
SMAWL: A SMAll Workflow Language Based on CCS

Christian Stefansen

Department of Computer Science, University of Copenhagen (DIKU)
Universitetsparken 1, 2100 Copenhagen Ø, Denmark

Abstract This paper provides a overview of SMAWL, a SMAll Workflow Lan-
guage based on CCS (Calculus of Communicating Systems). There has been a
prolonged debate in the workflow community about the relative suitability of
Petri nets versusπ-calculus as a formal foundation for workflow languages. Here
we demonstrate how to build a workflow language based on CCS (a predecessor
of π-calculus). To facilitate comparison with other approaches SMAWL is de-
signed to be able to express the same 20 patterns that originally led to the design
of the Petri net-based workflow language YAWL by van der Aalst and ter Hofst-
ede. After an initial example of a SMAWL program, some design considerata are
discussed, and the constructs of the language are presented along with excerpts
of the compositional source-level translation to CCS.

1 Introduction

There has been a long debate in the workflow community about the relative merits
of different formalisms – most notablyπ-calculus [2] and Petri nets – for workflow
modeling [5,8]. Proponents of theπ-calculus claim that the presence of mobility or,
more specifically, channel-passing, makes it the more suitable choice. Proponents of
Petri nets have pointed out that contrary toπ-calculus, Petri nets have a standardized
and rigorous graphical notation readily available.

In [6] van der Aalst and ter Hofstede identified 20 common workflow patterns,
surveyed current workflow systems with respect to these, and presented a Petri net-
based workflow language, YAWL, that is capable of expressing all 20 patterns. In the
same vein SMAWL is designed with this benchmark in mind, but based on CCS. Since
it is always desirable to keep the formal foundation as simple as possible, and since the
language design did not require the notion of mobility found inπ-calculus, SMAWL
is based on CCS (Calculus of Communicating Systems) rather thanπ-calculus. Here
“based on CCS” means translatable to CCS using only source-code transformations.

The 20 workflow patterns do not deal with data flow. This makes the patterns easier
to work with and forces a strong separation between control flow and data flow. By
following this strategy and parameterizing over the data-flow language, SMAWL avoids
being tied in, but may be used with any (sensible) data-flow language.

1.1 Why Consider CCS?

CCS andπ-calculus have been studied extensively for years and have sound mathe-
matical foundations. There has been a wealth of practical applications in programming



languages (e.g. PICT [3]), protocol verification, software model checking (e.g. [1]),
hardware design languages, and several other areas.

Workflow languages seem to have a lot in common with these areas: they can be
thought of as parallel processes and often defy the block structure found in conventional
programming. It seems appropriate to leverage the strong separation of process and ap-
plication logic enforced in CCS, and furthermore, having a well-understood foundation
is likely to make implementation and subsequent adaptation easier and more routine.
By using CCS we can integrate with existing tools for automated verification and thus
make writing and adapting workflows less error-prone.

Nevertheless, CCS presents significant challenges. Workflow systems should be ac-
cessible to anyone, and so a central challenge is to provide graphical tools and user-
friendly abstractions. It is important to note that while not inherently graphical, CCS
does not preclude the use of a high-level graphical representation. We do not mean to
use CCS directly as it is, but as a theoretical foundation for future work. This paper
suggests how.

1.2 Contributions

The main contribution of the paper is an overview of the language SMAWL: a CCS-
based compositional workflow language that can express all 20 patterns identified in
[6]. The language deals with most of the internal message-passing required to code the
20 workflow patterns and provides a palatable syntax for programmers. Specifically, we
(1) describe the grammar and each of the constructs, (2) outline the formal translation to
CCS, (3) present a small example, and (4) show the auto-generated graphical represen-
tation hereof to suggest that graphical manipulation can be implemented in a relatively
simple way. Interested readers are referred to the accompanying technical report [4] for
a more detailed walkthrough.

1.3 Outline

Section 2 shows an example workflow, describes the constructs and design deciderata
of SMAWL, and sketches its formal translation into CCS. Section 3 contains a few
concluding remarks.

2 Introducing SMAWL

The goal is to design a CCS-based language that (a) reduces the amount of user-
specified internal synchronization required and (b) provides elegant constructs for the
20 workflow patterns [6] shown in Table 1.

To get a feel for where this will lead, an example workflow in the resulting language
can be seen in Figure 1. The main workflow, which hopefully is self-explanatory, spec-
ifies that to become a recording artist one should first either “Work your way up” or
“Try to get lucky”. After the chosen subroutine is done, one should “Make record” and
finally develop a personality according to one’s own choice in parallel to first “Rehearse
tour” and then “Do tour”.



Basic Control Patterns

1 Sequence
2 Parallel Split
3 Synchronization
4 Exclusive Choice
5 Simple Merge

Advanced Branching and
Synchronization Patterns

6 Multiple Choice
7 Synchronizing Merge
8 Multiple Merge
8a N-out-of-M Merge(new)
9 Discriminator
9a N-out-of-M Join

Patterns Involving Multiple Instances

12 MI without synchronization
13 MI with a priori known design time knowledge
14 MI with a priori known runtime knowledge
15 MI with no a priori runtime knowledge

Structural Patterns

10 Arbitrary Cycles
11 Implicit Termination

Cancellation Patterns

19 Cancel Activity
20 Cancel Case

State-Based Patterns

16 Deferred Choice
16a Deferred Multiple Choice(new)
17 Interleaved Parallel Routing
18 Milestone

Table1.The 20 Workflow Patterns [7] and Two New Ones

The graphical representation was generated completely automatically from the ab-
stract syntax tree of the code to give an example that even with CCS as the foundation
it is relatively straight forward to obtain an intuitive user interface.

2.1 Designing SMAWL

Expressing the patterns directly in CCS is a cumbersome and error-prone exercise in
low-level coding. In particular the programmer must write the specifics of synchroniza-
tion every time a merge or join pattern is used. It is therefore a natural idea to make
small building blocks – combinators – of each of the patterns. This way there will be
e.g. a number of split combinators and a number of join combinators etc.

However, it turns out to be very tedious for the programmer to explicitly synchronize
every time a split block is left; a more palatable approach is therefore to implicitly
synchronize after every split construct and have the programmer explicitly write if the
continuation should be spawned for each active thread (a merge). These and numerous
other considerations lead to the following syntax:

Prog ::= DD workflow w = P end

DD ::= fun f = P end DD
∣∣ newlock (l, u) DD∣∣ milestone(ison, isoff , set, clear) DD

∣∣ ε

P ::= activity
∣∣ send(f)

∣∣ receive(f)
∣∣ call(f)

∣∣ P ; P
∣∣ lock(l, u){P}∣∣ choose any (wait fork){PP merge(n) P}

∣∣ choose one{PP}∣∣ do all (wait for k){PP merge(n) P} ∣∣ multi(n){P } ∣∣ cancel{P}
PP ::= ⇒ ρ P PP

∣∣ ⇒ P PP
∣∣ ε



Choose one (1)

Call Try to get lucky Call Work your way up

Sync (1)

Make record

Do all (3)

Rehearse tour Choose one (5)

Sync (3)

Do tour

Develop bad habits Develop as artist

Sync (5)

workflow Becomea recording star =
chooseone{

⇒ call (Work your way up)
⇒ call (Try to get lucky)

};
Make record;
doall {

⇒ chooseone{
⇒ Develop as an artist
⇒ Develop bad habits
}

⇒ Rehearse tour;
Do tour

}
end

Figure1.How To BecomeaRecordingStar(adaptedfrom theRecordingStarexample[7])

In thesyntaxε denotestheemptystring,f is a functionname,w is theworkflow name,
ρ is adata-dependentpredicate1, k is anaturalnumberandn is anaturalnumberor∞.
ρ is whatallowsdata-dependentchoices,all otherchoicesdefault to deferredchoices.

A programis any numberof declarationsDD followed by a namedmain work-
flow processP . Let usinformally considereachof theconstructsin turn indicatingthe
patternsthatthey cover in squarebrackets:

activity indicatesanatomicactivity to becarriedout.
P ; Q is thesequencepatternwaiting for P to finishbeforestartingQ. [Sequence]
chooseone{PP} doesexactly oneof the processesin the list PP . Eachof pro-

cessesin thelist canbeguardedwith a predicateρ or not andhencethis constructcan
expressboth deferredchoice,explicit choice,andany combinationthereof.Through
thepredicateρ it alsoprovidespartof theinterfaceto thedataflow language.[Exclusive
Choice,DeferredChoice,SimpleMerge]

chooseany (wait for k){PP merge(n) Q} doesany numberof the processesin
thelist PP , spawnstheprocessQ for thefirstn to finish,andcontinuesoncek instances
of Q have finished.More technicallychooseany (wait for k){PP merge(n) Q} im-
plementsmultiple choiceover the PPs, then mergeseachof the threadsto Q, and
finally synchronizesall threads.If the clausewait for k is given, the synchronization
will beanN-out-of-MJoin. If theclauseis not provided,synchronizationwill wait for
all threadsto signaldone.In themergepartof theclauseavalueof n = ∞ signifiesall
threadsPP shouldmergeto Q uponcompletion.A valueof n 6= ∞ signifiesthatonly
thefirst n threadsto completeshouldgive riseto aninstantiationof Q. If merge(n) Q
is missing,n is takento be∞ andQ = 0. [Multiple Choice,DeferredMultiple Choice,
Multiple Merge,N-out-of-M Join,SynchronizingMerge,Discriminator]

1 Theformatof predicatesρ is not of theessencehere;suchpredicateswill simply becompiled
to a τ prefixandtheresponsibilityof decidingthemwill bedelegatedto adata-awarelayer.



do all (wait for k){PP merge(n)Q} starts all processes in the listPP , spawns the
processQ for the firstn to finish, and continues oncek instances ofQ have finished.
It accepts the same options aschoose any (wait fork){PP merge(n)Q} for merging
and synchronizing. [Parallel Split, Synchronization, Multiple Merge, N-out-of-M Join,
Synchronizing Merge, Discriminator]

multi(n){P }Starts multiple instances of the processP . If n is a natural number
then exactly that number of copies will be spawned. Ifn = ∞ then processesP can
emit a designated signal to spawn more instances while running or more instances can
be spawned based on a data-layer predicate. Execution continues once all spawned pro-
cesses are done – i.e. synchronization is performed [MI with a priori known design time
knowledge, MI with/without a priori known runtime knowledge].

fun f = P end declares a sub-workflow callable usingcall(f). call(f) calls a
declared sub-workflowf and blocks until it finishes. [MI without synchronization]

send(f)/receive(f) provide blocking primitives for signals to locks, milestones, ar-
bitrary joins, and cancellable processes. They are the send and receive primitives found
in CCS. [Arbitrary Cycles]

newlock (l, u) declares a new global lock. Global meaning that two processes that
are not allowed to run at the same time, do not have to be within the same logical block.
lock(l, u){P}protect processP through the declared lock(l, u). Signals lock onl and
unlock onu on entering/exiting the processP . [Interleaved Parallel Routing]

milestone(ison, isoff , set, clear) declares a milestone that can be read/set by any
process knowing the correct channels. [Milestone]cancel{P}makes the processP
cancellable on a pre-determined signalc. The property does not penetrate functions
unless specifically stated in their definition. [Cancel Activity, Cancel Case]

2.2 Compiling SMAWL to CCS

Compiling the workflow description language is a relatively simple task since the lan-
guage is based directly on patterns that have already been described in CCS (see the
accompanying technical report [4]). The main transformationT [[·]] is a mapProg →
Channel → CCS, whereChannel denotes the set of valid channel names. So given a
SMAWL program and a channel namec, the transformationT [[Prog]]c will generate a
CCS expression that signals onc when the workflow has finished. The CCS expressions
are formed using the following syntax:

P ::= 0
∣∣ τ.P

∣∣ a?x.P
∣∣ a!x.P

∣∣ P + P
∣∣ (P | P )

∣∣ new a P
∣∣ a?∗x.P

wherea?∗x.P spawn the processP each time a message is received ona. The remaining
operators are standard.

Consider the transformation of the sequenceP ; Q. When done,P should signal to
Q to continue, andQ when done should signal to the outside world on a designated
channel. A helper function is needed:ν : {()} → Channel returns a fresh channel
name that has not previously been used. NowP andQ can communicate, and the trans-
formation becomes:

T [[P ; Q]] = λok.let ok′ ⇐ ν() in T [[P ]]ok′ | ok′?.T [[Q]]ok



Now consider the more complex pattern defined by:

T [[do all (wait for k) {⇒ P1 ⇒ · · · ⇒ Pn (merge l Q)}]] =
λok.let ok′ ⇐ ν() in let ok′′ ⇐ ν() in let ok′′′ ⇐ ν() in

T [[P1]]ok′ | · · · | T [[Pn]]ok′ | mergeprefix(l, ok′, ok′′)
| ok′′?∗.T [[Q]]ok′′′ | ok′′′?. · · · .ok′′′?︸ ︷︷ ︸

k

.(ok! | ok′′′?∗)

where mergeprefix is the mapN ∪ {∞} × Channel × Channel → CCS defined by:

mergeprefix(∞, ok, go) = ok?∗.go!
mergeprefix(n, ok, go) = ok?.go!. · · · .ok?.go!︸ ︷︷ ︸

n

.ok?∗

Interested readers should consult the accompanying technical report [4] for the com-
plete transformations. Interestingly, it turns outnew operators can be statically removed
by alpha conversion – bar the rare cases wherenew is used inside replicated processes.

3 Conclusion

We presented a language that makes CCS-based workflow systems more accessible.
SMAWL turned out to be an easy and very convenient language for writing workflow
expressions and more work will conducted in this direction. The language SMAWL is
kept very simple and yet it is powerful enough to express the workflow patterns we
have seen to far. It would be interesting to see how far one can get in terms of graphical
support for SMAWL, and equally it would be interesting to plug SMAWL into a formal
verification tool.

References

1. Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, and Yichen Xie. Zing: Exploiting program
structure for model checking concurrent software. InCONCUR, 2004.

2. Robin Milner. Communicating and Mobile Systems: Theπ-calculus. Cambridge University
Press, 1999.

3. Benjamin C. Pierce and David N. Turner. Pict: A programming language based on the pi-
calculus. In G. Plotkin, C. Stirling, and M. Tofte, editors,Proof, Language and Interaction:
Essays in Honour of Robin Milner. MIT Press, 2000.

4. Christian Stefansen. SMAWL: A SMAll Workflow Language based on CCS. Technical Report
TR-06-05, Harvard University, Division of Engineering and Applied Sciences, Cambridge,
MA 02138, March 2005.

5. W.M.P. van der Aalst. Pi calculus versus Petri nets: Let us eat "humble pie" rather than further
inflate the "Pi hype". Available from http://tmitwww.tm.tue.nl/research/patterns/download/pi-
hype.pdf, 2004.

6. W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow patterns: On the expressive power
of (petri-net-based) workflow languages. In K. Jensen, editor,Proceedings of the Fourth
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2002), volume
560, Aarhus, Denmark, August 2002. DAIMI.

7. Workflow patterns. Available from http://www.workflowpatterns.com.
8. Michael zur Muehlen. Workflow research. http://www.workflow-research.de.


