discuss memory management of the control stack. This
method does not protect against Type 2 buffer overflows or
format string attacks because the control stack is not
protected. The second method, Secure Return Address

Stack (SRAS), is a hardware-based approach that is imple-
mented on top of the Return Address Stack (RAS). SRAS
stores a redundant copy of the function return addresses in
the processor to validate the return addresses on the stack.
This method has three versions, Speculative SRAS, Nonspecu-
lative SRAS, andNonspeculative SRASwith OverflowHandling.
Speculative SRAS incurs almost 100 percent overhead.
Nonspeculative SRAS has fixed stack size and cannot handle
deeply nested functions. Nonspeculative SRAS with Over-
flow Handling swaps the contents of the SRAS to the PCB
of the process to handle overflows. Xu et al. do not
discuss context switch overhead and their setjmp()/

longjmp() handling method requires the addition of a
special instruction to rewind the SRAS.

Lee et al. [54] also proposed a hardware-based Secure
Return Address Stack to protect against attacks on the
function return address. Changes are made to the micro-
architectural structure of the CPU to keep a copy of the
return addresses for validation. This approach does not
consider 1) register port contention due to validity checks of
the return address, 2) issues of cleaning up the SRAS after
branch mispredictions, or 3) program flow changes caused
by functions like setjmp() and longjmp(). Its perfor-
mance tests use a single-way, in-order-issue processor,
which is outdated compared to modern wide, out-of-order-
issue processors.

3.7 Safer C Language Compilers

There are several dialects of C that offer security measures
employed in higher level languages such as Java, while
maintaining the low level and efficient aspects of the
C programming language. Enforcing type safety, providing
better memory management, and array bounds checks are
some of the security features employed in Cyclone [55],
Safe C Compiler [56], and CCured [57].

These modified variants of C are not simple drop-in
replacements. These language modifications require a
programmer to change portions of the source code, often
requiring some sort of indication where protection should
be enabled (otherwise, the normal lack of bounds checking
applies for compatibility). The reason for manual activation
of bounds checking is that these projects self-report over-
heads on the order of 100 percent in some instances.
Additionally, they suffer from the same drawbacks on
legacy binaries as do other compiler modifications, namely,
they only protect newly compiled programs and do not
protect system kernel, libraries, or existing binaries without
recompilation.

3.8 Summary

Solutions that trade off a high level of security for better
performance are eventually bypassed by the attackers and
prove incomplete. On the other hand, high-security solu-
tions seriously degrade the system performance due to
frequent integrity checks and costly software-based mem-
ory protection. An issue that diminishes the feasibility of
these tools and methods is their lack of transparency to the
application or to the operating system. Moreover, some
earlier methods lack protection against Type 2 attacks. In
our evaluation of our hardware-based approach, we have
elected to compare against StackGuard for several reasons.
First, it is the approach that is most widely cited. Second, its
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mechanism for protecting the return address on the stack is
found in the tools ProPolice and Libverify. Third, it is not
architecture specific and is therefore portable. Fourth, it
reports little overhead while maintaining security against
the most prevalent type of attack on the return address
pointer.

4 SMASHGUARD: A HARDWARE SOLUTION

In this section, we present a hardware solution that is secure
and inherently faster than the existing software methods.
We elaborate on the complications we face with setjmp()

and longjmp(), process context switches, and deeply
nested function calls, and how we solve them. Finally, we
describe our microarchitecture and discuss hardware
implementation issues.

4.1 Overview

Our approach, which we call SmashGuard, protects against
attacks on return addresses by saving the return address in
a hardware stack added to the CPU. With each function call
instruction, the return address and the stack frame pointer
are pushed onto the hardware stack.8 A return instruction
pops the most recent pair of address from the top of the
hardware stack and compares it to its return address. If a
mismatch is detected between the two return addresses,
then a hardware exception is raised. In the exception
handler, the OS may employ a variety of policies based on
the desired level of security (e.g., the process may be killed
and a report may be sent to syslog).

This simple functionality is not sufficient to handle the
problem of setjmp() and longjmp(). setjmp() and
longjmp() circumvent the last-in first-out ordering of the
program stack, causing the hardware stack to become
inconsistent with the program stack. As we explain in
Section 4.2, we extend the hardware stack’s functionality to
enable it to maintain consistency.

In the simplest case (single process and nesting of
functions less than the size of the hardware stack), all reads
and writes to the hardware stack are done in hardware via

the function call and the return instructions, so there is no
instruction that is permitted to read/write directly from/to
the hardware stack. Specifically, no user-level load or store
instruction can access the hardware stack. To handle the
more complicated cases of multiple processes requiring
context switching, and deeply nested function calls, the
hardware stack needs to be accessible by the OS. As we
explain in Section 4.3, we solve this problem by memory-
mapping the hardware stack. The user cannot access the
hardware stack via the OS either since it is protected at the
kernel privilege level.

4.2 Handling setjmp() and longjmp()

One of the more complicated aspects of trying to protect the
call stack is correctly handling setjmp() and longjmp()

functions. Briefly, setjmp() stores the context information
for the current stack frame and execution point into a buffer
and longjmp() causes that environment to be restored.
This allows a program to quickly return to a previous
location, effectively short-circuiting any intervening return
instructions. One place this might be used is in a complex
search algorithm: The program uses setjmp() to mark
where to return once the item is found, begins calling search
functions, and, once the target is found, it will longjmp()
back to the marked point.

Because longjmp() avoids going through the usual

function return sequence, our hardware stack becomes
inconsistent with respect to the program stack. In Fig. 3a,

we show a code snippet where a() calls b() which in turn
calls setjmp(). As is typical in programs using setjmp()

and longjmp(), depending on setjmp()’s return value
var, b() may or may not call d(). d() calls longjmp().

During execution, a() calls b() and b() calls setjmp().
setjmp() saves a snapshot of b()’s current register state

and a copy of its own return address in a buffer. setjmp()
then returns with a return value of 0, causing d() to be

called. d() calls longjmp() which uses setjmp()’s
buffer to restore b()’s register state. longjmp() uses the

saved return address in the buffer which is setjmp()’s
return address to return to b() with a return value of 1,

allowing b() to return to a().
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and hardware stack just before setjmp() returns.



In Fig. 3c, we show the program stack when setjmp()

is about to return. We see that the hardware stack is
consistent with the program stack. We also see that the
buffer holds b()’s state and setjmp()’s return address. In
Fig. 3b, we show the program stack when longjmp() is
about to return. At this point, the program stack will
collapse down to b()’s frame and longjmp() will return
to setjmp()’s return address using the buffer. Because the
return address is coming from the buffer and not the
program stack, setjmp()’s return address does not exist
anywhere—certainly not at the top nor anywhere below—in
the hardware stack, which tracks only the program stack. If
nothing is done, SmashGuard would compare the hard-
ware-stack top, which is longjmp()’s return address into
d(), against setjmp()’s return address and a mismatch
would result.

Because the relevant return address simply does not exist
in the hardware stack, we propose that longjmp() use an
indirect-jump (i.e., jump-through-register) instruction to
return, rather than use a return instruction.9 Because an
indirect-jump instruction will not trigger SmashGuard’s
check, longjmp() will be allowed to return without a
mismatch. The program stack and hardware stack are not
consistent yet: The program stack holds frames for b() and
a(), but the hardware stack holds the return addresses of
longjmp(), d(), b(), and a() (see Fig. 3c). When b()

returns, a mismatch would result.
However, unlike the previous mismatch situation, the

required return address (i.e., b()’s return address) exists in
the hardware stack—only not at the top. Therefore, we
propose that, upon a mismatch, SmashGuard keep popping
the hardware stack until either a match occurs or the bottom
of the stack is reached, in which case the mismatch
exception is raised. If a return address is modified due to
an attack, none of the addresses on the hardware stack
would match and the bottom of the stack will be reached.
Therefore, no attack will go undetected. Because the only
way for the bottom of the stack to be reached is due to an
attack, SmashGuard will never raise a false alarm.

There are two more complications remaining. First, if
b() is called multiple times before longjmp() is called,
then the hardware stack would hold multiple instances of
b()’s return address. In that case, the popping of the
hardware stack would stop at the first instance of b(),
which may not be the instance that executed the setjmp().
To identify the correct instance, we propose to store the
return address and the stack pointer, instead of just the return
address, in the hardware stack. Now, calls push the two
values onto the hardware stack and returns compare both
the return addresses and the stack pointers. Using the stack
pointer is guaranteed to identify the correct instance
because 1) the stack pointer holds a unique value for each
instance and 2) the stack pointer value is the same when a
function call and the corresponding function return occurs.

Second, because we require longjmp() to return using
an indirect-jump instruction and not a return instruction,
returns from longjmp() are not processed within Smash-
Guard. Therefore, an attack on the return address stored in
the setjmp() buffer (via some buffer overflow attack that

somehow overflows into the setjmp() buffer) would go
undetected. To avoid this problem, we propose that writers
of setjmp() and longjmp() library code protect the
return address stored in the buffer using schemes similar to
StackGuard (e.g., place random numbers around the return
address and check their integrity before using the return
address in the longjmp()). Because this code is library
code and not application code, we retain application
transparency.

Now, we explain the solutions proposed by the other
approaches described in Section 3 to setjmp() and
longjmp(). Techniques, such as StackGuard, that do not
store a copy of the return address stack need not do
anything special for setjmp() and longjmp(). RAD’s
solution is to continue to pop return addresses off of their
stored table of return addresses until a match is found. The
problem with this approach is that it is possible that the
modified return address value exists somewhere further
down on the hardware stack, causing execution to continue
without detecting the problem. As has been pointed out
before, failing to stop execution is no worse than the current
situation where no check is being made, but this answer is
unsatisfactory.

The hardware solution proposed by Lee et al. [54] lists
four ways to handle setjmp() and longjmp(), none of
which retain both security and the functionality of the code.
On the two extremes, the authors suggest either prohibiting
setjmp()/longjmp() or disabling the hardware stack
protection for programs that contain setjmp()/

longjmp(). An intermediate solution is to introduce new
user-mode (i.e., nonprivileged mode) instructions sras_-

pop and sras_psh (SRAS is the name of their proposed
hardware solution) to make the hardware stack consistent
after a longjmp(). They propose injecting these instruc-
tions either at compile time or at runtime. However, a
malicious user could use the instructions to tamper with the
hardware stack itself, possibly compromising security.

4.3 Handling Deeply Nested Function Calls and
Process Context Switches

Because our solution is the same for deeply nested calls and
context switches, we describe these issues together. The
hardware stack may fill up for programs with deeply nested
function calls. A 2 KB stack holds 512 32-bit addresses (e.g.,
x86) or 256 64-bit addresses (e.g., Alpha). To handle nested
function calls deeper than 512 (256), smashguard raises a
hardware-stack-overflow exception, which copies the con-
tents of the hardware stack to the program’s Process
Control Block (PCB), where it is saved at the context switch.
The PCB includes a stack of stacks and every time a stack is
full, it is appended to the previous full stack. Another
exception, hardware-stack-underflow, will be raised when
the hardware stack is empty to copy in the last saved full
stack from the PCB. These exceptions are not a performance
concern because we expect them to be infrequent. Indeed, in
our experiments with the SPEC2000 benchmarks, our 2 KB
stack was sufficiently large such that no overflows
occurred.

A context switch requires saving the process state,
requiring that we 1) copy out the hardware stack of the
running process either to the PCB or a memory location
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pointed to by a special pointer in the PCB and 2) copy in the
hardware stack of the scheduled process. To handle both of
the above scenarios without adding any special instructions
to the instruction set, we employ memory mapping (similar
to memory-mapped I/O) so that regular load or store
instructions can be used to read and write the stack in these
scenarios. We map a part of the address space to the
hardware stack. A regular load or store access to this part
translates to a read or write access to the hardware stack,
much as memory-mapped I/O devices are read and
written. Recall that I/O devices are protected from direct
access by user-level code via virtual memory protection.
Similarly, direct access to the hardware stack is forbidden
by virtual memory protection. Thus, only the OS can read or
write the memory-mapped stack and the OS does so to
handle both scenarios. Because the saving and retrieving of
the hardware stack from memory is handled by the kernel,
our method is secure.

Although SmashGuard increases the state that needs to be
saved and restored at context switches, we expect this
overhead to be small. In typical interactive desktop environ-
ments, modern operating systems target about 1 percent
overhead for context switchesdue to time slice expiration. For
a 10-20 millisecond time slice, the context switch overhead
(i.e., time spent in the OS to switch from one process to
another) is about 100-200 microseconds. Copying our 4 KB
(512 64-bit words) hardware stack will require about
1,000 instructions (a pair of load and store instructions for
eachword),whichmay take around2,000 cycles (assuming a
conservative 0.5 instructions per cycle). At 1 GHz, this
copy adds 2 microseconds to the context switch time of
100-200 microseconds or about 1-2 percent of context
switch time. With a 10-20 millisecond time slice, copying
adds about 0.01-0.02 percent overhead to wall clock time.
In more context-switch-intensive environments (e.g., inter-
rupt-intensive embedded systems), the copying overhead
will be higher.

4.4 Implementation

In this section, we describe three implementation schemes
that allow different trade-offs between implementation
difficulty and performance. We explain our implementa-
tions in terms of an Alpha-like RISC architecture that places
the return address of a call instruction in a link register. This
link register may be either an implicit register that is hard-
coded in the instruction set or a register explicitly specified
in the call instruction. The return instruction uses a return
address register—either the implicit register or an explicitly
specified register to return.

SmashGuard modifies call instructions to push the link
register and the stack pointer register onto the hardware
stack. Recall that both are needed to accommodate
setjmp()/longjmp() (see Section 4.2). Return instruc-
tions pop off the hardware stack and check the return
register and the stack pointer against the popped values.
Because modern processors execute instructions out of
program order and speculatively under branch prediction,
call and return instructions may be executed under
misspeculation and out of program order. Consequently,
pushing on and popping off the hardware stack at the time
of execution of call and return instructions is not reliable.

Doing so would require that we clean up the hardware
stack on mispredictions. To avoid this complication, we
push on and pop off the hardware stack when call and
return instructions commit, which occurs in program order
and after all outstanding speculations are confirmed.
However, there is one main difficulty: Call and return
instructions do not carry the needed register values—the
link register and the return address register—with them to
the commit point. The link register is written to the register
file when the call instruction executes and the return
address register value is used by the return instruction
when it executes, well before commit. Certainly, the
instructions do not carry the stack pointer to the commit
point. There are two options: 1) obtain the register values
from the pipeline during instruction execution or 2) obtain
the values from the register file at instruction commit.

For the first option, we use a table, called the return
address table (RAT), into which call and return instructions
place the register values. The values are read from the RAT
upon instruction commit and pushed on the hardware stack
or compared against the top of the stack. To avoid
complications in matching instructions to their RAT values,
we make the RAT as large as the active list (or the reorder
buffer, which is used to hold all in-flight instructions until
commit) so that instructions can easily find their register
values simply by using their active list pointers. Because the
RAT is accessed using the active list pointers, misprediction
—rollbacks of the active list—automatically roll back the
RAT. This advantage would not exist if we had used the
hardware stack itself to hold speculative values because
rolling back the active list, which is a queue, is not similar to
rolling back the hardware stack, which is a stack.

The only issue now is that call and return instructions
need to read the stack pointer register value (from the
register file or bypass paths), an action that is not taken in
conventional pipelines. This extra read, however, is not a
problem because calls and returns read at most one source
operand (a call-through-register reads the call target from a
register), implying the stack pointer can be read in place of
the nonexistent second source operand. The link register
value is computed by calls and can be pulled off from
wherever it is computed (e.g., the execute stage).

Because the RAT is invisible to the software, like the
hardware stack, this scheme is secure. Because the number
of in-flight instructions is not large (e.g., 300 instructions)
and because call and return instructions are relatively
infrequent, the RAT need be neither large (e.g., a 2-KB RAT
would suffice) nor support high bandwidth. Because this
option results in virtually no performance degradation, we
call this scheme No-Stall.

If the RAT does not fit the constraints of a specific
pipeline implementation, designers may pursue the second
option of reading the values from the register file. This
option raises two issues: 1) Because of register renaming,
we cannot access the physical register file with the
architectural register specifiers and 2) the register file needs
to be accessed by all committing call and return instructions
which may contend with instructions in the register read
stage of the pipeline.
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We address each of these issues in turn. Call and return
instructions have to carry the required physical register
specifiers to the commit point. It would seem that carrying
the required values themselves instead of the specifiers is a
better option. However, there are two advantages with the
specifiers: 1) The specifiers are smaller than the values (e.g.,
8-bits versus 64-bits) and 2) in modern pipelines, instruc-
tions already carry the previous physical register specifier
mapping the architectural destination register to the
commit point so that the previous physical register may
be freed. Therefore, the wires and control circuitry needed
to carry specifiers already exist; we simply need one
additional specifier to be carried.

The only remaining complication is register port conten-
tion. Because adding extra register file ports is expensive
and because call and return instructions are not frequent
enough to cause significant contention, we propose two
schemes to handle contention: a conservative scheme called
Complete-Stall and a more aggressive scheme called Partial-
Stall. In the Complete-Stall scheme, we completely stall
issue in a cycle in which a call or a return instruction
commits. The rationale is that it may be hard to design a
select logic that accounts for register port requirements of
committing call and return instructions, in addition to the
usual resource requirements of instructions waiting to be
selected. The select logic is usually on the critical path of the
clock and such additional requirements may impact clock
speed. In the Partial-Stall scheme, the select logic stalls only
those instructions as are needed to free up the requisite
number of ports for the committing calls and returns.

4.5 Implementation Cost

SmashGuard’s implementation cost is minimal. The main
component of the cost is the hardware stack in the processor
to hold function return addresses. Considering that modern
microprocessors employ on-chip level one (L1) caches of
sizes 32-64 KB and on-chip L2 caches exceeding 1 MB, the
1 KB stack adds minimal overhead (less than one-tenth of
one percent) to the chip.

Adding the stack to the next implementation of an
instruction set (e.g., Pentium III and Pentium IV are both
implementations of the x86 instruction set) does not present
any difficulties. It is common practice for newer imple-
mentations to incorporate optimizations for better perfor-
mance. Indeed, such optimizations often involve employing
tables which are similar to SmashGuard’s hardware stack.

When introducing new hardware, a key cost factor to
avoid is the introduction of new instructions to the
instruction set. New instructions imply an implicit cost in
future implementations that must support the new instruc-
tions (in their original form) for compatibility reasons.
Because SmashGuard introduces a hardware stack, we have
to ensure that the stack does not imply new instructions. If
the hardware stack were completely invisible to software
(e.g., the hardware caches are usually invisible to the user-
level code unless the code optimizes for cache perfor-
mance), then the stack will not require new instructions. In
our approach, the hardware stack is invisible to software
except for context switches and when the call depth exceeds
the stack size. In the latter case, an exception is raised and
the exception handler copies the stack to locations in
memory owned by the OS.

4.6 Issues Raised by Multithreading

Some modern processors implement Simultaneous Multi-
Threading (SMT) [58], which simultaneously executes
multiple threads on a single pipeline. Multiple threads
sharing a single hardware stack in SmashGuard may make
the effective size of the stack too small. Because SMT
already provides as many copies of certain hardware
resources (e.g., rename tables, load/store queue, and active
list) as the number of threads, SmashGuard’s hardware
stack can also be replicated. Second, kernel-level multi-
threading does not cause any problems for SmashGuard
because the threads are switched in and out by the OS and
the hardware stack can be saved and restored as part of the
context switch. Third, process migration in multiprocessor
systems does not cause any problems. Conventional
systems explicitly migrate some of the process state such
as register and TLB contents; SmashGuard’s hardware stack
can also be migrated explicitly.

However, user-level multithreading is problematic for
SmashGuard because multiple user-level threads would
share the hardware stack, but call and returns from the
threads would interleave in arbitrary order and not LIFO.
Because user-level threads do not go through the OS for
invocation, suspension, and resumption, an OS-driven
context switch cannot be used to share the hardware stack
among the threads. The option of providing a large number
of stacks in hardware is not attractive either because the
number of stacks needed would be large (e.g., 256) to avoid
restricting user-level threading. One option is to allow the
threads to use the same hardware stack by (statically or
dynamically) partitioning the stack and accessing the stack
based on a thread identifier (id). The thread id is
maintained by the thread library in a register and the
thread id allows each thread to access its part of the
hardware stack. Any overflow or underflow would be
handled as before.

Another option is to disable SmashGuard and use
software-based solutions for user-level multithreaded code.
Finally, certain synchronization primitives, such as corou-
tines, may be difficult to accommodate in SmashGuard.
Coroutine calls may be done in one thread and returns in
another thread and it may be hard to synchronize the
hardware stacks of the two threads. Here again, an option is
to disable SmashGuard and use software-based solutions
for coroutine-based code. In both of these cases, recompila-
tion is not an issue because the user code is available.

5 EXPERIMENTS AND RESULTS

In this section, we evaluate the performance of SmashGuard
and StackGuard, a software-based protection mechanism,
on a common execution-driven simulation infrastructure
for a modern high-performance processor.

5.1 Methodology

We modified the SimpleScalar-3.0 simulator [59] to model
two of our three schemes of SmashGuard—Partial-Stall and
Complete-Stall. We do not report No-Stall because it incurs
almost no performance overhead. Table 2 shows the base
system configuration parameters used throughout the
experiments, unless specified otherwise. We simulate both
4 and 8-way out-of-order issue superscalar processors
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augmented with a 512-entry hardware stack for Smash-
Guard. We modified gcc-3.0.3 to port StackGuard to the
Alpha architecture. The ported version of StackGuard
modifies the prologue and epilogue code of the compiled
functions to include the terminating canary (see Section 3.3).
In Fig. 4, we show the eight extra instructions inserted by
our StackGuard patch. The prologue code places the
terminating canary (0x000aff0d) on the program stack and
the epilogue code loads the canary from the stack and
compares it to the original. If there is mismatch, the function
attack_handler() is called.

We compiled the benchmarks on an Alpha machine
running Tru64 using the original gcc and the StackGuard
port. The original gcc’s binaries are used by the Smash-
Guard runs. Because the StackGuard port to handle
C libraries is not available, we compiled only the bench-
mark code with the StackGuard port and used the standard
C libraries. Accordingly, our simulator samples perfor-
mance only in the application functions and not the library
functions. We ran the SPEC2000 benchmarks shown in
Table 3. We used f2c to convert Fortran-77 benchmarks
(applu, apsi, equake, mgrid, sixtrack, swim, and wupwise)
to C. We did not simulate Fortran-90 (facerec, fma3d, galgel,
and lucas) and C++ (eon) benchmarks as doing so would
require implementing StackGuard in Fortran-90 and
C++ compilers. While the total number of instructions
executed by SmashGuard and StackGuard are different, the
number of call/returns are the same in SmashGuard and
StackGuard. Therefore, we ran each benchmark for the
same number of call instructions in each case for fair

comparison. We skipped 20 million calls and ran 10 million
calls for all the integer programs (bzip, crafty, gap, gcc, mcf,
parser, perlbmk, twolf, vortex, and vpr) and for three
floating-point programs (ammp, mesa, and wupwise). The
rest of the floating-point programs have such low call
frequency that we had to simulate fewer calls to avoid
inordinately extending our simulation time. We skipped 1
and0.5million calls and ran1and0.5million calls for apsi and
art, respectively. Programs applu, mgrid, and swim make
virtually no application calls. We do not show results for
equake and sixtrack because they make only library calls.

5.2 Functionality Results

To verify that our hardware modifications can actually
detect changes in the program return address, we created a
binary for the Alpha that overwrites one of its own local
buffers and executed it in the simulator. We were limited to
self-attacking code because SimpleScalar only supports
single process execution. Our hardware modification was
able to detect that the return address value being pulled
from the stack did not match the value stored in the
hardware stack.

5.3 Performance Results

In this section,we compare SmashGuard andStackGuard to a
conventional superscalarwith no support for buffer overflow
detection. Fig. 5 andFig. 6 showour results for issuewidths of
4 and 8, respectively. In both graphs, the Y-axis gives the
percent slowdown with respect to the base superscalar
processor of equal issue width and the X-axis shows our
benchmarks, starting on the left with the integer programs
bzip through vpr, followed by the average for the integer
programs, the floating-point programs ammp through
wupwise, ending with the average for the floating-point
programs. The left bars show SmashGuard using the Partial-
Stall scheme, the middle bars show SmashGuard using the
Complete-Stall scheme, and the right bars show StackGuard.
The figures do not show the No-Stall scheme because it does
not incur any more stalls than the base superscalar (i.e., No-
Stall has virtually zero percent degradation).

A striking trend in both Fig. 5 (4-way issue) and Fig. 6
(8-way issue) is that the integer programs incur more
performance degradation than floating-point programs,
which incur little degradation. If a program’s call frequency
is low, then both SmashGuard’s and StackGuard’s overhead
are incurred less frequently. This trend is corroborated by
Table 3, where we see that the integer programs’ call
frequencies are generally higher than those of the floating-
point programs. The exceptions are mesa and wupwise,
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Fig. 4. StackGuard’s extra instructions.



which have modestly high call frequencies. Because these
programs have high instruction-level-parallelism indicated
by their high IPC (instructions per cycle), SmashGuard’s
overhead of stalled issue is hidden by the parallelism.
Because the floating-point programs’ degradations are
negligible, we do not discuss them further.

Focusing on the SmashGuard numbers (left and middle
bars), we see two trends. First, as expected, the Partial-Stall
scheme (left bar) performs better than the Complete-Stall
scheme (middle bar) on both 4-way issue (Fig. 5) and 8-way
issue (Fig. 6) processors. With 4-way issue, Partial-Stall and
Complete-Stall incur 0.5 percent and 2.4 percent average
degradation, respectively, for the integer programs. Partial-
Stall’s worst-case degradation is 1.8 percent for vpr and it
has less than 1 percent degradation for the rest of the
programs. Complete-Stall, on the other hand, incurs more
than 4 percent degradation for mcf, parser, vortex, and vpr.
The relatively large degradations are not surprising because
these programs not only have high call frequency leading to

high overhead, but also low IPC with less ability to hide the
overhead (Table 3).

As we increase the issue width from 4 to 8, Partial-Stall
incurs almost no degradation, while Complete-Stall still
incurs 1.2 percent average degradation. Because there are
more free issue slots in a 8-way issue processor than in a
4-way issue processor, both schemes’ overheads are hidden.

Now, we focus on the StackGuard numbers (right bar).
We see that StackGuard’s average degradation is worse
than that of Partial-Stall and comparable to that of
Complete-Stall on both 4-way issue and 8-way issue
processors. StackGuard incurs a 2.8 percent and 1.8 percent
average degradation on 4-way issue and 8-way issue
processors, respectively. However, for perlbmk, vortex,
and vpr, StackGuard incurs more than 8 percent and
6 percent degradation on 4-way issue and 8-way issue
processor, respectively. The high call frequency and low
IPC of these programs have the same negative effect on
StackGuard’s performance as SmashGuard’s performance.
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for Integer and Floating-Point Benchmarks

Fig. 5. Results for 4-way issue superscalar.

Fig. 6. Results for 8-way issue superscalar.



Like SmashGuard, StackGuard incurred less degradation
when the issue width was increased from 4 to 8. On the
8-way issue processor, apsi and wupwise unexpectedly
improve in performance (i.e., negative degradation) with
StackGuard. This improvement is the result of a patholo-
gical interaction between StackGuard’s extra instructions
and the branch predictor, causing an accidental improve-
ment in the prediction accuracy.

Finally, the call depths listed in Table 3 show that the
programs do not exceed the depth of 238 (parser),
indicating that a 512-entry hardware stack is sufficient to
avoid most stack overflow exceptions in SmashGuard.

6 CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel microarchitectural support
to protect against attacks that overwrite the return address
on the process stack to redirect execution. We have
provided a hardware stack that securely handles both
Type 1 (buffer overflows) and Type 2 (attacks through a
pointer) attacks on the return address. The key contribu-
tions of this paper are:

. Complete Solution. We have designed a complete
solution which handles setjmp() and longjmp()

as part of the hardware solution and handles
hardware stack overflow/underflow and process
context switches with a small modification to the OS.

. Trade-Offs. We have proposed three implementa-
tion schemes that allow different trade-offs between
implementation difficulty and performance.

. Detailed Performance Analysis. We have per-
formed a detailed performance analysis comparing
the most frequently applied software solution,
StackGuard, to SmashGuard on a common simulator
for a high-performance processor.

Our best-performing implementation, No-Stall, incurs
virtually no performance degradation, but has the small
implementation cost of a 2 KB table. We compared the other
two implementations (Complete-Stall and Partial-Stall) to
StackGuard. Our experiments show that StackGuard per-
forms comparably to Complete-Stall, but StackGuard is less
robust than Partial-Stall. For an 8-issue processor, while
StackGuard incurs only slightly less average degradation
than Partial-Stall, StackGuard’s worst-case degradation is
8 percent, whereas Partial-Stall incurs less than 0.5 percent.
Moreover, StackGuard requires application recompilation
and does not protect against Type 2 attacks.

With every passing day, the number of attacks on systems
connected to the Internet increases [60]. Attacks are increas-
ingly automated, attack tools are much more sophisticated,
and therehavebeenattackson the critical infrastructureof the
Internet [61]. SmashGuard provides a robust solution to one
of the most prevalent attacks of today.
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