
UC Berkeley
UC Berkeley Previously Published Works

Title
SMC: Satisfiability modulo convex optimization

Permalink
https://escholarship.org/uc/item/7zj000b8

ISBN
9781450345903

Authors
Shoukry, Y
Nuzzo, P
Sangiovanni-Vincentelli, AL
et al.

Publication Date
2017-04-13

DOI
10.1145/3049797.3049819

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7zj000b8
https://escholarship.org/uc/item/7zj000b8#author
https://escholarship.org
http://www.cdlib.org/

SMC: Satisfiability Modulo Convex Optimization

Yasser Shoukry§† Pierluigi Nuzzo∗ Alberto L. Sangiovanni-Vincentelli†
Sanjit A. Seshia† George J. Pappas∗∗ Paulo Tabuada§

†Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA
§Department of Electrical Engineering, University of California, Los Angeles, CA

∗ Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA
∗∗Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA

ABSTRACT
We address the problem of determining the satisfiability of
a Boolean combination of convex constraints over the real
numbers, which is common in the context of hybrid sys-
tem verification and control. We first show that a special
type of logic formulas, termed monotone Satisfiability Mod-
ulo Convex (SMC) formulas, is the most general class of
formulas over Boolean and nonlinear real predicates that re-
duce to convex programs for any satisfying assignment of
the Boolean variables. For this class of formulas, we develop
a new satisfiability modulo convex optimization procedure
that uses a lazy combination of SAT solving and convex
programming to provide a satisfying assignment or deter-
mine that the formula is unsatisfiable. Our approach can
then leverage the efficiency and the formal guarantees of
state-of-the-art algorithms in both the Boolean and convex
analysis domains. A key step in lazy satisfiability solving is
the generation of succinct infeasibility proofs that can sup-
port conflict-driven learning and decrease the number of it-
erations between the SAT and the theory solver. For this
purpose, we propose a suite of algorithms that can trade
complexity with the minimality of the generated infeasibility
certificates. Remarkably, we show that a minimal infeasibil-
ity certificate can be generated by simply solving one convex
program for a sub-class of SMC formulas, namely ordered
positive unate SMC formulas, that have additional mono-
tonicity properties. Perhaps surprisingly, ordered positive
unate formulas appear themselves very frequently in a va-
riety of practical applications. By exploiting the properties
of monotone SMC formulas, we can then build and demon-
strate effective and scalable decision procedures for problems
in hybrid system verification and control, including secure
state estimation and robotic motion planning.

1. INTRODUCTION
The central difficulty in analyzing and designing hybrid

systems is the very different nature of the technical tools

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HSCC’17, April 18 - 20, 2017, Pittsburgh, PA, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4590-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3049797.3049819

used to analyze continuous dynamics (e.g., real analysis) and
discrete dynamics (e.g., combinatorics). The same difficulty
arises in the context of optimization and feasibility prob-
lems involving continuous and discrete variables. In fact,
some of these problems arise from the analysis of hybrid
systems. In complex, high-dimensional systems, a vast dis-
crete/continuous space must be searched under constraints
that are often nonlinear. Developing efficient techniques to
perform this task is, therefore, crucial to substantially en-
hance our ability to design and analyze hybrid systems.

Constraint Programming (CP) and Mixed Integer Pro-
gramming (MIP) have emerged over the years as means for
addressing many of the challenges posed by hybrid systems
and hybrid optimization problems [1]. Rooted in Satisfiabil-
ity (SAT) solving and, more recently, Satisfiability Modulo
Theory (SMT) solving, CP relies on logic-based methods
such as domain reduction and constraint propagation to ac-
celerate the search. Modern SAT and SMT solvers [2] can
efficiently find satisfying valuations of very large proposi-
tional formulas with complex Boolean structure, including
combinations of atoms from various decidable theories, such
as lists, arrays, bit vectors, linear integer arithmetic, and lin-
ear real arithmetic. However, while SMT solving for generic
nonlinear theories over the reals is undecidable in general [3,
4], algorithms and tools that can address useful fragments
of these theories with solid guarantees of correctness and
scalability have only recently started to appear.

MIP-based approaches encode, instead, a Boolean combi-
nation of nonlinear constraints into a conjunction of mixed
integer constraints and solve it by leveraging numerical algo-
rithms based on branch-and-bound and cutting-plane meth-
ods. When applied to mixed integer convex constraints,
optimization-based techniques tend to be efficient if the
Boolean structure of the problem is simple. Moreover, con-
vex programming is extensively used as the core engine in a
variety of applications, ranging from control design to com-
munications, from electronic design to data analysis and
modeling [5]. However, encoding some logic operations,
such as disjunction and implication, into mixed integer con-
straints usually requires approximations and heuristic tech-
niques, such as the well-known “big-M” method [1], which
may eventually affect the correctness of the solution.

In this paper, we aim at bridging the gap between CP
and MIP based techniques, which have shown superior per-
formance in handling, respectively, complex Boolean struc-
tures and large sets of convex constraints. While attempts
at combining logic-based inference with optimization trace
back to the 1950s [1], they were mostly limited to “prepro-

cessing” and “implicit enumeration” schemes, doomed soon
to be outperformed by branch-and-bound or cutting-plane
methods. As the effectiveness of CP techniques has steadily
increased over the years, their integration with optimization
has been the subject of increasing research activity. How-
ever, devising a robust and widely acceptable integration
scheme is still largely an open issue. We tackle this chal-
lenge by focusing on the satisfiability problem for a class of
formulas over Boolean variables and convex constraints. We
target this special class of problems because of their perva-
siveness as well as the efficiency and robustness of the solu-
tion methods made available by convex programming [5].

The first contribution of this paper is to identify a special
type of logic formulas, termed monotone Satisfiability Mod-
ulo Convex (SMC) formulas, and to show that it is the most
general class of formulas over Boolean and nonlinear real
arithmetic predicates that can be solved via a finite number
of convex programs. For monotone SMC formulas, we de-
velop a new procedure, which we call Satisfiability Modulo
Convex Optimization, that uses a lazy combination of SAT
solving and convex programming to provide a satisfying as-
signment or determine that the formula is unsatisfiable. As
in the lazy SMT paradigm [2], a classic SAT solving algo-
rithm [6] interacts with a theory solver. The SAT solver effi-
ciently reasons about combinations of Boolean constraints to
suggest possible assignments. The theory solver only checks
the consistency of the given assignments, i.e., conjunctions
of theory predicates, and provides the reason for the conflict,
an UNSAT certificate, whenever inconsistencies are found.

Checking the feasibility of a set of convex constraints can
be performed efficiently, with a complexity that is polyno-
mial in the number of constraints and real variables. A
key step is, however, the generation of compact certificates
to support conflict-driven learning and decrease the num-
ber of iterations between the SAT and the theory solver.
The second contribution of this paper is to propose a suite
of algorithms that can trade complexity with the minimal-
ity of the generated certificates. Remarkably, we show that
a minimal infeasibility certificate can be generated by sim-
ply solving one convex program for a sub-class of mono-
tone SMC formulas, namely Ordered Positive Unate (OPU)
formulas, that present additional monotonicity properties.
Since monotone SMC and OPU formulas appear frequently
in practical applications, we can then build and demonstrate
effective and scalable decision procedures for several prob-
lems in hybrid system verification and control. Experimental
results show that our approach outperforms state-of-the-art
SMT and MICP solvers on problems with complex Boolean
structure and a large number of real variables.

Related Work. Our work focuses on feasibility prob-
lems and leverages optimization methods to accelerate the
search task. In this respect, it differs from other research ef-
forts such as the “optimization modulo theories” [7] or “sym-
bolic optimization” [8] approaches, which propose SMT-
based techniques to solve optimization problems. The AB-
solver tool [9] adopts a similar lazy SMT approach as in
our work, by leveraging a generic nonlinear optimization
tool to solve Boolean combinations of polynomial arithmetic
constraints. However, generic nonlinear optimization tech-
niques may produce incomplete or possibly incorrect results,
due to their “local” nature, explicitly requiring upper and
lower bounds to all the real variables. The Z3 [10] solver can
also provide support for nonlinear polynomial arithmetic,

while still being subject to incompleteness or termination
issues1. The iSAT algorithm builds on a unification of SAT-
solving and Interval Constraint Propagation (ICP) [11] to
efficiently address arbitrary smooth, possibly transcenden-
tal, functions. The integration of SAT solving with ICP is
also used in dReal to build a δ-complete decision proce-
dure which solves SMT problems over the reals with nonlin-
ear functions, such as polynomials, sine, exponentiation, or
logarithms [12], but with limited support for Boolean com-
binations of nonlinear constraints. By targeting the special
classes of convex constraints and monotone SMC formulas,
we are able to leverage the efficiency, robustness, and cor-
rectness guarantees of state-of-the-art convex optimization
algorithms. Moreover, we can efficiently generate UNSAT
certificates that are more compact, or even minimal.

Our results build upon the seminal work of CalCS, which
pioneered the integration of SAT solving and optimization
algorithms for convex SMT formulas [13]. Differently from
CalCS, we focus on the satisfiability problem for monotone
SMC formulas, which do not require approximation tech-
niques to handle negated convex constraints and are rich
enough to capture several problem instances in hybrid sys-
tem verification and control. For SMC formulas, we provide
formal correctness guarantees for our algorithms in terms of
δ-completeness [4]. Moreover, we propose new algorithms to
generate UNSAT certificates that improve on the efficiency
or minimality guarantees of the previous ones, which were
based on the sensitivity of the objective of a convex opti-
mization problem to its constraints.

We have also recently developed specialized SMT-based
algorithms for applications in secure state estimation,
Imhotep-SMT [14], and robotic motion planning [15]. We
show that the approach detailed in this paper subsumes
these results. Finally, our decision procedure encompasses
Mixed Integer Convex Programming (MICP) based tech-
niques. In fact, we show that any feasibility problem on
MIC constraints can be posed as a satisfiability problem
on a monotone SMC formula. While an MICP formulation
can execute faster on problems with simpler Boolean struc-
ture, our algorithms outperform MICP-based techniques on
problems with large numbers of Boolean variables and con-
straints.

2. MOTIVATING EXAMPLE
We illustrate the practical relevance of the logic addressed

in this paper using a representative hybrid system control
problem inspired by robotic motion planning [15]. To de-
velop algorithmic techniques for robotic motion planning,
we need to reason about the tight integration of discrete
abstractions (as in task planning) with continuous motions
(motion planning) [16]. Task planning relies on specifica-
tions of temporal goals that are usually captured by logics
such as Linear Temporal Logic (LTL) [17]. Motion plan-
ning deals with complex geometries, motion dynamics, and
collision avoidance constraints that can only be accurately
captured by continuous models. Ideally, we wish to combine
effective discrete planning techniques with effective methods
for generating collision-free and dynamically-feasible trajec-
tories to satisfy both the dynamics and task planner con-
straints.

1As reported by the official Z3 website, http://research.microsoft.
com/en-us/um/redmond/projects/z3/arith-tutorial/.

⇡1
⇡2

⇡3

⇡4

⇡5

⇡6

⇡7

⇡8

⇡9

⇡10

⇡11 ⇡12 ⇡13

⇡14

⇡15

⇡16

⇡17

⇡18

⇡19

⇡20

⇡21

⇡22

⇡23

⇡24

⇡25
⇡26

⇡27

⇡28

⇡29
⇡30

π1

π2

π9

π17

π3

π10

Figure 1: Obstacle-based discretization of the

workspace for the motion planning problem (left), and

transition system describing the adjacency relation be-

tween regions in the workspace (right).

For simplicity, we present below an encoding for the ba-
sic reach-avoid problem. We assume a discrete-time, lin-
ear model of the robot dynamics and a description of a
workspace in terms of a set of obstacles and a target region,
where both the obstacles and the region are polyhedra. The
goal is to construct a trajectory, and the associated control
strategy, that steers the robot from its initial point to the
target while avoiding obstacles. We further assume that the
workspace is partitioned into a set of regions, as in Figure 1
(left), which can also be described by polyhedra and cap-
tured by linear constraints of the form (Px+ q ≤ 0), where
x ∈ Rn represents the state variables of the robot, including
its coordinates in the workspace. For a fixed horizon L, the
controller design problem translates into finding a sequence
of regions of length L (discrete plan) that brings the robot
from the initial point to the target and is compatible with the
continuous dynamics.

It is convenient to capture the adjacency relation between
regions via a transition system as in Figure 1 (right). A valid
trajectory for the robot can then be represented by a run of
the transition system. Let bji be a Boolean variable that is
asserted if and only if the robot is in region i at time j. We
can then encode the constraints for the controller using the
following logic formula ϕ:

ϕ ::= b0start (Initial partition)

∧ bLgoal (Goal partition)

∧

bji → ∨
i′∈Π(i)

bj+1
i′

 ∀ j ∈ {0, . . . , L− 1}, i ∈ {1, . . . ,m}

(Adjacency constraints)

∧
(
m∑
i=1

bji = 1

)
∀j ∈ {0, . . . , L− 1}

(Mutual exclusion)

∧
(
xj+1 = Axj +Buj

)
∀j ∈ {0, . . . , L− 1}
(Robot dynamics)

∧
(
‖uj‖ ≤ u

)
∀j ∈ {0, . . . , L− 1}
(Input constraints)

∧
(
x0 = x

)
(Initial state)

∧
(
bji → Pix+ qi ≤ 0

)
∀j ∈ {0, . . . , L− 1}, i ∈ {1, . . . ,m}

(Region constraints)

where Π(i) is the set of regions that are adjacent to region
i, m is the total number of regions, A and B are the state
and input matrices governing the robot dynamics, and ū is
the maximum feasible magnitude ‖uj‖ (e.g., `2 or `∞ norm)

of the control input at time j.
The formula ϕ captures the constraints of a reach-avoid

problem as a conjunction of logic clauses, possibly including
pseudo-Boolean predicates (e.g., mutual exclusion or cardi-
nality constraints), and where some of the literals are convex
constraints (e.g., in the dynamics, input, and region con-
straints). We call such a formula a monotone SMC formula
since none of the convex constraints are negated. The formal
definition is in Section 3. We further observe that the satis-
fying assignments of the “purely Boolean” portion of ϕ are
characterized by an ordering imposed by the feasible runs of
the transition system in Figure 1. If a sequence of regions σ
is feasible, then so is any prefix sequence of σ. We will call
the formulas encoding such a scenario OPU formulas and
provide the formal definition in Section 5.3. OPU formulas
are by no means specific to the encoding of motion planning
constraints. They appear in several applications; for ex-
ample, whenever Boolean variables are used to capture the
occurrence of events (or modes) that are sequentially con-
catenated. This is the case for the variables encoding the
states in a finite state machine or for switched systems in
which modes are captured by a finite state automaton and
dynamics are expressed by convex constraints.

We will show that Boolean solving can be effectively com-
bined with convex optimization to determine the satisfiabil-
ity of monotone SMC and OPU formulas. Scalable decision
procedures can be developed based on efficient methods for
detecting minimal sets of conflicting convex constraints. In
particular, this task reduces to solving only one convex pro-
gram in OPU formulas. To formalize these categories of
decision problems, we first define the syntax and semantics
of monotone SMC formulas.

3. MONOTONE SMC FORMULAS

3.1 Notation
We denote as b = (b1, b2, . . . , bm) the set of Boolean vari-

ables in a formula, with bi ∈ B, and with x = (x1, x2, . . . , xn)
the set of real-valued variables, where xi ∈ R. When not
directly inferred from the context, we adopt the notation
ϕ(x, b) to highlight the set of variables over which a formula
ϕ is defined. A valuation µ is a function that associates each
variable in b to a truth value in B. We denote as [[b]]µ ∈ Bm
the set of values assigned to each variable in b by µ.

A convex constraint is a constraint of the form f(x) {<
,≤} 0 or h(x) = 0, where f(x) and h(x) are convex and
affine (linear) functions, respectively, of their real variables
x ∈ D ⊆ Rn, D being a convex set. In what follows, we
will compactly denote a generic convex constraint as (g(x)�
0). A convex constraint is associated with a set C = {x ∈
D : g(x) � 0}, i.e., the set of points in the domain of the
convex function g that satisfy the constraint. The set C is
also convex2. We further denote the negation of a convex
constraint, expressed in the form f(x) ≥ 0 (f(x) > 0), as
reverse convex constraint. A reverse convex constraint is,
in general, non-convex and so is its satisfying set. For a
formal definition of convex function, we refer the reader to
the literature [5].

2In fact, given a representation of the convex domain D as a
convex constraint (d(x) ≤ 0), we can directly account for the
domain by directly embedding it into the expression of the convex
constraint, e.g., by defining (g̃(x) � 0) = (g(x) � 0) ∧ (d(x) ≤ 0).

To be able to capture linear constraints on Boolean vari-
ables in a compact way, we also use pseudo-Boolean predi-
cates. A pseudo-Boolean predicate pB predicate is an affine
constraint over Boolean variables with integer coefficients.

3.2 Syntax and Semantics
We represent monotone Satisfiability Modulo Convex

(SMC) formulas to be quantifier-free formulas in conjunctive
normal form, with atomic propositions ranging over propo-
sitional variables and convex constraints. Formally,

Definition 3.1 (Monotone SMC Formula).
A monotone SMC formula is any formula that can be
represented using the following syntax:

formula ::= {clause ∧}∗clause
clause ::= ({literal ∨}∗literal)| pB predicate

literal ::= bool var | ¬bool var | > | ⊥ |
conv constraint (1)

conv constraint ::= equation | inequality
equation ::= affine function = 0

inequality ::= convex function relation 0

relation ::= < | ≤

In the grammar above, bool var denotes a Boolean vari-
able, and affine function and convex function denote affine
and convex functions, respectively. Monotone SMC formu-
las can only admit convex constraints as theory atoms. Dif-
ferently from generic (non-monotone) SMC formulas, i.e.,
generic SMT formulas over convex constraints [13], reverse
convex constraints are not allowed. The monotonicity prop-
erty is key to guarantee that a model, i.e., a satisfying as-
signment, can always be found by solving one (or more) op-
timization problems that are convex, as we further discuss
below. We rely on the disciplined convex programming ap-
proach [5, 18] as an effective method to specify the syntax of
convex constraints out of a library of atomic functions and
automatically ensure the convexity of a constraint.

Formulas are interpreted over valuations µ (i.e., [[b, x]]µ ∈
Bm×Rn). A formula ϕ is satisfied by a valuation µ (µ |= ϕ)
if and only if all its clauses are satisfied, that is, if and only if
at least one literal is satisfied in any clause. A Boolean literal
l is satisfied if [[l]]µ = >. Satisfaction of real constraints is
with respect to the standard interpretation of the arithmetic
operators and the ordering relations over the reals.

Aiming at a scalable solver architecture, we exploit effi-
cient numerical algorithms based on convex programming to
decide the satisfiability of convex constraints and provide a
model when the constraints are feasible. However, convex
solvers usually perform floating point (hence inexact) calcu-
lations, although the numerical error can be bounded by a
constant that can be made arbitrarily small. Therefore, to
provide correctness guarantees for our algorithms, we resort
to similar notions of δ-satisfaction and δ-completeness as the
ones previously proposed by Gao et al. [4], which we define
below on generic SMC formulas.

Definition 3.2 (δ-Relaxation). Given an SMC for-
mula ϕ, let |C| be the number of convex constraints in ϕ
and δ ∈ Q+ ∪ {0} any non-negative rational number δ. We
define the δ-relaxation of ϕ as the formula obtained by re-
placing any convex constraints of the forms (fi(x) ≤ 0) and

(hj(x) = 0) in ϕ with their perturbed versions (fi(x) ≤ δi)
and (|hj(x)| ≤ δj), respectively, where δk ∈ Q+ ∪ {0} for all

k ∈ {1, . . . , |C|}, and such that
∑|C|
k=1 δk ≤ δ. We denote the

newly obtained formula as ϕδ.

Definition 3.3 (δ-Satisfaction). Given an SMC
formula ϕ and δ ∈ Q+, we say that ϕ is δ-SAT when ϕδ is
satisfiable. Otherwise, we say that ϕ is UNSAT.

We simply say that ϕ is SAT when there is no ambigu-
ity about the choice of δ. If ϕ = ϕ0 is satisfiable, then ϕδ

is satisfiable for all δ ∈ Q+, i.e., ϕ → ϕδ. The opposite
is, however, not true. In fact, depending on the value of
δ, ϕ0 and ϕδ can be made, respectively, false and true at
the same time. When this happens, we admit both the SAT

and UNSAT answers. This outcome is acceptable in practical
applications, since small perturbations capable of modifying
the truth value of a formula usually denote lack of robust-
ness either in the system or in the model. Finally, we say
that an algorithm is δ-complete if it can correctly solve the
satisfiability problem for an SMC formula in the sense of
Definition 3.3.

3.3 Properties
Monotone SMC formulas have the desirable property that

they can always be solved via a finite set of convex feasibility
problems. To show this, we introduce the following propo-
sition and the related definitions of Boolean abstraction and
monotone convex expansion of a convex formula.

Definition 3.4 (Monotone Convex Expansion).
Let ϕ be an SMC formula, C be the set of convex constraints,
and |C| its cardinality. We define propositional abstraction
of ϕ a formula ϕB obtained from ϕ by replacing each convex
constraint with a Boolean variable ai, i ∈ {1, . . . , |C|}.We
further define monotone convex expansion of ϕ the formula
ϕ′ defined as:

ϕ′ = ϕB ∧
|C|∧
i=1

(ai → (gi(x) � 0)) , (2)

where (gi(x) � 0) denotes a convex constraint as defined in
Section 3.1.

Proposition 3.5. Let ϕ′ be the monotone convex expan-
sion of a monotone SMC formula ϕ, defined as in (2), where
ϕB is the propositional abstraction of ϕ. Then, the following
properties hold:
1. ϕ and ϕ′ are equisatisfiable, i.e., if (b∗, x∗, a∗) is a model

(a satisfying assignment) for ϕ′, then (b∗, x∗) is a model
for ϕ; if ϕ′ is unsatisfiable, then so is ϕ;

2. any satisfying Boolean assignment for ϕB turns ϕ′ into
a conjunction of convex constraints;

3. the satisfiability problem for ϕ′, hence ϕ, can always be
cast as the feasibility problem for a finite disjunction of
convex programs.

Proposition 3.5 directly descends from the monotonicity
of ϕ. Its proof as well as the proofs of all the results in this
paper can be found in an extended version of the paper [19].
By Proposition 3.5, any monotone SMC formula ϕ can be
solved by casting and solving a disjunction of convex pro-
grams. We will use this property to construct our decision
procedure in Section 4. It is possible to show that mono-
tone convex formulas are also the only class of formulas over

Boolean propositions, pseudo-Boolean predicates, and pred-
icates in the nonlinear theories over the reals, to present this
property. This is formally stated by the following theorem.

Theorem 3.6. Let ϕ be a formula over Boolean proposi-
tions, pseudo-Boolean predicates, and predicates in the non-
linear theories over the reals, and such that the satisfiability
problem can be posed as the feasibility problem for a finite
disjunction of convex programs. Then, ϕ can be posed as a
monotone SMC formula.

Finally, the following corollary is an immediate conse-
quence of the results above.

Corollary 3.7. Monotone SMC formulas include any
Boolean Satisfiability (SAT) problem instance and any Mixed
Integer Convex (MIC) feasibility problem instance as a par-
ticular case.

Any MIC formulation can be translated into an equisat-
isfiable SMC formula, but the opposite is not true. Of-
ten, disjunctions of predicates, such as the one in ϕ :=
¬b∨(x−3 < 0), cannot be expressed as a conjunction of MIC
constraints unless relaxations (approximations) are used [1].
For instance, ϕ is typically encoded with the constraint
c := x−3 < (1−b) ·M , using the “big-M” method. However,
for any value of M , the assignment (b, x) = (0,M + 3) is a
satisfying assignment for ϕ, but violates c.

4. ALGORITHM ARCHITECTURE
Our decision procedure combines a SAT solver (SAT-

Solve) and a theory solver (C-Solve) for convex constraints
on real numbers by following the lazy SMT paradigm [2].
The SAT solver efficiently reasons about combinations of
Boolean and pseudo-Boolean constraints, using the David-
Putnam-Logemann-Loveland (DPLL) algorithm [6], to sug-
gest possible assignments for the convex constraints. The
theory solver checks the consistency of the given assignments
and provides the reason for a conflict, i.e., an UNSAT certifi-
cate, whenever inconsistencies are found. Each certificate
results in learning new constraints which will be used by the
SAT solver to prune the search space. Because the monotone
convex expansion ϕ′ of a monotone formula ϕ translates into
a conjunction of convex constraints for any Boolean assign-
ments by Proposition 3.5, we are assured that we can solve
for ϕ using a lazy SMT approach, since we are guaranteed to
generate queries to the theory solver that are always in the
form of conjunctions of convex constraints and, therefore,
can be efficiently solved by convex programming. Our deci-
sion task is thus broken into two simpler tasks, respectively,
over the Boolean and convex domains.

As illustrated in Algorithm 4, we start by generating the
propositional abstraction ϕB(b, a) of ϕ. We denote as M
the map that associates each convex constraint in ϕ to an
auxiliary variable ai. By only relying on the Boolean struc-
ture of ϕB , SAT-Solve may either return UNSAT or propose
a satisfying assignment µ for the variables b and a, thus hy-
pothesizing which convex constraints should be jointly sat-
isfied.

Let a∗ be the assignment proposed by SAT-Solve for the
auxiliary Boolean variables a in ϕB ; we denote as supp(a∗)
the set of indices of auxiliary variables ai which are asserted
in a∗, i.e., such that [[ai]]µ = >. This Boolean assignment
is then used by C-Solve to determine whether there exist

Algorithm 1 SMC
Input: ϕ, δ Output: η(b, x)

1: (ϕB(b, a),M) := Abstract(ϕ);
2: while TRUE do
3: (status, µ(b, a)) := SAT-Solve(ϕB);
4: if status == UNSAT then
5: return
6: else
7: (status, x) := C-Solve.Check(µ,M, δ);
8: if status == SAT then
9: return η(b, x)

10: else
11: ϕce := C-Solve.Cert(µ,M, δ);
12: ϕB := ϕB ∧ ϕce;

real variables x ∈ Rn which satisfy all the convex constraints
related to asserted auxiliary variables. Formally, we are in-
terested in the following problem

find x s.t. gi(x) � 0 ∀ i ∈ supp(a∗) (3)

which we denote as feasibility problem associated with a∗.
The above problem can be efficiently cast as the following
optimization problem with the addition of slack variables,
which we call a sum-of-slacks feasibility (SSF) problem:

min
s1,...,sL∈R
x∈Rn

L∑
i=1

|si| s.t. gji(x) � si, i = 1, . . . , L (4)

where L is the cardinality of supp(a∗) and ji spans supp(a∗)
as i varies in {1, . . . , L}. Problem 4 is equivalent to (3), as
it tries to minimize the infeasibilities of the constraints by
pushing each slack variable to be as much as possible close
to zero. The optimum is zero and is achieved if and only if
the original set of constraints in (3) is feasible. Therefore,
if the cost at optimum is zero (in practice, the condition∑L
i=1 |si| ≤ δ is satisfied for a “small” δ ∈ Q+), then µ

is indeed a valid assignment, an optimum x∗ is found, and
our algorithm terminates with SAT and provides the solution
(x∗, b). Otherwise, an UNSAT certificate ϕce is generated
in terms of a new Boolean clause explaining which auxiliary
variables should be negated since the associated convex con-
straints are conflicting. A trivial certificate can always be
provided in the form of:

ϕtrivial-ce =
∨

i∈supp(a∗)

¬ai, (5)

which encodes the fact that at least one of the auxiliary
variables indexed by an element in supp(a∗) should actually
be negated. The augmented Boolean problem consisting of
the original formula ϕB and the generated certificate ϕce is
then fed back to SAT-Solve to produce a new assignment.
The sequence of new SAT queries is then repeated until ei-
ther C-Solve terminates with SAT or SAT-Solve terminates
with UNSAT. The following statement summarizes the formal
guarantees of Algorithm 4 with the trivial certificate (5).

Proposition 4.1. Let ϕ be a monotone SMC formula
and δ ∈ Q+ a user-defined tolerance used in C-Solve.Check
in Algorithm 4 to accommodate numerical errors. Algo-
rithm 4 with the UNSAT certificate ϕce in (5) is δ-complete.

The worst case bound on the number of iterations in Algo-
rithm 4 is exponential in the number of convex constraints

Certificate # Convex Programs Length `
Trivial 1 |S|

IIS-Based Exponential in |S| |I| (minimal)
SSF-Based Linear in |S| |I| ≤ ` ≤ |S|

Prefix-Based 1 |I| ≤ ` ≤ |S|

Table 1: Proposed algorithms for certificate generation:

number of convex programs needed to generate the cer-

tificate and length of the generated certificate. |S| is the

number of constraints in the convex program.

|C|. To help the SAT solver quickly find a correct assign-
ment, a central problem in the lazy SMT paradigm is to
generate succinct certificates, possibly highlighting the min-
imum set of conflicting assignments, i.e., the “reason” for
the inconsistency. The smaller the conflict clause, the larger
is the region that is excluded from the search space of the
SAT solver. Moreover, certificates should be generated ef-
ficiently, ideally in polynomial time, to provide a negligible
overhead with respect to the exponential complexity of SAT
solving. In the following, we discuss efficient algorithms to
generate smaller conflict clauses.

5. GENERATING SMALL CERTIFICATES

5.1 IIS-Based Certificates
When C-Solve.Check finds an infeasible problem, a min-

imal certificate can be generated by providing an Irreducibly
Inconsistent Set (IIS) [20] of constraints, defined as follows.

Definition 5.1 (Irreducibly Inconsistent Set).
Given a feasibility problem with constraint set S, an Irre-
ducibly Inconsistent Set I is a subset of constraints I ⊆ S
such that: (i) the feasibility problem with constraint set
I is infeasible; (ii) ∀ c ∈ I, the feasibility problem with
constraint set I \ {c} is feasible.

In other words, an IIS is an infeasible subset of constraints
that becomes feasible if any single constraint is removed.
Let I be set of indices of auxiliary Boolean variables in ϕB
that are associated to a convex constraint in an IIS I. Then,
once I is found, a minimal certificate can be generated as

ϕIIS-ce =
∨
i∈I

¬ai. (6)

Most of the techniques proposed in the literature to iso-
late IISs are based on either adding constraints, one by one
or in groups, or by deleting them from the original prob-
lem [20]. An IIS guarantees that the length of the certifi-
cate is minimal, which can dramatically reduce the search
space in Algorithm 4. However, isolating one IIS is expen-
sive, especially for nonlinear programs. In the worst case, as
shown in Table 1, finding an IIS can require solving a feasi-
bility problem for each subset of constraints in S, which is
exponential in the size |S|. The following proposition sum-
marizes the correctness guarantees of Algorithm 4 with the
IIS-based certificate (6).

Proposition 5.2. Let ϕ be a monotone SMC formula
and δ ∈ Q+ a user-defined tolerance used in C-Solve.Check
in Algorithm 4 to accommodate numerical errors. Algo-
rithm 4 with the UNSAT certificate in (6) is δ-complete.
In the following, we describe an algorithm that can generate
a small, albeit non minimal, set of conflicting constraints by
solving a number of convex programs that is linear in |S|.

Algorithm 2 C-Solve.Cert-SSF(µ,M, δ)

1: Compute optimal slack variables and sort them
2: s∗ := Solve-SSF(µ,M, δ);
3: s′ := sortAscendingly(s∗);
4: Pick index for minimum slack
5: I min := Index(s′1);
6: I max := Index(s′{|s|,|s|−1,...,2});

7: Search linearly for the UNSAT certificate
8: status = SAT; counter = 1;
9: I temp := I min ∪ I maxcounter;

10: while status == SAT do
11: (status, x) := C-Solve.Check(µI temp,M, δ);
12: if status == UNSAT then
13: ϕce-SSF :=

∨
i∈I temp ¬ai;

14: else
15: counter := counter + 1;
16: I temp := I temp ∪ I max rcounter;
17: return ϕce-SSF

5.2 SSF-Based Certificates
A computationally more efficient alternative to IIS-based

certificates is to directly exploit the information in the slacks
of the SSF problem (4). If a constraint k is associated with a
non-zero optimal slack, |s∗k| > 0, then it is a member of one
of the IIS in problem (3). However, the set of all the con-
straints with a non-zero slack does not necessarily include all
the constraints of at least one IIS. Therefore, we propose a
search procedure over the constraint set S, which guarantees
that at least one IIS is included in the returned set of con-
flicting constraints by solving a number of convex programs
that is linear in the number of constraints |S| in (3), even if
the returned conflict set may not be minimal. In fact, the
cardinality of the returned conflict set, hence the length of
the proposed certificate, can be as large as |S| in the worst
case, as shown in Table 1.

The conjecture behind the search strategy is that the con-
straints with the highest slack values are most likely to be
in at least one IIS and conflict with the constraint with the
lowest (possible zero) slack. We can then generate a small
conflict set including the lowest slack constraint in conjunc-
tion with the highest slack constraints, added one-by-one,
until a conflict is detected. At each step we solve a convex
feasibility problem to detect the occurrence of a conflict.
The earlier a conflict is detected, the earlier our search ter-
minates and the shorter the certificate will be. Based on
this intuition, our procedure is summarized in Algorithm 2.

We first compute the optimal slacks s∗ and sort them in
ascending order. We then pick the constraint correspond-
ing to the minimum slack, indexed by I min, and gener-
ate a new set of indexes I temp by searching for one more
constraint that leads to a conflict with the minimum slack
constraint, starting with the constraint related to the maxi-
mum slack. I max is the set of all slack indexes except the
index of the minimum slack in I min. If the constraints in-
dexed by I temp are infeasible, then we obtain a conflict set
of two elements, and can immediately generate the UNSAT
certificate. Otherwise, we repeat the same process by adding
the constraint associated with the second largest slack vari-
able in the sorted list of slacks, till we reach a conflicting
set. Once the set is discovered, we stop and generate the
compact certificate using the auxiliary variables indexed by
I temp. The following proposition summarizes the correct-
ness guarantees of Algorithm 4 with the SSF-based certifi-

(0, 0, 0, 0)

(1, 0, 0, 0) (0, 1, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1)

(1, 1, 0, 0) (1, 0, 1, 0) (1, 0, 0, 1) (0, 1, 1, 0) (0, 1, 0, 1) (0, 0, 1, 1)

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

(1, 1, 1, 1) u=1

u=0

Figure 2: Pictorial representation of the partial order

over the assignments for an OPU function u.

cate in Algorithm 2.

Proposition 5.3. Let ϕ be a monotone SMC formula
and δ ∈ Q+ a user-defined tolerance used in C-Solve.Check
in Algorithm 4 to accommodate numerical errors. Algo-
rithm 4 with the certificate from Algorithm 2 is δ-complete.

5.3 Prefix-Based Certificate
Under additional monotonicity assumptions on the struc-

ture of ϕ we are able to construct UNSAT certificates that
are “minimal” by solving only one convex program. To for-
malize these monotonicity assumptions and the related no-
tion of minimality, we introduce the concept of Ordered Pos-
itive Unate (OPU) function as an extension of the classical
definition of positive unite function below. For convenience,
we also use the notation b = 1(0) to indicate that b is as-
serted (negated).

Definition 5.4 (Positive Unate Function). A
Boolean function u(b1, b2, . . . , bm) is said to be positive
unate in bi if, for all possible values of bj, j 6= i, we have

u(b1, . . . , bi−1, 0, bi+1, . . . , bm) ≤ u(b1, . . . , bi−1, 1, bi+1, . . . , bm),

i.e., by only switching bi from 0 to 1 we do not decrease the
value of u.

Definition 5.5 (OPU Function). A Boolean func-
tion u(b1, b2, . . . , bm) is said to be ordered positive unate
with respect to an ordering (b1, . . . , bm) of its Boolean vari-
ables if, for all possible values of bi, we have

u(0, . . . , 0) ≤ u(b1, 0, . . . , 0) ≤ u(b1, b2, 0, . . . , 0) ≤ . . .
· · · ≤ u(b1, b2, . . . , bm−1, 0) ≤ u(b1, b2, . . . , bm−1, bm).

In other words, given a valuation over the ordered set b =
(b1, . . . , bm), and such that there is a suffix of variables as-
signed to zero, i.e., bi = bi+1 = . . . = bm−1 = bm = 0,
i ∈ {1, . . . ,m}, switching the first variable bi in the suffix
from 0 to 1 does not decrease the value of u.

By Definition 5.5, OPU functions determine a partial or-
der over the set of Boolean assignments based on their pre-
fixes, and such that (0, . . . , 0) is the bottom element. A
pictorial representation of such an order is offered in Fig-
ure 2 when m = 4. All the assignments for (b1, . . . , b4) form
a tree; each vertex in the tree shares a prefix with its an-
cestor and differs from it only in the first variable of the
suffix, which is set to 1. We also show in Figure 2 a possible
scenario for the values of u. If u evaluates to 1 at a certain
vertex v in the tree, then the value of u over all the upper
vertices along the path from v to a leaf is also bounded to

be 1. Similarly, if u evaluates to 0 at v, then this will be
the case over all the lower vertices along the path from v to
the root. We now extend this notion of monotonicity to a
sub-class of convex formulas of our interest, which we denote
as ordered positive unate formulas.

Definition 5.6 (OPU Formulas). Let ϕ be a mono-
tone SMC formula, ϕB its propositional abstraction, and
χϕ(a1, a2, . . . , a|C|) be the restriction of the characteristic
function for the valid assignments of ϕB to the auxiliary
variables a, i.e.,

χϕ([[a]]µ) =

{
1 if ∃ b s.t. µ(b, a) |= ϕB

0 otherwise.

We say that ϕ is an ordered positive unate formula with
respect to κ if there exists an ordering (renaming) κ : I → I
over the index set I = {1, . . . , |C|} such that χϕ is ordered
positive unate with respect to a′, where a′ = (a′1, . . . , a

′
|C|) =

(aκ(1), . . . , aκ(|C|)).

An OPU formula ϕ introduces a partial order over the
assignments for a that can drastically simplify the task of
finding a minimal UNSAT certificate. In fact, once the set
of variables a is ordered according to κ to obtain a′, the as-
signments over a′ can also be ordered based on their prefix
as in Definition 5.5. A similar scenario as the one in Fig-
ure 2 will then occur, where, in this case, u represents the
characteristic function χϕ, which evaluates to 1 on a subset
of vertices of the tree. It is according to this prefix-based
ordering and the resulting tree that we define a “minimal”
UNSAT certificate for ϕ.

Let us assume, for instance, that the assignment (1, 1, 1, 0)
is generated by SAT-Solve in Algorithm 4, but is found to
be infeasible by C-Solve. Then, an effective UNSAT certifi-
cate should maximally prune the search space of SAT-Solve
and minimize the amount of backtracking along the branches
of the tree. To find such a conflicting assignment, we must
look for the closest vertex to the root of the tree, e.g., the as-
signment (1, 0, 0, 0) in our example, such that the associated
convex set of constraints is still inconsistent. The lower the
vertex, the higher the number of discarded assignments from
the search tree. We observe that, since the number of zeros
in the assignments increases as we move backward towards
the root of the tree, a minimal certificate with respect to
the prefix order pictured in Figure 2 would usually produce
a small clause. However, such a clause does not necessarily
correspond, in general, to a minimal IIS for the associated
set of convex constraints in the sense of Definition 5.1.

Based on the discussion above, finding a minimal certifi-
cate for OPU formulas amounts to looking for the longest
prefix associated with a set of consistent constraints be-
fore an inconsistent constraint is reached along a path of
the tree. To formalize this objective, we proceed as fol-
lows. Given an OPU formula ϕ with respect to an or-
dering κ, let a′µ = (a′µ,1, . . . , a

′
µ,L) be the set of variables

in a′ = (aκ(1), . . . , aκ(|C|)) that are asserted by the valua-
tion µ(b, a) of SAT-Solve, taken in the same order as in
a′. We also denote as {(g′µ,1(x) � 0), . . . , (g′µ,L(x) � 0)} the
set of convex constraints in ϕ associated with the variables
a′µ. Then, for a constant δ ∈ Q+, we define the function

zeroPrefixδ : RL+ → N as:

zeroPrefixδ(s1, . . . , sL) = min k s.t.

k∑
i=1

|si| > δ.

Intuitively, for small δ, zeroPrefixδ returns the first
nonzero element of the sequence s = (s1, . . . , sL), and prac-
tically the length of its “zero prefix.” Using this function,
we can then look for sequences of slack variables that max-
imize the number of initial elements set to zero before the
first nonzero element is introduced, by casting the following
optimization problem:

Problem 1.

max
s1,...,sL∈R
x∈W⊆Rn

zeroPrefixδ(s1, . . . , sL)

s.t. g′µ,i(x) � si, i = 1, . . . , L

where W is the domain of real variables x and g′µ,i, for all
i, are defined as above. Problem 1 is a modified version of
a conventional feasibility problem, where convex constraints
are perturbed by adding slack variables si. By looking at
the longest prefix of zero slack variables, Problem 1 is able
to find the longest sequence of convex constraints that are
consistent before the first “stretched” inconsistent constraint
appears according to the ordering induced by κ. If the op-
timum prefix length is k∗, then k∗ is also the length of the
resulting UNSAT certificate.

A remaining drawback is the possible intractability of
Problem 1 whose objective function, basically counting the
number of zero elements in the prefix of a sequence, is non-
convex. It is, however, possible to still find the optimum k∗

from Problem 1 using a convex program. To state this result,
at the heart of our efficient decision procedure,we consider
formulas ϕ(b, x) such that the domain W ∈ Rn of its real
variables x is bounded. Under this assumption, we are guar-
anteed that there is always an upper bound to the minimum
sum of slack values that can make any conjunction of convex
constraints in ϕ feasible. We can define such a bound s̄ as
follows.

Definition 5.7. Let W ∈ Rn be a bounded convex set,
and {(g1(x) � 0), . . . , (g|C|(x) � 0)} the set of convex con-
straints in the monotone SMC formula ϕ. We define as s̄
the solution of the following convex optimization problem:

max
x∈W

min
s1,...,s|C|∈R

|C|∑
i=1

|si| s.t. gi(x) � si, i = 1, . . . , |C|

The bound s̄ can be easily pre-computed offline for a given ϕ.
Then, for a given tolerance δ ∈ Q+, we can use the following
problem to find the maximum length of the zero-prefix of a
sequence of slacks:

Problem 2.

min
s1,...,sL∈R
x∈W⊆Rn

L∑
i=1

|si|

s.t. g′µ,i(x) � si, i = 1, . . . , L

s

δ

(
i−1∑
k=1

|sk|

)
≤ |si| i = 2, . . . , L (7)

Problem 2 is a modified version of the SSF problem because
of the addition of constraints (7)3. However, we observe
3While constraints (7) are non-convex, they can translated into
linear constraints using standard transformations dealing with the
minimization of the sum of absolute values.

Algorithm 3
(cStatus, x, ϕce) = C-Solve.Prefix(µ,M, κ, δ)

1: s∗ := Solve-Problem2(µ,M, κ, δ);

2: if
∑L
i=1 s

∗
i ≤ δ then

3: cStatus = SAT;
4: return (cStatus, x∗, 1)
5: else
6: cStatus = UNSAT;
7: k∗ := zeroPrefixδ(s

∗
1 . . . s

∗
L);

8: ϕce :=
∨k∗
i=1 ¬a′µ,i;

9: return (cStatus, x∗, ϕce);

that, if the problem is feasible, constraints (7) become re-
dundant. Therefore, if the sum of slacks at optimum is zero
(in practice, the condition

∑L
i=1 |si| ≤ δ is satisfied), then

µ is indeed a valid assignment. If, instead, this is not the
case, constraints (7) induce an ordering over the non-zero
slack variables which can be used to generate the prefix-
based minimal certificate. It is therefore sufficient to solve
Problem 2, as established by the following result.

Theorem 5.8 (Prefix-Based Certificate). Let ϕ
be a OPU formula with respect to an ordering κ and de-
fined over a bounded real variable domain W. Let µ be a
satisfying assignment for the propositional abstraction ϕB,
δ ∈ Q+, and s ∈ R+, defined as in Definition 5.7, with
s ≥ δ. Let Problem 2 be the feasibility problem associated
with µ, s̄, and δ. Then, the following hold:
• If Problem 2 is feasible and x∗ is the optimum for x, then

([[b]]µ, x
∗) |= ϕ;

• If Problem 2 is infeasible and k∗ is the minimum index
such that s∗k > 0, then, the following clause:

ϕce :=

k∗∨
i=1

¬a′µ,i, (8)

is an UNSAT certificate for µ which is minimal with re-
spect to κ.

The prefix-based certificate generation procedure can then
implemented as in Algorithm 3. By Theorem 5.8 we can
then state the following guarantees of Algorithm 4 with the
generation of UNSAT certificates in Algorithm 3.

Proposition 5.9. Let ϕ be a monotone SMC formula
and δ ∈ Q+ a user-defined tolerance used in C-Solve.Check
in Algorithm 4 to accommodate numerical errors. Algo-
rithm 4 with the certificate from Algorithm 3 is δ-complete.

Overall, as summarized in Table 1, IIS-based certificates
are generally the shortest and most effective, but also the
most expensive to compute. IIS-based and SSF-based cer-
tificates can be used with any monotone SMC formula, while
prefix-based certificates are the most efficient to compute for
OPU formulas. As an example, OPU formulas can be used
to encode the runs of a finite-state transition system, which
would also form a tree, as in in Figure 2. Coupled with
continuous dynamics, this pattern arises in several systems,
including switched system, linear hybrid systems, piecewise
affine systems, and mixed logical dynamical systems [21].

6. RESULTS
We implemented all our algorithms in the prototype solver

SatEX. We use Z3 [10] as a SAT solver and Cplex [22] as

a convex optimization solver. To validate our approach, we
first compare the scalability of the proposed SMC procedure
with respect to state-of-art SMT and MIP solvers, such as
Z3 and Cplex, on a set of synthetically generated mono-
tone SMC formulas. We then demonstrate the performance
of SatEX and different UNSAT certificates on two hybrid
system problems that both generate SMC instances: secure
state estimation and robotic motion planning. All the exper-
iments were executed on an Intel Core i7 2.5-GHz processor
with 16 GB of memory. Cplex was configured to utilize
1,2,3, or 4 processor cores.

6.1 Scalability
To test the scalability of our algorithm, we generate SMC

problem instances as follows. We consider purely Boolean
problem instances from the 2014 SAT competition (applica-
tion track) [23] and selectively include Boolean clauses from
these instances to create SMC problems with an increas-
ing number of Boolean constraints, from 1000 to 130,000,
over a maximum number of 4,288 Boolean variables. We
then augment the Boolean instance with clauses of the form
¬bi ∨ hi(x) ≤ 0 where bi is a pre-existing Boolean variable
and hi is a randomly generated affine function. Affine con-
straints are all generated in such a way that the whole SMC
formula is always satisfiable. SatEx will then terminate
after at most one iteration.

Figure 3 (left) reports the execution time of SatEx as
the number of Boolean constraints in an SMC instance in-
creases for a fixed number of real variables. For instances
with a relatively small number of Boolean constraints (less
than 15,000), MIP techniques, based on branch-and-bound
and cutting plane methods, show a superior performance.
However, as the number of Boolean constraints increases,
the performance of SatEX, relying on SAT solving, exceeds
the one of MIP techniques by 4-5 orders of magnitude in
execution time. The performance gap between the lazy pro-
cedure of SatEX and Z3 is also observed to increase with
the number of Boolean constraints, and reach more than one
order of magnitude. On the other hand, when the number
of continuous variables in the affine constraints increases,
as shown on the right side of Figure 3, Z3 reaches a 600-s
timeout on problem instances with more than 1500 continu-
ous variables, while optimization-based algorithms show the
expected polynomial degradation, with SatEX running ap-
proximately twice as faster as MIP.

Next, we consider SMC formulas that are certified to be
unsatisfiable, since they are directly created using UNSAT
Boolean instances from the SAT 2014 competition, aug-
mented with linear constraints as above. As shown in Fig-
ure 4, again, when relying on SAT solving to detect unsat-
isfiability, SatEX runs faster by two orders of magnitude
with respect to MIP based techniques. Its performance is,
in this case, comparable with the one of Z3.

6.2 Application to Secure State Estimation
Given a set of p sensor measurements Y1, Y2, . . . , Yp out of

a linear dynamical system, the secure state estimation prob-
lem consists in reconstructing the state x of the dynamical
system even if up to k sensors are maliciously corrupted [14].
The sensor measurements are a function of the system state,
where

Yi =

{
Hix if sensor i is attack-free

Hix+ αi if sensor i is under attack

1 2 3 4 5 6 7 8 9

100

101

102

Test Case Number

E
xe

cu
tio

n
tim

e
(s

)

SATEX (SSF) CPLEX (1 core) CPLEX (4 cores) Z3

Figure 4: Execution time on UNSAT SMC instances

due to UNSAT Boolean constraints: the number of

Boolean clauses varies from 225 to 960, while the number

of real variables is fixed to 500.

and αi models the attack injection. It is possible to encode
the secure state estimation problem as an SMC instance by
introducing indicator variables bi that are assigned to 1 if
and only if the sensor is attacked. We therefore obtain the
following monotone SMC formula:

ϕ ::=

(
p∑
i=1

bi ≤ k

)
∧

p∧
i=1

(
¬bi → (‖Yi −Hix‖22 ≤ ν)

)
where the first constraint is a pseudo-Boolean predicate that
requires that no more than k sensors be under attack, while
the other constraints establish that the state x is linearly
related with the measurements in the case of attack-free sen-
sors, except for an error bounded by ν ∈ R+.

As shown in Figure 5, SatEX outperforms the MIP solver
by up to 1 order of magnitude as the number of sensors
(hence the number of Boolean variables and constraints) in-
creases. Moreover, IIS-based certificates are often not bet-
ter than SSF-based certificates, even if they are minimal,
because of the cost paid for constructing them. In all our
benchmarks, Z3 exceeds the 600-s timeout, possibly because
of the longer run times of the nonlinear real arithmetic the-
ory required by the quadratic constraints.

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
100

101

102

Number of sensors

E
xe

cu
tio

n
tim

e
(s

)

SATEX (SSF) CPLEX (2 core) CPLEX (4 cores) SATEX (IIS)

Figure 5: Execution time on instances of the secure

state estimation problem when the number of sensors

increase. Z3 exceeds a 600-s timeout in all benchmarks.

6.3 Application to Motion Planning
The reach-avoid problem examined in Section 2 reduces to

an OPU formula, as suggested by the ordering of the Boolean
variables associated with the different regions according to
the transition system in Figure 1. We can, therefore, exploit
our results on prefix-based UNSAT certificates.

Figure 6 shows the runtime performance of SatEX with
respect to a MIP solver on instances of the motion planning
problem. We assume that we operate with the linearized dy-
namics of a quadrotor (having 14 continuous states) moving

1E
3

5E
3

10
E

3
15

E
3

20
E

3
25

E
3

30
E

3
35

E
3

40
E

3
45

E
3

50
E

3
55

E
3

60
E

3
65

E
3

70
E

3
75

E
3

80
E

3
85

E
3

90
E

3
95

E
3

10
0E

3
10

5E
3

11
0E

3
11

5E
3

12
0E

3
12

5E
3

13
0E

3

10−3

10−2

10−1

100

101

102

103

Number of Boolean constraints

E
xe

cu
tio

n
tim

e
(s

)

SATEX (SSF)
CPLEX (1 core)
CPLEX (4 cores)

Z3

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

100

101

102

Number of real variables

E
xe

cu
tio

n
tim

e
(s

)

SATEX (SSF)
CPLEX (1 core)
CPLEX (4 cores)

Z3

Figure 3: Execution time on SMC problem instances, when the number of Boolean constraints increases for a fixed

number of 100 real variables (left side) and when the number of real variables increases for a fixed number of 7000

Boolean constraints (right side).

6 7 8 9 10 11 12 13 14 15

101

102

Workspace x-dimension in [m]

E
xe

cu
tio

n
tim

e
(s

)

SATEX (PREFIX) CPLEX (1 core) SATEX (IIS)

Figure 6: Execution time on a set of SMC instances for

the motion planning problem as the size of the workspace

increases.
in a 3-dimensional workspace. Moreover, we partition the
workspace into cubes of size 1m×1m×1m and randomly se-
lect some of them to be obstacles. We then keep fixed to 4 m
the workspace width and height and let its length increase
(along the x axis). This translates into increasing both the
number of Boolean and continuous variables in ϕ, since L
must also increase in order to reach the target. Consistently
with our previous observations, increasing the number of
Boolean variables directly maps into a larger performance
gap associated with prefix-based UNSAT certificates, which
outperform both the IIS-based and MIP-based approaches.

7. CONCLUSIONS
We demonstrated a procedure for determining the satis-

fiability of two special, yet common, types of logic formu-
las over Boolean and convex constraints. By leveraging the
strengths of both SAT solving and convex programming as
well as efficient conflict-driven learning strategies, our ap-
proach outperforms state-of-the-art SMT and MICP solvers
on problems with complex Boolean structure and a large
number of real variables. The proposed satisfiability mod-
ulo convex optimization scheme can then be used to build
effective and scalable decision procedures for problems in
hybrid system verification and control.

Acknowledgments
This work was partially sponsored by TerraSwarm, one of six
centers of STARnet, a Semiconductor Research Corporation pro-
gram sponsored by MARCO and DARPA, by the NSF project
ExCAPE: Expeditions in Computer Augmented Program Engi-
neering, and by the NSF award 1239085.

8. REFERENCES
[1] J. N. Hooker, “Logic, optimization, and constraint

programming,” INFORMS Journal on Computing, vol. 14,
no. 4, pp. 295–321, 2002.

[2] C. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli,
Satisfiability Modulo Theories, Chapter in Handbook of
Satisfiability. IOS Press, 2009.

[3] S. Ratschan, “Efficient solving of quantified inequality
constraints over the real numbers,” ACM Trans. Comput.
Logic, vol. 7, no. 4, pp. 723–748, 2006.

[4] S. Gao, J. Avigad, and E. M. Clarke, “δ-complete decision
procedures for satisfiability over the reals,” in Proc. Int. Joint
Conf. Automated Reasoning, 2012, pp. 286–300.

[5] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge Univesity Press, 2004.

[6] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and
SAT Modulo Theories: From an abstract
Davis–Putnam–Logemann–Loveland procedure to DPLL(T),”
J. ACM, vol. 53, no. 6, pp. 937–977, Nov. 2006.

[7] A. Cimatti et al., “Satisfiability modulo the theory of costs:
Foundations and applications,” in Proc. TACAS, 2010, pp.
99–113.

[8] Y. Li et al., “Symbolic optimization with SMT solvers,” in
ACM SIGPLAN Notices, vol. 49, no. 1, 2014, pp. 607–618.

[9] A. Bauer, M. Pister, and M. Tautschnig, “Tool-support for the
analysis of hybrid systems and models,” in Proc. of DATE,
2007.

[10] L. De Moura and N. Björner, “Z3: An efficient SMT solver,” in
Proc. Int. Conf. Tools and Algorithms for the Construction
and Analysis of Systems, 2008, pp. 337–340.

[11] M. Franzle et al., “Efficient solving of large non-linear
arithmetic constraint systems with complex Boolean structure,”
in JSAT Special Issue on SAT/CP Integration, 2007.

[12] S. Gao, S. Kong, and E. M. Clarke, “dReal: An SMT solver for
nonlinear theories over the reals,” 2013, vol. 7898, pp. 208–214.

[13] P. Nuzzo et al., “CalCS: SMT solving for non-linear convex
constraints,” in Proc. Formal Methods in Computer-Aided
Design, Oct. 2010, pp. 71–79.

[14] Y. Shoukry et al., “Sound and complete state estimation for
linear dynamical systems under sensor attack using
satisfiability modulo theory solving,” in Proc. American
Control Conference, 2015, pp. 3818–3823.

[15] Y. Shoukry et al., “Scalable lazy SMT-based motion planning,”
in Proc. Int. Conf. Decision and Control, 2016, pp. 6683–6688.

[16] E. Plaku and S. Karaman, “Motion planning with
temporal-logic specifications: Progress and challenges,” AI
Communications, no. Preprint, pp. 1–12.

[17] A. Pnueli, “The temporal logic of programs,” in FOCS, 1977,
pp. 46–57.

[18] M. Grant, S. Boyd, and Y. Ye, “Disciplined convex
programming,” in Global optimization. Springer, 2006, pp.
155–210.

[19] Y. Shoukry, P. Nuzzo, A. Sangiovanni-Vincentelli, S. Seshia,
G. Pappas, and P. Tabuada, “SMC: Satisfiability modulo
convex optimization,” ArXiv e-prints, 2017.

[20] J. W. Chinneck and E. W. Dravnieks, “Locating minimal
infeasible constraint sets in linear programs,” ORSA Journal
on Computing, vol. 3, no. 2, pp. 157–168, 1991.

[21] A. Bemporad and M. Morari, “Control of systems integrating
logic, dynamics, and constraints,” Automatica, vol. 35, 1999.

[22] (2012, Feb.) IBM ILOG CPLEX Optimizer. [Online]. Available:
www.ibm.com/software/integration/optimization/
cplex-optimizer/

[23] “The international SAT competitions web page.”

http://www.satcompetition.org/, accessed: 2016-10-01.

