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SMC: Satisfiability Modulo Convex Programming
Yasser Shoukry, Pierluigi Nuzzo, Alberto L. Sangiovanni-Vincentelli,

Sanjit A. Seshia, George J. Pappas, and Paulo Tabuada

Abstract—The design of cyber-physical systems (CPSs) re-
quires methods and tools that can efficiently reason about
the interaction between discrete models, e.g., representing the
behaviors of “cyber” components, and continuous models of
physical processes. Boolean methods such as satisfiability (SAT)
solving are successful in tackling large combinatorial search
problems for the design and verification of hardware and
software components. On the other hand, problems in control,
communications, signal processing, and machine learning often
rely on convex programming as a powerful solution engine.
However, despite their strengths, neither approach would work in
isolation for CPSs. In this paper, we present a new satisfiability
modulo convex programming (SMC) framework that integrates
SAT solving and convex optimization to efficiently reason about
Boolean and convex constraints at the same time. We exploit the
properties of a class of logic formulas over Boolean and nonlinear
real predicates, termed monotone satisfiability modulo convex
formulas, whose satisfiability can be checked via a finite number
of convex programs. Following the lazy satisfiability modulo
theory (SMT) paradigm, we develop a new decision procedure
for monotone SMC formulas, which coordinates SAT solving
and convex programming to provide a satisfying assignment or
determine that the formula is unsatisfiable. A key step in our
coordination scheme is the efficient generation of succinct infeasi-
bility proofs for inconsistent constraints that can support conflict-
driven learning and accelerate the search. We demonstrate our
approach on different CPS design problems, including spacecraft
docking mission control, robotic motion planning, and secure
state estimation. We show that SMC can handle more complex
problem instances than state-of-the-art alternative techniques
based on SMT solving and mixed integer convex programming.
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C
YBER-PHYSICAL systems (CPSs) result form the inte-

gration of computation and communication with physical

processes and its behaviors are defined by both cyber and

physical parts of the system [1]. CPSs subject to tight safety,

reliability, security, and cost requirements, are increasingly

being deployed in several areas, including transportation,

health-care, and infrastructure. These systems would dramat-

ically benefit from algorithmic techniques to enhance design

quality and productivity and enable autonomy under strong

guarantees of correctness and dependability [2]–[7]. However,

their complexity and heterogeneity pose several challenges to

design automation.

Because of their heterogeneous nature, analysis and design

of CPSs increasingly require methods and tools that can effi-

ciently reason about the interaction between discrete models,

e.g., used to describe embedded software components, and

continuous models used to describe physical processes. In

this respect, a central difficulty is the very different nature

of the tools used to analyze continuous dynamics (e.g., real

analysis) and discrete dynamics (e.g., combinatorics) as well

as solve constraint satisfaction problems involving contin-

uous and discrete variables. This difficulty is exacerbated

by complex, high-dimensional systems, where a vast dis-

crete/continuous space must be searched under constraints

that are often nonlinear. Methods that substantially rely on

discrete system abstractions, often obtained by partitioning the

continuous state space into polytopes, and automata-theoretic

approaches [7]–[11] are subject to the curse of dimensionality

and become usually impractical for systems with more than

five continuous states [12].

Boolean methods such as satisfiability (SAT) solving have

been successful in tackling large combinatorial search prob-

lems for the design and verification of hardware and software

systems [13]. SAT solvers are the reasoning engine behind

commercial verification and testing tools in the electronic

design automation industry. SAT has also been used in tools

for software verification and debugging, for example, indus-

trial verification of device drivers and static analysis. The

formulation of new SAT encodings has made SAT solvers

powerful engines for solving Boolean or discrete constraint

satisfaction problems from an increasingly wider range of

applications, from routing circuits to validating software mod-

els, from scheduling and planning in artificial intelligence to

synthesizing consistent network configurations.

On the other hand, problems in control, communications,

signal processing, data analysis and modeling, and machine

learning often rely on convex programming (CP) as a powerful

solution engine [14]. Convex optimization problems can be

solved very efficiently today, based on a mature theory. The

solution methods have proved to be reliable enough to be
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Fig. 1. Pictorial representation of the capabilities of constraint programming
and optimization techniques as well as the satisfiability modulo convex
programming approach.

embedded in computer-aided design or analysis tool, or even

in real-time reactive or automatic control systems. Moreover,

whenever the original problem is not convex, convex problems

can still provide the starting point for other local optimiza-

tion methods, or computationally efficient approximations via

constraint or Lagrangian relaxations. However, despite their

strengths, neither SAT solving nor CP would be effective

in CPS design, if used in isolation. We need methods and

computational tools that blend concepts from both of them.

Satisfiability modulo theory (SMT) solving has emerged

over the years as a paradigm for extending the reasoning

capabilities of SAT solvers to address richer constraint sat-

isfaction problems. Modern SMT solvers [15] can efficiently

find satisfying valuations of very large formulas with complex

Boolean structure, including combinations of atoms from var-

ious decidable theories, such as lists, arrays, bit vectors, linear

integer arithmetic, and linear real arithmetic. SMT solvers usu-

ally implement constraint programming techniques [16] and

logic-based inference methods such as domain reduction and

constraint propagation to accelerate the search. However, while

SMT solving for generic nonlinear theories over the reals

is undecidable [17], [18], constraint programming techniques

can still be computationally expensive for decidable instances

with large and expressive formulas. Algorithms and tools that

can address combinations of Boolean constraints and useful

fragments of the nonlinear theories with solid guarantees of

correctness and scalability are highly needed.

Optimization-based approaches, such as mixed integer lin-

ear programming (MILP) and mixed integer convex program-

ming (MICP), have shown to be capable of solving for discrete

and continuous convex constraints at the same time while

striking a good balance between expressiveness and compu-

tational efficiency [19]–[21]. MICP-based approaches encode

a logic combination of Boolean and convex constraints into

a conjunction of mixed integer convex constraints and solve

it by leveraging numerical algorithms for convex optimiza-

tion in combination with branch-and-bound and cutting-plane

methods. State-of-the-art solvers show superior empirical per-

formance when handling large numbers of hybrid constraints

and variables. They, however, tend to become inefficient

when the Boolean structure of the problem becomes complex.

Moreover, encoding some logic operations, such as disjunction

and implication, into mixed integer constraints usually requires

approximations and heuristic techniques, such as the well-

known “big-M” method [16], which may eventually affect the

correctness of the solution.

In this paper, we rethink the connection between Boolean

methods and convex optimization toward a novel, scalable

framework for reasoning about the combination of discrete

and continuous dynamics that can address the complexity

of CPS applications. As pictorially sketched in Figure 1,

SAT solving and CP have shown superior performance in

handling, respectively, complex Boolean structures and large

sets of convex constraints. While attempts at combining logic-

based inference with optimization trace back to the 1950s

and have been the subject of increasing research activity [16],

devising a robust and widely acceptable scheme combining the

advantages of both approaches is still largely an open issue.

We address this challenge by focusing on the satisfiability

problem for a class of formulas over Boolean variables and

convex constraints. We show that a special type of logic for-

mulas, termed monotone satisfiability modulo convex (SMC)

formulas, is the most general class of formulas over Boolean

and nonlinear real predicates that can be solved via a finite

number of convex programs. For monotone SMC formulas,

we develop a new procedure, which we call satisfiability

modulo convex programming, that uses a lazy combination of

SAT solving and convex programming to provide a satisfying

assignment or determine that the formula is unsatisfiable. As

in the lazy SMT paradigm [15], [22], a classic SAT solving

algorithm interacts with a theory solver. The SAT solver

efficiently reasons about combinations of Boolean constraints

to suggest possible assignments. The theory solver only checks

the consistency of the given assignments, i.e., conjunctions of

theory predicates, and provides the reason for the conflict,

an UNSAT certificate, whenever inconsistencies are found.

By leveraging the efficiency and formal guarantees of state-

of-the-art constraint solving algorithms in both the Boolean

and convex analysis domains, SMC strives to alleviate the

scalability issues associated with the discretization of the

continuous variables.

Checking the feasibility of a set of convex constraints can

be performed efficiently, with a complexity that is polynomial

in the number of constraints and real variables. A key step

is, however, the generation of compact certificates to support

conflict-driven learning and decrease the number of iterations

between the SAT and the theory solver. We therefore pro-

pose a suite of algorithms that can trade complexity with

the minimality of the generated certificates. Remarkably, we

show that a minimal infeasibility certificate can be generated

by simply solving one convex program for a sub-class of

monotone SMC formulas, namely prefix-ordered monotone

SMC (POM) formulas, that present additional monotonicity

properties. Since monotone SMC and POM formulas appear

frequently in practical applications, we can then build and

demonstrate effective and scalable decision procedures for

several problems in hybrid system verification and control. Ex-

perimental results show that our approach outperforms state-

of-the-art SMT and MICP solvers on problems with complex

Boolean structure and a large number of real variables.
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The rest of the paper is organized as follows. After an

overview of the related work in Section II, Section III in-

troduces a representative set of CPS design problems, which

will be used throughout the paper to illustrate the relevance

of our approach. Section IV presents the formal definition

of monotone SMC formulas and their properties. Further,

it details how the reference design problems in Section III

can be encoded into satisfiability problems for monotone

SMC formulas. Section V describes the overall SMC solution

strategy, while Section VI develops algorithms to find com-

pact infeasibility certificates. Finally, Section VII discusses

the validation of our techniques and their application to the

reference design problems, while Section VIII concludes with

a summary of our work.

II. RELATED WORK

Our algorithm follows the lazy SMT solving paradigm [15],

where a classic David-Putnam-Logemann-Loveland (DPLL)-

style SAT solving algorithm interacts with a theory solver [22].

An SMT instance is a formula in first-order logic, where

some function and predicate symbols have additional interpre-

tations related to specific theories, and SMT is the problem

of determining whether such a formula is satisfiable. Our

focus is, therefore, on feasibility problems and on leveraging

optimization methods to accelerate the search for satisfying

assignments. In this respect, our work differs from other re-

search efforts such as the “optimization modulo theories” [23]

or “symbolic optimization” [24] approaches, which propose

SMT-based techniques to solve optimization problems.

The ABSOLVER tool [25] adopts a similar lazy SMT

approach as in our work, by leveraging a generic nonlinear op-

timization tool to solve Boolean combinations of polynomial

arithmetic constraints. However, generic nonlinear optimiza-

tion techniques may produce incomplete or possibly incorrect

results, due to their “local” nature, explicitly requiring upper

and lower bounds to all the real variables. The Z3 [26] solver

can also provide support for nonlinear polynomial arithmetic,

while possibly incurring high computational costs [27]. The

ISAT algorithm builds on a unification of SAT-solving and

interval constraint propagation (ICP) [28] to efficiently address

arbitrary smooth, possibly transcendental, functions. The inte-

gration of SAT solving with ICP is also used in DREAL [29]

to build a δ-complete decision procedure which solves SMT

problems over the reals with nonlinear functions, such as poly-

nomials, sine, exponentiation, or logarithms, but with limited

support for logic combinations of Boolean and real constraints.

Contrary to the previous approaches, by targeting the special

classes of convex constraints and monotone SMC formulas, we

are able to leverage the efficiency, robustness, and correctness

guarantees of state-of-the-art convex optimization algorithms.

Moreover, we can efficiently generate UNSAT certificates that

are more compact, or even minimal.

Our results build upon the seminal work of CALCS, which

pioneered the integration of SAT solving and optimization

algorithms for convex SMT formulas [30]. CALCS also

leverages conservative approximations of reverse (negated)

convex constraints to implement a semi-decision procedure for

Branch-and-Cut SMC
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Fig. 2. Comparison between mixed integer convex programming (MICP)
based techniques and the SMC approach.

non-monotone convex SMT formulas, and has been used on

benchmarks from bounded model checking of hybrid automata

and static analysis of floating-point software. Differently from

CALCS, we focus on the satisfiability problem for monotone

SMC formulas, which do not require approximation techniques

to handle negated convex constraints and are rich enough to

capture several problem instances in hybrid system control.

For SMC formulas, we provide formal correctness guarantees

for our algorithms in terms of δ-completeness [18]. Moreover,

we propose new algorithms to generate UNSAT certificates

that improve on the efficiency or minimality guarantees of the

previous ones, which were based on duality theory and the

sensitivity of the objective of a convex optimization problem

to its constraints.

We have recently developed specialized SMT-based algo-

rithms for applications in secure state estimation, IMHOTEP-

SMT [31]–[34], and robotic motion planning [35], [36]. We

show that the approach detailed in this paper subsumes these

results. A preliminary version of the results in this paper

appeared in our previous publications [36], [37], without the

proofs of the formal guarantees of our algorithms. In this

paper, we discuss and prove in detail all the results used in

our previous work, and demonstrate our approach on a new

example, an Autonomous spacecraft Rendezvous, Proximity

Operations, and Docking (ARPOD) problem, which has been

recently proposed as an exemplar benchmark [38] for the

development and validation of hybrid systems analysis and

control techniques.

Finally, our decision procedure encompasses mixed integer

convex programming (MICP) based techniques. In fact, we

show that any feasibility problem on MIC constraints can

be posed as a satisfiability problem on a monotone SMC

formula. A comparison between the solution strategies adopted

by MICP and SMC is suggested in Figure 2. SMC exploits

abstraction of convex constraints and conflict-driven learning,

together with the structure of monotone SMC formulas, to

directly reduce the search space and decompose the origi-

nal problem into a sequence of simpler convex programs.

Conversely, MILP-based approaches leverage branching and

cutting planes to generate a sequence of simpler continuous

or Lagrangean relaxations of the original problem and its
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Fig. 3. Schematic of a spacecraft docking maneuver subject to LOS
constraints with snapshots of the chaser spacecraft at three different time
instants.

Boolean constraints. There are analogies in the way progress

is made in the two approaches. Cutting planes accelerate the

search by cutting the continuous search space. Similarly, UN-

SAT certificates accelerate the search by pruning the discrete

search space. Branching is used in MICP solvers to generate

increasingly better relaxations. Similarly, SAT solving is used

in SMC to generate increasingly better Boolean assignments.

Both techniques decompose the solution of a complex hybrid

problem into solving a sequence of simpler ones. However, the

number of variables and constraints in each convex problem

instance is usually much smaller in the SMC approach, while

it may become prohibitively high in MICP-based approaches,

sometimes on the order of the number of all the Boolean and

real variables and constraints of the original problem. Overall,

while an MICP formulation can execute faster on problems

with simpler Boolean structure, our algorithms outperform

MICP-based techniques on problems with large numbers of

Boolean variables and constraints.

III. MOTIVATING EXAMPLES

We introduce a representative set of CPS design problems

that will be used to illustrate the approach in this paper,

showing how estimation and control design problems arising

in different contexts can be formulated and efficiently solved

within the SMC framework.

A. A Spacecraft Docking Mission

The realization of autonomous spacecraft that can operate

independently of human control across a number of commer-

cial, civil, and military missions and under a wide variety

of operating conditions has attracted significant attention in

recent years. A key challenge in this context is the autonomous

navigation and control of the motion of one spacecraft relative

to another spacecraft, including docking of two spacecraft on-

orbit. This is an indispensable component of several missions,

such as manned spaceflight involving the on-orbit transfer

of personnel and resupply missions providing material for

on-orbit personnel, assembly, servicing, and repair. An Au-

tonomous spacecraft Rendezvous, Proximity Operations, and

Docking (ARPOD) problem has been recently proposed as an

exemplar benchmark [38] for the development and validation

of hybrid systems analysis and control techniques.

As shown in Figure 3, an ARPOD mission typically consists

of a sequence of phases based on the distance between a target

Rendezvous (1)

!̇ = $%&'(),+)

- ./0 = -1 , ! ./0 ∈ 3456

0 ≤ . ≤ ./0
-1 ≤ - ≤ -9

Docking (2)

. = 0	

- = -9

Docked (3)

!̇ = $%&;(),+)

- .<0 = 0, ! .<0 = !1=>?@1

	.<0 ≤ .@, ! ∈ 3456,

./0 ≤ . ≤ .<0,0 ≤ - ≤ -1

!̇ = $%&A(),+)

! .B0 = !C@D=>EFG=H
	.B0 ≤ .0

.<0 ≤ . ≤ .B0

Fig. 4. Hybrid system representation of the Rendezvous, Proximity Opera-
tions, and Docking (ARPOD) mission.

spacecraft, which is passive or station-keeping, and a chaser

spacecraft, which actively controls the maneuvers. In the

rendezvous phase, the chaser approaches the target, typically

in a range of 10 km to 100 m of separation. The docking

phase describes the final maneuvers executed to engage the

docking ports and covers the range from 100 m to 0 m.

Finally, the docked phase describes the control of the rigidly

attached spacecraft pair. In all phases, the goal is to minimize

the amount of fuel or propellant consumed, since this directly

impacts the spacecraft lifetime.

We assume that the chaser must reach a space station

module (target) and transport it to an assembly location before

a predefined mission end time. The mission lends itself to a

natural description in terms of a hybrid system, as shown in

Figure 4. For a fixed horizon L, the controller design problem

translates into finding a system trajectory (sequence of states

of length L) that brings the chaser from the initial point to

the target and then to the assembly location, while satisfying

a set of mission constraints.

The mission constraints consist of a combination of Boolean

and continuous constraints that are convex. We assume that

the continuous dynamics in each hybrid system mode i are

discretized based on the sampling time tis. By leveraging

encoding techniques from bounded model checking [39], a

set of Boolean constraints can capture the transition relation

between modes. We introduce a Boolean variable bik for each

mode i and time k such that bik is true if and only if the system

is in mode i at time k. We require that the system be only in

one mode at each time. Moreover, if the system is in mode i
at time k, it can only stay in mode i or transition to a direct

successor mode at time k + 1.

Additionally, in each mode, the continuous state of the

system, representing the position and velocity of the chaser, is

subject to a set of linear, time-invariant, difference equations

describing the translational motion of the chaser before and

after docking in a suitable coordinate frame. The control input

at any point in time is also bounded by the maximum thrust

that can be produced in each of the axial directions. Both the

system dynamics and the control bounds can be represented

by sets of linear constraints on continuous variables that must

hold in all modes.

Finally, there are continuous constraints that are specific to

each phase of the mission. The chaser begins its maneuvers
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workspace (right).

in Phase 1 while its relative displacement ρ from the target

satisfies ρ0 ≥ ρ ≥ ρd, where ρ0 is the initial displacement,

within 10 km, and ρd = 100 m. Moreover, Phase 1 must end

in the line-of-sight (LOS) of the sensors available for docking

at a distance equal to ρd.

After the chaser moves to a position for which ρ < ρd,

Phase 2 is initiated, in which the chaser spacecraft attempts

to reduce ρ to zero while remaining in the LOS region and

maintaining a slow velocity to reduce impact forces upon

docking. The sensing and control frequency may increase in

this phase, which translates into a smaller sampling time and

a different discretization of the dynamics. The LOS constraint

can be captured as either a nonlinear cone constraint, as in

Figure 3 or a linear pyramid constraint. The upper bound on

the velocity can be specified by a nonlinear ℓ2-norm constraint

or a linear ℓ∞-norm constraint. In all cases, these constraints

are convex. In Phase 2 the chaser must also dock to the target

before the eclipse time.

Once the chaser spacecraft docks (i.e., ρ = 0 m), the

spacecraft pair enters Phase 3, where the joint assembly must

move to the relocation position. The constraints in this phase

require that the assembly reach the relocation spot by the

mission end time.

B. Robotic Motion Planning

While seemingly addressing a purely continuous problem,

developing algorithmic techniques for robotic motion plan-

ning actually requires reasoning about the tight integration

of discrete abstractions (as in task planning) with contin-

uous motions (motion planning) [40]. Task planning relies

on high-level specifications of temporal goals that are most

conveniently captured by logics such as Linear Temporal

Logic (LTL) [41]. Motion planning deals, instead, with com-

plex geometries, motion dynamics, and collision avoidance

constraints that can only be accurately captured by contin-

uous models. Ideally, we wish to combine effective discrete

planning techniques with effective methods for generating

collision-free and dynamically-feasible trajectories to satisfy

both the dynamics and task planner constraints. This is, indeed,

possible within the SMC framework.

For simplicity, we discuss the basic reach-avoid problem,

which is the foundation of more complex motion planning

problems [35]. However, our approach extends to multi-robot

motion planning from generic LTL specifications [36]. We

assume a discrete-time, linear model of the robot dynamics

and a description of a workspace in terms of a set of obstacles

and a target region. The goal is to construct a trajectory, and

the associated control strategy, that steers the robot from its

initial point to the target while avoiding obstacles. Further, as

conveniently done in the context of task planning, we consider

an abstraction of the workspace in terms of a set of regions, as

shown in Figure 5 (left). We assume that regions and obstacles

are described by polyhedra and captured by linear constraints

in the state variables of the robot, including its coordinates in

the workspace. For a fixed horizon L, the controller design

problem translates into finding a sequence of length L of

regions (discrete plan) that brings the robot from the initial

point to the target and is compatible with the continuous

dynamics.

As in the ARPOD mission example, the problem constraints

consist of a combination of Boolean and convex constraints.

The adjacency relation between regions can be captured via a

transition system as in Figure 5 (right). A valid trajectory for

the robot can then be represented by a run of the transition

system. Let bki be a Boolean variable that evaluates to true if

and only if the robot is in region i at time k. We can then

encode the transition relation between regions via a set of

Boolean constraints. Convex constraints can instead be used

to capture the robot dynamics, the upper bound on the feasible

magnitude (e.g., ℓ2- or ℓ∞-norm) of the control input at time

k, and the constraint that the state at time k must belong to

region i if bki is true.

C. Secure State Estimation

The detection and mitigation of attacks on CPSs is a

problem of increasing importance. In these systems, the in-

creased sophistication often comes at the expense of increased

vulnerability and security weaknesses. An important scenario

is posed by a malicious adversary that can arbitrarily corrupt

the measurements of a subset of sensors in the system. Because

sensor measurements are used to generate control commands,

corrupted measurements can lead to corrupted commands, thus

critically affecting the physical process under control. One

way of counteracting these attacks is to attempt at estimating

the state of the underlying physical system from a set of

noisy and adversarially-corrupted measurements, so that it can

be used by the controller. We call this problem secure state

estimation [31].

Even if the physical system has only continuous dynamics,

secure state estimation is intrinsically a combinatorial problem,

which has been traditionally addressed either by brute force

search, suffering from scalability issues, or via convex relax-

ations, using algorithms that can terminate in polynomial time

but are not necessarily sound. However, as for the problems

in Section III-A and III-B, this problem is also amenable to

an exact formulation and efficient solution techniques within

the SMC framework [37].

We focus on linear dynamical systems and model the attack

as a sparse vector added to the measurement vector. The entries

corresponding to unattacked sensors are null while sensors

under attack are corrupted by non-zero signals. We make no

assumptions regarding the magnitude, statistical description,
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or temporal evolution of the attack vector. Given a set of p
sensor measurements taken over a time window, the secure

state estimation problem consists in reconstructing the state

of the dynamical system even if up to k sensors (k ≤ p) are

maliciously corrupted.

As in the other examples in this section, it is possible to

express the problem constraints via a combination of Boolean

and convex constraints. The available information on the

sensors under attacks can be encoded by introducing, for each

sensor i, a Boolean variable bi which evaluates to true if and

only if the sensor is attacked. Boolean constraints can then be

formulated to require that no more than k sensors be under

attack. Convex constraints can be added to require that the

state be linearly related with the measurements in the case of

attack-free sensors, except for a bounded error accounting for

modeling and measurement errors.

Overall, while relating to substantially different contexts, the

estimation and control design problems in this section share

the same underlying structure. In Section IV, we show that

these problems can all be captured as satisfiability problems

for a conjunction of logic clauses, possibly including pseudo-

Boolean predicates (e.g., cardinality constraints), and where

some of the literals are convex constraints. We call such a

formula a monotone SMC formula, since none of the convex

constraints are negated. In the following, we start by defining

the syntax and semantics of SMC formulas and then detail

the translation of the design problems in this section into

monotone SMC formulas.

IV. SATISFIABILITY MODULO CONVEX FORMULAS

A. Notation

We denote with b = (b1, b2, . . . , bm) the set of Boolean vari-

ables in a formula, with bi ∈ B, and with x = (x1, x2, . . . , xn)
the set of real-valued variables, where xi ∈ R. When not

directly inferred from the context, we adopt the notation

ϕ(x, b) to highlight the set of variables over which a formula

ϕ is defined. A valuation µ is a function that associates each

variable in b and x, respectively, to a truth value in B and a

real value in R. ⊤ and ⊥ denote, respectively, the Boolean

values true and false, while [[b, x]]µ ∈ Bm × Rn denotes the

values assigned to each variable in b and x by µ. We also say

that variable bi is asserted if [[bi]]µ = ⊤.

A set C is convex if the line segment between any two

points in C lies in C, i.e., if for any x1, x2 ∈ C and any θ
with 0 ≤ θ ≤ 1, we have θx1 + (1 − θ)x2 ∈ C. A function

f : Rn → R is termed convex if its domain D is a convex set

and if for all x, y ∈ D, and θ with 0 ≤ θ ≤ 1, we have

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y). (1)

Geometrically, this inequality means that the chord from x to

y lies above the graph of f [14]. As a special case, when

(1) always holds as an equality, then f is affine. All linear

functions are also affine, hence convex.

A function f : Rn → R with domain D is closed when,

for all α ∈ R, the sublevel set {x ∈ D|f(x) ≤ α} is closed

or, equivalently, the set {(x, s) ∈ Rn+1|x ∈ D, f(x) ≤ s} is

closed.

A convex constraint is a constraint of one of the following

forms: f(x) < 0, f(x) ≤ 0, or h(x) = 0, where f(x) and h(x)
are convex and affine (linear) functions, respectively, of their

real variables x ∈ D ⊆ Rn, D being a convex set. In what

follows, we will compactly denote a generic convex constraint

as g(x)⊳ 0. A convex constraint is associated with a set C =
{x ∈ D : g(x) ⊳ 0}, i.e., the set of points in the domain of

the convex function g that satisfy the constraint. The set C
is also convex1. We further denote the negation of a convex

constraint, expressed in the form f(x) ≥ 0 (f(x) > 0), as a

reverse convex constraint. A reverse convex constraint is, in

general, non-convex and so is its satisfying set.

To be able to capture linear constraints on Boolean variables

in a compact way, we also use pseudo-Boolean predicates. A

pseudo-Boolean predicate is an affine constraint over Boolean

variables with integer coefficients.

B. Syntax and Semantics

We represent SMT formulas over convex constraints to

be quantifier-free formulas in conjunctive normal form, with

atomic propositions ranging over propositional variables and

arithmetic constraints on (closed) convex functions [30]. We

call this formulas Satisfiability Modulo Convex (SMC) formu-

las.

Definition IV.1 (SMC Formulas). An SMC formula is any

formula that can be represented using the following syntax:

formula ::= {clause ∧}∗clause

clause ::= ({literal ∨}∗literal)| pBool predicate

literal ::= bool var | ¬bool var | ⊤ | ⊥ |

conv constraint | ¬conv constraint
(2)

conv constraint ::= equality | inequality

equality ::= affine function = 0

inequality ::= convex function relation 0

relation ::= < | ≤

In the grammar above, bool var denotes a Boolean

variable, pBool predicate a pseudo-Boolean predicate, and

affine function and convex function denote affine and convex

functions, respectively. We further assume that the convex

functions and their domains are closed. We rely on the

disciplined convex programming approach [14], [42] as an

effective method to specify the syntax of convex constraints

out of a library of atomic functions and automatically ensure

the convexity of a constraint.

Formulas are interpreted over valuations µ (i.e., [[b, x]]µ ∈
Bm ×Rn). A formula ϕ is satisfied by a valuation µ (µ |= ϕ)

if and only if all its clauses are satisfied, that is, if and only if

at least one literal is satisfied in any clause. A Boolean literal

l is satisfied if [[l]]µ = ⊤. The equality constraint h(x) = 0
is satisfied when the equality h([[x]]µ) = 0 holds between the

1In fact, given a representation of the convex domain D as a convex
constraint (d(x) ≤ 0), we can directly account for the domain by
directly embedding it into the expression of the convex constraint,
e.g., by defining (g̃(x)⊳ 0) = (g(x)⊳ 0) ∧ (d(x) ≤ 0).
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real numbers h([[x]]µ) and 0. The same notion of satisfaction

applies to the inequalities f(x) < 0 and f(x) ≤ 0, using the

standard interpretation of the ordering relations over the reals.

SMC formulas require, in general, the solution of non-

convex feasibility problems to find a model, i.e., a satisfying

assignment. To see this, consider, for instance, the formula:

b∧ (x21+x
2
2− 2x1− 1 ≤ 0)∧

(

¬b ∨ (x21 + x22 − 1 ≥ 0)
)

(3)

where the constraint (x21 + x22 − 1 ≥ 0), defining the feasible

set, is non-convex. We are, however, interested in formulas

for which a model can always be found by only solving one

(or more) convex feasibility problems. This is the case for

monotone SMC formulas, defined as follows.

Definition IV.2 (Monotone SMC Formula). A monotone SMC

formula is any formula that can be represented using the

following syntax:

formula ::= {clause ∧}∗clause

clause ::= ({literal ∨}∗literal)| pBool predicate

literal ::= bool var | ¬bool var | ⊤ | ⊥ |

conv constraint (4)

conv constraint ::= equality | inequality

equality ::= affine function = 0

inequality ::= convex function relation 0

relation ::= < | ≤

Monotone SMC formulas can only admit convex con-

straints as theory atoms. Differently from generic (non-

monotone) SMC formulas, reverse convex constraints, such as

(x21 + x22 − 1 ≥ 0) in (3), are not allowed. The monotonicity

property is key to guarantee that a model can always be

found by solving one (or more) optimization problems that

are convex, as we further discuss below.

Aiming at a scalable solver architecture, we exploit efficient

numerical algorithms based on convex programming to decide

the satisfiability of convex constraints and provide a model

when the constraints are feasible. However, convex solvers

usually perform floating point (hence inexact) calculations,

although the bound on the numerical error can be made

very small. Therefore, to provide correctness guarantees for

our algorithms, we resort to notions of δ-satisfaction and

δ-completeness similar to the ones previously proposed by

Gao et al. [18], which we define below for generic SMC

formulas.

Definition IV.3 (δ-Relaxation). Given an SMC formula ϕ, let

|C| be the number of convex constraints in ϕ and δ ∈ Q+∪{0}
any non-negative rational number δ. We define a δ-relaxation

of ϕ as a formula obtained by replacing any convex constraints

of the forms fi(x) < 0, fi(x) ≤ 0, and hj(x) = 0 in ϕ with

perturbed versions fi(x) ≤ δi and |hj(x)| ≤ δj , where δk ∈

Q+∪{0} for all k ∈ {1, . . . , |C|}, and such that
∑|C|

k=1 δk ≤ δ.

Definition IV.4 (δ-Satisfaction). Given an SMC formula ϕ and

δ ∈ Q+, we say that ϕ is δ-SAT if there exists a δ-relaxation

of ϕ that is satisfiable.

We simply say that ϕ is SAT when there is no ambiguity

about the choice of δ. If ϕ is satisfiable, then any δ-relaxation

of ϕ is satisfiable for all δ ∈ Q+. The opposite is, however,

not true. In fact, depending on the value of δ, ϕ and its δ-

relaxation can be made, respectively, false and true at the same

time. When this happens, we admit both the SAT and UNSAT

answers. This outcome is acceptable in practical applications,

since small perturbations capable of modifying the truth value

of a formula usually denote lack of robustness either in the

system or in the model. Finally, we say that an algorithm is

δ-complete if it can correctly solve the satisfiability problem

for an SMC formula in the sense of Definition IV.4.

We can determine the δ-satisfaction of an SMC formula

and the δ-completeness of our algorithms, in that we lever-

age results from convex optimization theory and state-of-

the-art convex optimization algorithms [14] that can control

the suboptimality of a solution, and therefore the accuracy

of the result. In particular, the following proposition is a

reformulation of a classical result on the convergence of the

projected gradient method [43], [44] for optimization of a

convex function over a convex, closed, and non-empty set.

Proposition IV.5. Given the convex optimization problem

min f0(x) s.t. x ∈ C (5)

where f0 : Rn → R is convex, C ⊆ Rn is a closed, convex,

non-empty set, and f0 is continuously differentiable on C
that achieves its optimum value p∗ on some x∗ ∈ C, i.e.,

f(x∗) = p∗. If x(k), k = 0, 1, . . ., is a sequence of iterates

generated by a projected gradient method with appropriate

step size selection [43], [44], then x(k) is guaranteed to

converge to an optimal solution, i.e., for all ǫ ∈ R+, there

exists kǫ > 0 such that, for all k ≥ kǫ, f0(x
(k))−p∗ ≤ ǫ holds,

that is, the kǫ-th iterate provides an ǫ-suboptimal solution

of (5).

The convergence result of Proposition IV.5 is stated under

the assumption of infinite precision computation. For finite

precision computation, such as floating point computation, ǫ
cannot be made arbitrarily small. For example, ǫ must be larger

than the machine precision ǫmach [45], [46], which is typically

of order 10−16 in double precision computer arithmetic. In

general, results from roundoff-error analysis of iterative nu-

merical methods [45], [46] guarantee that convergence is still

achieved in the sense of Proposition IV.5 for all ǫ ≥ ǫmin,

where ǫmin > 0 is a linear function of ǫmach that (weakly)

depend on the problem instance. Similarly, δ in Definition IV.4

cannot be made arbitrarily small; in what fallows, we assume

that δ is bounded below by an appropriate constant δmin > 0.

Proposition IV.5 provides sufficient conditions for the

convergence of a numerical optimization method to an ǫ-
suboptimal solution. A projected gradient method may not

be efficient, in general, for constrained convex problems such

as (5). However, similar guarantees can also be obtained for

other methods, such as the barrier method [14], which, to-

gether with the broader family of interior point methods, is the

cornerstone of state-of-the-art convex optimization routines.

For example, it is possible to provide theoretical bounds to

the number of steps needed by Newton’s method to solve a
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convex optimization problem as well as the number of steps

required to reach a given precision [14], [45].

C. Properties of Monotone SMC Formulas

Monotone SMC formulas have the desirable property that

the corresponding satisfiability problem can always be solved

via a finite set of convex feasibility problems. To show this, we

introduce the following proposition and the related definitions

of Boolean abstraction and monotone convex expansion of a

convex formula.

Definition IV.6 (Monotone Convex Expansion). Let ϕ be an

SMC formula, C be the set of convex constraints, appearing

in ϕ, and |C| its cardinality. We define the propositional

abstraction of ϕ to be the formula ϕB obtained from ϕ by

replacing each convex constraint with a Boolean variable ai,
i ∈ {1, . . . , |C|}. We further define the monotone convex

expansion of ϕ to be the formula ϕ′ defined as:

ϕ′ = ϕB ∧

|C|
∧

i=1

(ai → (gi(x)⊳ 0)) , (6)

where (gi(x) ⊳ 0) denotes a convex constraint, appearing in

ϕ, as defined in Section IV-A.

Proposition IV.7. Let ϕ′ be the monotone convex expansion of

a monotone SMC formula ϕ, defined as in (6), where ϕB is the

propositional abstraction of ϕ. Then, the following properties

hold:

1) ϕ and ϕ′ are equisatisfiable, i.e., if (b∗, x∗, a∗) is a model

(a satisfying assignment) for ϕ′, then (b∗, x∗) is a model

for ϕ; if ϕ′ is unsatisfiable, then so is ϕ;

2) any Boolean assignment for ϕB turns ϕ′ into a conjunction

of convex constraints;

3) the satisfiability problem for ϕ′, hence ϕ, can always be

cast as the feasibility problem for a finite disjunction of

convex programs.

Proposition IV.7 directly follows from the monotonicity of

ϕ. In preparation for the proof, we introduce the following

definition and lemma.

Definition IV.8 (Monotone Formula). A propositional formula

ϕB is monotone in its literal l if the literal l is always positive

(i.e., without negations).

For a monotone formula it is straightforward to show the

following property.

Lemma IV.9. Let ϕB be a propositional formula monotone in

the literal l and ν be a model for ϕB . If νl is the assignment

obtained by ν by asserting l and by keeping unaltered the

truth value assigned to the other propositions, then νl is also

a model for ϕB , i.e., νl |= ϕB .

We are now ready to prove Proposition IV.7.

Proof (Proposition IV.7). 1) Formula ϕ is equisatisfiable to a

formula ϕ′′ constructed as follows:

ϕ′′ = ϕB ∧

|C|
∧

i=1

(ai → gi(x)⊳ 0) ∧ (¬ai → gi(x) ⋪ 0) . (7)

Moreover, because ai is true if and only if (gi(x) ⊳ 0) is

satisfied in (7), there is a one-to-one correspondence between

the models of ϕ and the ones of ϕ′′. Since ϕ′′ includes all the

clauses in ϕ′, we conclude that, if ϕ′ is unsatisfiable, then ϕ′′,

hence ϕ, is also unsatisfiable.

On the other hand, let (b∗, x∗, a∗) be a model for ϕ′.

Since ϕ is monotone SMC, ϕB is monotone in the ai
(Definition IV.8). Then, it is always possible to construct

a new model (b∗, x∗, a∗∗) for ϕ′′, such that a∗∗i is true if

(gi(x
∗) ⊳ 0) is satisfied, and false otherwise. In fact, such

a procedure can only increase the number of variables that

are asserted in a∗, which does not impact the satisfiability of

ϕB , because of its monotonicity property (Lemma IV.9), while

making all the implication clauses in both ϕ′ and ϕ′′ true. The

assignment (b∗, x∗, a∗∗) is, therefore, a model for ϕ′′. Finally,

by projecting out a∗∗, we obtain that (b∗, x∗) is also a model

for ϕ. Formulas ϕ and ϕ′ are then equisatisfiable.

2) A satisfying assignment for ϕB either trivially satisfies

an implication clause i on the right side of (6) (ai evaluates

to false) or turns it into the convex constraint (gi(x) ⊳ 0)
(ai evaluates to true). Then, ϕ′ is satisfiable if and only if

the conjunction of convex constraints such that the associated

variable ai is asserted is satisfied.

3) By property 1) and 2), since the satisfying assignments of

ϕB are finite, a model for ϕ′, hence ϕ, can always be found

by solving a finite set of convex programs, which is worst-

case equal to the number of satisfying assignments for ϕB .

Remarkably, if no variables in a need to be asserted for ϕB to

be satisfiable, then the satisfiability of ϕ′ does not depend on

its real variables, i.e., ϕ′ is satisfiable for all x ∈ D ⊆ Rn.

By Proposition IV.7, any monotone SMC formula ϕ can

be solved by casting and solving a disjunction of convex

programs. We will use this property to construct our decision

procedure in Section V. It is possible to show that monotone

convex formulas are also the only class of formulas over

Boolean propositions, pseudo-Boolean predicates, and pred-

icates in the nonlinear theories over the reals, to present this

property. This is formally stated by the following theorem.

Theorem IV.10. Let ϕ be a formula over Boolean proposi-

tions, pseudo-Boolean predicates, and predicates in the non-

linear theories over the reals, and such that the satisfiability

problem can be posed as the feasibility problem for a finite

disjunction of convex programs. Then, ϕ can be posed as a

monotone SMC formula.

Proof (Theorem IV.10). We can always encode ϕ as a finite

disjunction of convex programs as follows
(

p1
∧

i=1

(g
(1)
i (x)⊳ 0) ∧ b(1)

)

∨

(

p2
∧

i=1

(g
(2)
i (x)⊳ 0) ∧ b(2)

)

∨

. . . ∨

(

pr
∧

i=1

(g
(r)
i (x)⊳ 0) ∧ b(r)

)

, (8)

where we assume that r convex feasibility problems are as-

sociated with distinct assignments over the Boolean variables

b1, . . . , br such that b(j) =
∧j−1

i=1 ¬bi ∧ bj ∧
∧r

i=j+1 ¬bi. Each

convex problem Pj is a conjunction of pj convex constraints,
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each of the form (g
(j)
i (x) ⊳ 0), with i ∈ {1, . . . , pj}. By the

distributive property of disjunction with respect to conjunction,

we can then translate the disjunction of terms into a conjunc-

tion of clauses as in the syntax in (2). Therefore, (8) encodes

a monotone SMC formula.

Finally, the following corollary is an immediate conse-

quence of the results above.

Corollary IV.11. Monotone SMC formulas include any

Boolean Satisfiability (SAT) problem instance and any Mixed

Integer Convex (MIC) feasibility problem instance as a par-

ticular case.

Proof (Corollary IV.11). A SAT problem is trivially a partic-

ular case of an SMC problem. To prove that this is also the

case for a MIC problem, we observe that a MIC feasibility

problem can be modeled as the feasibility of a conjunction of

convex constraints in (b, x) as follows:

p
∧

i=1

(gi(b, x)⊳ 0),

where p is the number of constraints. By enumeration of all

possible assignments b(1), . . . , b(r) to the Boolean variables,

we can always expand the above MIC into a finite disjunction

of convex programs as follows:

(

p
∧

i=1

(gi(b
(1), x)⊳ 0) ∧ d(1)

)

∨

(

p
∧

i=1

(gi(b
(2), x)⊳ 0) ∧ d(2)

)

. . . ∨

(

p
∧

i=1

(gi(b
(r), x)⊳ 0) ∧ d(r)

)

, (9)

where, for all i ∈ {1, . . . , p} and j ∈ {1, . . . , r}, gi(b
(j), x)

is convex by definition, and the conjunction of atoms d(j) =

∧m
i=1b

(j)
i evaluates to true if and only if b = b(j). Therefore, by

Theorem IV.10, the satisfiability of (9), hence the feasibility of

the original MIC problem, can be captured as the satisfiability

of a monotone SMC formula following the syntax in (2).

Any MIC formulation can be translated into an equisatisfiable

SMC formula, but the opposite is not true. Often, disjunctions

of predicates, such as the one in ϕ := ¬b ∨ (x − 3 < 0),
cannot be expressed as a conjunction of MIC constraints unless

relaxations (approximations) are used [16]. For instance, ϕ is

typically encoded with the constraint c := x−3 < (1−b) ·M ,

using the “big-M” method. However, for any value of M , the

assignment (b, x) = (0,M + 3) is a satisfying assignment for

ϕ, but violates c.

D. Examples

The design problems in Section III can all be encoded as

satisfiability problems for monotone SMC formulas according

to Definition IV.2, for which the properties in Section IV-C

hold. We provide details for these encodings below.

1) ARPOD Mission: Let L be the time horizon and bik a

binary variable that evaluates to 1 (true) if and only if the

system is in mode i at time k. We can require the system to

be in one and only one mode at each time with the following

pseudo-Boolean constraint:

3
∑

i=1

bik = 1, ∀ k ∈ {0, . . . , L}. (10)

Moreover, if the system is in mode i at time k, it can only

stay in mode i or transition to a direct successor mode at time

k + 1, i.e.,

b10 ∧ b
3
L ∧

L−1
∧

k=0

(b1k → b1k+1 ∨ b
2
k+1) ∧ (b3k → b3k+1). (11)

The rendezvous and docking phases are analyzed in a rel-

ative coordinate frame, known as the Hill’s frame, describing

the difference in position and velocity between the chaser and

target spacecraft. Let ζ1, ζ2, and ζ3 be the coordinates of the

chaser spacecraft in the Hill’s frame; then, in mode 1 and 2, the

translational motion of the chaser must satisfy the Clohessy-

Wiltshire-Hill (CWH) equations, which can be expressed in

linear, time-invariant, discrete time state-space form for a given

sampling time. The docked spacecraft pair also obeys a similar

set of equations in Phase 3, where the dynamics change to

account for the increased mass of the pair. Overall, the set of

constraints associated with the dynamics can be formulated as

follows

bik → xk+1 = Aixk +Biuk = CWH(x, u, γ,mi, t
i
s), (12)

∀ k ∈ {0, . . . , L − 1}, ∀ i ∈ {1, 2, 3}, where mi is the

spacecraft mass in mode i, γ =
√

ν/β3 is the mean-motion

of the target, ν is the Earth’s gravitational constant, β is

the length of the semi-major axis of the target’s orbit, and

tis is the sampling time in mode i. For a two-degrees-of-

freedom (2DOF) case, we define x = (ζ1, ζ2, ζ̇1, ζ̇2)
T and

u = (Fζ1 , Fζ2)
T , Fζ1 and Fζ2 being the thrust forces applied

to the chaser spacecraft. Analogous definitions hold for the

3DOF case. The state vector x is made up of both positions

and velocities along the ζ1 and ζ2 axes. Moreover, for all

phases, the constraint on the maximum control input at any

single point in time is

‖uk‖∞ ≤ ū, ∀ k ∈ {0, . . . , L− 1}, (13)

where ū is the upper limit on the thrust that can be produced

in each of the axial directions.

The relative displacement vector from the target to the

chaser is defined in the Hill’s frame as ζ = (ζ1, ζ2)
T in

2DOF. The magnitude of this displacement vector in the ℓ∞-

norm is ρ = ‖ζ‖∞. The position of the chaser satellite at the

initial time is ρ0, within 10 km of the target spacecraft. The

chaser begins its maneuvers in Phase 1 while ρ0 ≥ ρ ≥ ρd,

ρd = 100 m being the separation distance at which docking

starts. This condition translates into the additional constraints:

b1k → (ρk ≤ ρ0) ∧ (ρd ≤ ρk) ∀ k ∈ {0, . . . , L}. (14)
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After the chaser reaches a distance ρ < ρd, the docking phase

(Phase 2) is initiated, i.e.,

b2k → ρd > ρk ∀ k ∈ {0, . . . , L}. (15)

In Phase 2, the chaser attempts to reduce ρ to zero while

remaining in the LOS region, XLOS , and maintaining a slow

velocity so as to reduce impact forces upon docking. We

capture the LOS constraint as a second order cone (convex)

constraint as follows

b2k → ‖(ζ1,k, ζ2,k)‖2 ≤
cT (ζ1,k, ζ2,k)

T

‖c‖2 cos
(

θ
2

) , (16)

∀ k ∈ {0, . . . , L}, where c and θ are, respectively, the cone

axis and aperture, and (ζ1,k, ζ2,k)
T is the displacement vector

at time k. Additionally, the chaser’s velocity must be kept

under the specified value, which can be captured by a convex

ℓ2-norm constraint of the form

b2k → ‖(ζ̇1,k, ζ̇2,k)‖2 ≤ V̄ , ∀ k ∈ {0, . . . , L}, (17)

in the 2DOF version. Finally, the chaser must dock to the

target at the end of Phase 2, i.e.,

b2k ∧ b3k+1 → xk = xdocked ∀ k ∈ {0, . . . , L− 1}. (18)

Once the chaser spacecraft docks (i.e., ρ = 0 m), both

spacecraft enter Phase 3, where the joint assembly must move

to the relocation position. The end location must be the

relocation spot, i.e.,

xL = xrelocation. (19)

The conjunction of constraints (10)-(19) generates a formula

ϕARPOD that can be captured by the grammar in Defini-

tion IV.2. Formula ϕARPOD is then monotone SMC.

2) Motion Planning: For simplicity, we present below an

encoding for the basic reach-avoid problem under the as-

sumptions in Section III-B. However, our approach extends to

motion planning from generic LTL specifications [36] by fol-

lowing the bounded model checking encoding techniques [47]

to formulate the discrete planning problem.

We assume that the workspace regions are described by

polyhedra, as shown in Figure 5 (left), and captured by affine

constraints of the form (Px+q ≤ 0), where x ∈ Rn represents

the state variables of the robot, including its coordinates in the

workspace. For a fixed horizon L, let bik be a Boolean variable

that is asserted if and only if the robot is in region i at time

k. We can then encode the constraints for the controller using

the following logic formula ϕMP :

ϕMP := b
start
0 (initial partition)

∧ b
goal

L (goal partition)

∧



b
i
k →

∨

i′∈Π(i)

b
i′

k+1



 ∀ k ∈ {0, . . . , L− 1}, i ∈ {1, . . . ,m}

(transition relation)

∧

(

m
∑

i=1

b
i
k = 1

)

∀ k ∈ {0, . . . , L}

(mutual exclusion)

∧ (xk+1 = Axk +Buk) ∀ k ∈ {0, . . . , L− 1}

(robot dynamics)

∧ (‖uk‖ ≤ u) ∀ k ∈ {0, . . . , L− 1}

(control bounds)

∧ (x0 = x) (initial state)

∧
(

b
i
k → Pixk + qi ≤ 0

)

∀ k ∈ {0, . . . , L}, i ∈ {1, . . . ,m}

(region constraints)

where Π(i) is the set of regions that are adjacent to region

i, m is the total number of regions, A and B are the state

and input matrices governing the robot dynamics, and ū is

the maximum feasible magnitude ‖uk‖ (e.g., ℓ2- or ℓ∞-norm)

of the control input at time k. We observe that ϕMP is a

monotone SMC formula by Definition IV.2.

We further observe that the satisfying assignments of the

Boolean abstraction of ϕMP are characterized by an ordering

imposed by the feasible runs of the transition system in

Figure 5. If a sequence of regions σ is feasible, then so is any

prefix sequence of σ. We will call the formulas encoding such

a scenario POM formulas and provide the formal definition in

Section VI-C. POM formulas appear in several applications;

for example, whenever Boolean variables are used to capture

the occurrence of events (or modes) that are sequentially

concatenated. This is the case for the variables encoding the

states in a finite state machine or for switched systems in which

modes are captured by a finite state automaton and dynamics

are expressed by convex constraints. Scalable decision proce-

dures for monotone SMC formulas can be developed based

on efficient methods for detecting minimal sets of conflicting

convex constraints. For POM formulas, this task reduces to

solving only one convex program.

Our formulation differs from classical approaches to reach-

avoid problems [48]–[50], e.g., based on the solution of a

Hamilton-Jacobi-Isaacs equation or the computation or ap-

proximation of reachable sets (see, e.g., [4] for a survey

of methods and tools). Rather than formulating a complete,

general optimization problem, which may be computationally

challenging, we focus on solving a special case accurately

and efficiently. We then aim at leveraging this result as

a building block to solve more general problems, e.g., by

supporting complex LTL specifications, through abstraction

and refinement techniques.

Finally, similar encoding techniques can be used for a multi-

robot motion planning problem. In this scenario, constraints

such as the ones in ϕMP must be generated and conjoined

for each robot. Moreover, additional constraints are needed
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to ensure collision avoidance. By assuming a 3-dimensional

workspace and N robots, for each pair of robots at each

time we can create pairs of Boolean variables {(fpqkd , g
pq
kd)|k ∈

{0, . . . , L}, d ∈ {1, 2, 3}, p, q ∈ {1, . . . , N}, p 6= q} and then

encode the collision avoidance conditions via the conjunction

of the following constraints

∀ p, q ∈ {1, . . . , N}, p 6= q, ∀ k ∈ {0, . . . , L} :

fpqkd → hdX→W(xpk)− hdX→W(xqk) ≥ ǫ, ∀d ∈ {1, 2, 3} (20)

gpqkd → −hdX→W(xpk) + hdX→W(xqk) ≥ ǫ, ∀d ∈ {1, 2, 3} (21)

3
∑

d=1

(fpqkd + gpqkd) ≥ 1, (22)

where hdX→W(.) is the natural projection of the state space

onto the d-th dimension of the workspace. The implications

in (20) and (21) require the displacement between robot p
and robot q to be larger than or equal to ǫ ∈ R+ in any

of the directions along the d-th axis. Constraint (22) requires

that, across the 3 dimensions, at least one of the constraints

in (20) and (21) be active. Constraints (20)-(22) are, again,

all captured by the grammar for monotone SMC formulas in

Definition IV.2.

3) Secure State Estimation: We finally show that the

secure state estimation problem under the assumptions of

Section III-C can also be encoded as the satisfiability problem

for a monotone SMC formula. Let Y1, Y2, . . . , Yp be the set

of p sensor measurements taken over a time window out of

a linear dynamical system. These measurements are then a

function of the system state, where

Yi =

{

Hix if sensor i is attack-free

Hix+ αi if sensor i is under attack
(23)

and αi models the attack injection.

We are interested in reconstructing the state of the dynam-

ical system even if up to k sensors are maliciously corrupted.

We can encode this problem by introducing binary indicator

variables bi that evaluate to 1 if and only if the sensor i is

attacked. We therefore obtain the following monotone SMC

formula:

ϕSSE :=

(

p
∑

i=1

bi ≤ k

)

∧

p
∧

i=1

(¬bi → ‖Yi −Hix‖
2
2 ≤ υ)

where the first constraint is a pseudo-Boolean predicate that

requires that no more than k sensors be under attack, while the

other constraints establish that the state x is linearly related

with the measurements in the case of attack-free sensors,

except for an error bounded by υ ∈ R+.

V. ALGORITHM ARCHITECTURE

Our decision procedure combines a SAT solver (SAT-

SOLVE) and a theory solver (C-SOLVE) for convex constraints

on real numbers by following the lazy SMT paradigm [15].

The SAT solver efficiently reasons about combinations of

Boolean and pseudo-Boolean constraints, using the David-

Putnam-Logemann-Loveland (DPLL) algorithm [22], to sug-

gest possible assignments for the convex constraints. The

theory solver checks the consistency of the given assignments

and provides the reason for a conflict, i.e., an UNSAT cer-

tificate, whenever inconsistencies are found. Each certificate

results in learning new constraints which will be used by the

SAT solver to prune the search space. Because the monotone

convex expansion ϕ′ of a monotone formula ϕ translates

into a conjunction of convex constraints for any Boolean

assignments by Proposition IV.7, we can generate queries to

a theory solver that are always in the form of conjunctions

of convex constraints and can be efficiently solved by convex

programming. We can then adopt a lazy SMT approach, by

breaking our decision task into two simpler tasks, respectively,

over the Boolean and convex domains.

As illustrated in Algorithm 1, we start by generating the

propositional abstraction ϕB(b, a) of ϕ. We denote by M
the map that associates each convex constraint in ϕ with

an auxiliary variable ai. By only relying on the Boolean

structure of ϕB , SAT-SOLVE may either return UNSAT or

propose a satisfying assignment µ for the variables b and a,

thus hypothesizing which convex constraints should be jointly

satisfied.

Let a∗ be the assignment proposed by SAT-SOLVE for the

auxiliary Boolean variables a in ϕB ; we denote by supp(a∗)
the set of indices of auxiliary variables ai which are asserted

in a∗. This Boolean assignment is then used by C-SOLVE to

determine whether there exist real variables x ∈ Rn which

satisfy all the convex constraints related to asserted auxiliary

variables. Formally, we are interested in the following problem

find x s.t. gi(x)⊳ 0 ∀ i ∈ supp(a∗) (24)

which is the feasibility problem associated with a∗. The above

problem can be efficiently cast as the following optimization

problem with the addition of slack variables, which we call a

sum-of-slacks feasibility (SSF) problem:

min
s1,...,sL∈R

x∈R
n

L
∑

i=1

|si| s.t. gji(x)⊳ si, i = 1, . . . , L (25)

where L is the cardinality of supp(a∗) and ji spans supp(a∗)
as i varies in {1, . . . , L}.

Problem (25) is equivalent to (24), as it tries to minimize

the infeasibilities of the constraints by pushing each slack

variable to be as much as possible close to zero. Problem (25)

is also a convex program whose optimum value is achieved

and it is zero if and only if the original set of constraints

in (24) is feasible. Therefore, if the optimal cost is zero (in

practice, the condition
∑L

i=1 |si| ≤ δ is satisfied for a “small”

δ ∈ Q+), then µ is indeed a valid assignment, an optimal (δ-

suboptimal) solution x∗ is found, and our algorithm terminates

with SAT and provides the solution (x∗, b), denoted by η(b, x)
in Algorithm 1. Otherwise, an UNSAT certificate ϕce is

generated in terms of a new Boolean clause explaining which

auxiliary variables should be negated since the associated

convex constraints are conflicting. The trivial certificate,

ϕtrivial-ce =
∨

i∈supp(a∗)

¬ai, (26)



PROCEEDINGS OF IEEE 12

Algorithm 1 SMC

Input: ϕ, δ Output: η(b, x)

1: (ϕB(b, a),M) := ABSTRACT(ϕ);

2: while TRUE do

3: (status, µ(b, a)) := SAT-SOLVE(ϕB);
4: if status == UNSAT then

5: return

6: else

7: (status, x) := C-SOLVE.CHECK(µ,M, δ);
8: if status == SAT then

9: return η(b, x)
10: else

11: ϕce := C-SOLVE.CERT(µ,M, δ);
12: ϕB := ϕB ∧ ϕce;

13: end if

14: end if

15: end while

can always be provided, encoding the fact that at least one

of the auxiliary variables indexed by an element in supp(a∗)
should actually be negated. The augmented Boolean problem

consisting of the original formula ϕB conjoined with the

generated certificate ϕce is then fed back to SAT-SOLVE

to produce a new assignment. The sequence of new SAT

queries is then repeated until either C-SOLVE terminates with

SAT or SAT-SOLVE terminates with UNSAT. The following

proposition summarizes the formal guarantees of Algorithm 1

with the trivial certificate (26).

Proposition V.1. Let ϕ be a monotone SMC formula and

δ ∈ Q+ a user-defined tolerance used by C-SOLVE.CHECK in

Algorithm 1 to accommodate numerical errors. Algorithm 1

with the UNSAT certificate ϕce in (26) is δ-complete.

Proof (Proposition V.1). Since ϕ and its monotone convex

expansion ϕ′ are equisatisfiable, we can directly apply Al-

gorithm 1 to the satisfiability problem for ϕ′. In the worst

case, Algorithm 1 executes a number of iterations equal to

the number of satisfying assignments of ϕB . Moreover, by

Theorem IV.7, at each iteration, C-SOLVE.CHECK is guar-

anteed to solve a convex program. At each iteration, either

C-SOLVE.CHECK terminates with a feasible solution or the

current Boolean variable assignment is excluded from the set

of satisfying assignments for ϕB , which guarantees progress.

Since the number of the assignments for ϕB is finite, Algo-

rithm 1 will always terminate.

We observe that (25) does not directly satisfy all the as-

sumptions of Proposition IV.5, but can be easily reformulated,

using a standard change of variables [14], so that the objective

function is continuously differentiable over the closed convex

set generated by the constraints, where the gji , i = 1, . . . , L,

are all closed convex functions. Problem (25) is also feasible,

since, for any x, we can always select values for s1, . . . , sL
such that the constraints are satisfied. Moreover, the optimal

value is achieved. By Proposition IV.5, it is then possible to

provide a δ-suboptimal solution of (25).

If (24) is feasible, meaning that the sum of the absolute

values of the slack variables in the SSF problem at optimum is

bounded by δ, then we terminate with SAT. If (24) is infeasible

and the optimum p∗ for the SSF problem is larger than δ, then

SAT-SOLVE.CHECK correctly terminates with UNSAT. On the

other hand, if (24) is infeasible and 0 < p∗ ≤ δ holds, then

SAT-SOLVE.CHECK can either terminate with UNSAT or SAT.

In all cases, SAT-SOLVE.CHECK terminates correctly in the

sense of Definition IV.4. Finally, based on the guarantees of

SAT-SOLVE.CHECK, Algorithm 1 terminates correctly with

δ-SAT or UNSAT, hence it is δ-complete.

The worst case bound on the number of iterations in

Algorithm 1 is exponential in the number of convex constraints

|C|. To help the SAT solver quickly find a correct assignment,

a central problem in the lazy SMT paradigm is to generate

succinct certificates, possibly highlighting the minimum set

of conflicting assignments, i.e., the “reason” for the inconsis-

tency. The smaller the conflict clause, the larger is the region

that is excluded from the search space of the SAT solver.

Moreover, certificates should be generated efficiently, ideally

in polynomial time, to provide a negligible overhead with

respect to the exponential complexity of SAT solving. In the

following, we discuss efficient algorithms to generate smaller

conflict clauses.

VI. GENERATING SMALL CERTIFICATES

A. IIS-Based Certificates

When C-SOLVE.CHECK finds an infeasible problem, a min-

imal certificate can be generated by providing an Irreducibly

Inconsistent Set (IIS) [51] of constraints, defined as follows.

Definition VI.1 (Irreducibly Inconsistent Set). Given a fea-

sibility problem with constraint set S, an Irreducibly Incon-

sistent Set I is a subset of constraints I ⊆ S such that: (i)

the feasibility problem with constraint set I is infeasible; (ii)

∀ c ∈ I , the feasibility problem with constraint set I \ {c} is

feasible.

In other words, an IIS is an infeasible subset of constraints

that becomes feasible if any single constraint is removed. Let

I be set of indices of auxiliary Boolean variables in ϕB that

are associated with a convex constraint in an IIS I . Then, once

I is found, a minimal certificate can be generated as

ϕIIS-ce =
∨

i∈I

¬ai. (27)

Many techniques proposed in the literature to isolate IISs are

based on either adding constraints, one by one or in groups, to

a feasible set of constraints, until an inconsistency is detected

(additive method), or by deleting constraints from the original

problem, until the constraint set becomes feasible (deletion

filtering) [51], [52]. Usually, a combination of two or more

filtering methods can guarantee that all of the constraints in

an inconsistent set are essential, hence the set is minimal, and

none can be excluded from the set. An IIS with the smallest

cardinality indeed guarantees that the length of the certificate

is minimum, which can dramatically reduce the search space

in Algorithm 1. However, isolating a minimum IIS can be

very expensive [52], [53]. In the worst case, as shown in

Table I, finding a minimum cardinality IIS can require solving
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TABLE I
ALGORITHMS FOR CERTIFICATE GENERATION: NUMBER OF CONVEX

PROGRAMS NEEDED TO GENERATE THE CERTIFICATE AND LENGTH OF THE

GENERATED CERTIFICATE. |S| IS THE NUMBER OF CONSTRAINTS IN THE

CONVEX PROGRAM.

Certificate # Convex Programs Length ℓ

Trivial 1 |S|

Minimum IIS-Based Exponential in |S| |I|min

IIS-Based Logarithmic in |S| |I|min ≤ |I| ≤ |S|
Linear in |I| (minimal)

SSF-Based Logarithmic in|S| |I|min ≤ ℓ ≤ |S|
Linear in ℓ

Prefix-Based 1 |I|min ≤ ℓ ≤ |S|

a feasibility problem for each subset of constraints in S, which

is exponential in the size |S|.
If, instead, we are interested in only one IIS, rather than the

smallest one, then the problem can be solved by searching over

the constraints and solving a number of feasibility problems

that is linear in |S|. This search algorithm can be accelerated

significantly by divide-and-conquer strategies that successively

decompose the overall problem and filter the constraints in

groups [52]. Depending on the selected decomposition, it

is then possible to isolate an IIS by solving a number of

feasibility problems that grows with the logarithm of |S| and

is linear in the cardinality |I| of the IIS. These techniques

provide the technological basis for conflict explanations in

industrial constraint programming tools [52], and can support

an interactive approach to isolate an IIS based on user prefer-

ences between constraints. Overall, the following proposition

summarizes the correctness guarantees of Algorithm 1 with an

IIS-based certificate (27).

Proposition VI.2. Let ϕ be a monotone SMC formula and

δ ∈ Q+ a user-defined tolerance used by C-SOLVE.CHECK

and C-SOLVE.CERT in Algorithm 1 to accommodate numeri-

cal errors. Algorithm 1 with the UNSAT certificate in (27) is

δ-complete.

Proof (Proposition VI.2). The proof proceeds along the lines

of the one for Proposition V.1.

In the following, we describe an algorithm that rather

approximates an IIS, i.e., it can generate a small, albeit non

minimal, set of conflicting constraints by solving a number of

convex programs that is usually smaller than the one needed

for IIS-based certificates.

B. SSF-Based Certificates

A computationally efficient alternative to IIS-based certifi-

cates is to directly exploit the information in the slacks of the

SSF problem (25) to rank the constraints and guide the search

for smaller conflicting sets. Leveraging information from the

slack variables is also part of the elastic and sensitivity filtering

methods, which have been proposed for explaining conflicts in

linear programs [51] and only recently extended to nonlinear

programs [30].

If a constraint k is associated with a non-zero optimal

slack, |s∗k| > 0, then it is a member of one of the IIS in

Algorithm 2 C-SOLVE.CERT-SSF(µ,M, δ)

1: Compute optimal slack variables and sort them

2: s∗ := SOLVE-SSF(µ,M, δ);
3: s′ := SORTASCENDINGLY(s∗);
4: Pick index for minimum slack

5: I min := INDEX(s′1);
6: I max := INDEX(s′{|s|,|s|−1,...,2});
7: Search linearly for the UNSAT certificate

8: status = SAT; counter = 1;
9: I temp := I min ∪ I maxcounter;

10: while status == SAT do

11: (status, x) := C-SOLVE.CHECK(µI temp,M, δ);
12: if status == UNSAT then

13: ϕSSF-ce :=
∨

i∈I temp ¬ai;
14: else

15: counter := counter + 1;

16: I temp := I temp ∪ I maxcounter;

17: end if

18: end while

19: return ϕSSF-ce

problem (24). However, the set of all the constraints with a

non-zero slack does not necessarily include all the constraints

of at least one IIS. Therefore, we propose a search procedure

over the constraint set S, which guarantees that at least one IIS

is included in the returned set of conflicting constraints, even

if the returned conflict set may not be minimal. The conjecture

behind the search strategy is that the constraints with the

highest slack values are most likely to be in at least one IIS

and conflict with the constraint with the lowest (possible zero)

slack. We can then generate a small conflict set including the

lowest slack constraint in conjunction with the highest slack

constraints, added one-by-one, until a conflict is detected. At

each step we solve a convex feasibility problem to detect the

occurrence of a conflict. The earlier a conflict is detected, the

earlier our search terminates and the shorter the certificate will

be. Based on this intuition, our procedure is summarized in

Algorithm 2.

We first compute the optimal slacks s∗ and sort them in

ascending order. We then pick the constraint corresponding to

the minimum slack, indexed by I min, and generate a new

set of indexes I temp by searching for one more constraint

that leads to a conflict with the minimum slack constraint,

starting with the constraint related to the maximum slack.

I max is the set of all slack indexes except the index of

the minimum slack in I min. If the constraints indexed

by I temp are infeasible, then we obtain a conflict set of

two elements, and can immediately generate the UNSAT

certificate. Otherwise, we repeat the same process by adding

the constraint associated with the second largest slack variable

in the sorted list of slacks, till we reach a conflicting set.

Once the set is discovered, we stop and generate the compact

certificate using the auxiliary variables indexed by I temp.

The procedure summarized in Algorithm 2 solves a number

of convex programs that is linear in the number of constraints

|S| in (24). In fact, the cardinality of the returned conflict set,
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hence the length of the proposed certificate, can be as large

as |S| in the worst case, as shown in Table I. However, in

practice, the time needed to generate an SSF-based certificate

is smaller than the time required for an IIS-based certificate,

since we only need to construct an approximation of an

IIS. Moreover, Algorithm 2 can also benefit from divide-and-

conquer approaches [52] that can partition the constraints in

different ways to accelerate the search, and lower the number

of feasibility checks to grow as the logarithm of |S|. The

following proposition summarizes the correctness guarantees

of Algorithm 1 with the SSF-based certificate in Algorithm 2.

Proposition VI.3. Let ϕ be a monotone SMC formula and δ ∈
Q+ a user-defined tolerance used by C-SOLVE.CHECK and C-

SOLVE.CERT-SSF in Algorithm 1 to accommodate numerical

errors. Algorithm 1 with the UNSAT certificate in Algorithm 2

is δ-complete.

Proof (Proposition VI.3). The proof proceeds along the lines

of the one for Proposition V.1.

C. Prefix-Based Certificate

Under additional monotonicity assumptions on the structure

of ϕ we are able to construct UNSAT certificates that are

“minimal” by solving only one convex program. To formalize

these monotonicity assumptions and the related notion of

minimality, we introduce the concept of prefix-ordered formula

below. For convenience, in what follows, we use the notation

b = 1, b = 0, and b = ∗ to indicate that b is asserted, negated,

or unassigned, respectively. We then recall the definition of

the restriction of a Boolean formula.

Definition VI.4 (Restriction). We call a function ρ :
{1, 2, . . . ,m} → {0, 1, ∗} a restriction. Given a Boolean

formula ϕ(b1, b2, . . . , bm), we call ϕ restricted by ρ, written

ϕ ↾ ρ, the formula obtained after assigning to each bi of ϕ
the i-th value (character) of ρ. Given a satisfying assignment

µ, we also call restriction induced by µ the restriction ρµ that

assigns its i-th value to 0 if bi is negated by µ, and to ∗
otherwise.

For example, given ϕ(b0, b1, b2, b3, b4) := (b0 ∨ b1) ∧
(b1 → (b2 ∨ b3)) ∧ b4 and a restriction ρ such that ρ(0) =
ρ(3) = 0, ρ(4) = 1 and ρ(1) = ρ(2) = ∗, we have

ϕ ↾ ρ = ϕ(0, b1, b2, 0, 1) := b1∧(b1 → b2). Given a satisfying

assignment µ such that [[b0]]µ = [[b3]]µ = ⊥, [[b1]]µ = [[b2]]µ =
[[b4]]µ = ⊤, we also have ϕ ↾ ρµ := b1 ∧ (b1 → b2) ∧ b4.

Definition VI.5 (Prefix-Ordered Formula). A Boolean formula

ϕ(b1, b2, . . . , bm) is said to be prefix-ordered with respect to

(b1, . . . , bm), with m ≥ 2, if we have

ϕ→ b1∧(b1 → b2)∧(b2 → b3)∧. . .∧(bm−1 → bm). (28)

By Definition VI.5, a prefix-ordered formula entails a chain

of implications. While its satisfying assignment, (1, . . . , 1),
can be trivially determined, we are rather interested in the

structure of the falsifying assignments, since they are relevant

to the construction of UNSAT certificates. A prefix-ordered

formula has a set of falsifying assignments that can be ordered

based on the number of consecutive asserted variables in their

prefixes before the occurrence of a negated variable. In other

words, we call implicants of ¬ϕ the formulas ϕce such that

ϕce → ¬ϕ. Such implicants can be interpreted as explanations

for the infeasibility of ϕ. Definition VI.5 states that the

implicants of ¬ϕ includes terms of the following forms: ¬b1,

b1∧¬b2, b1∧b2∧¬b3, . . . , b1∧b2∧. . .∧bm−1∧¬bm. Moreover,

each of these implicants is a prime implicant, as its number of

literals cannot be further reduced. We now extend this notion

of prefix-based ordering to a sub-class of convex formulas of

interest to us, which we term prefix-ordered monotone SMC

(POM) formulas.

Definition VI.6 (Prefix-Ordered Monotone SMC Formula).

Let ϕB(b, a) be the propositional abstraction of a monotone

SMC formula ϕ. We say that ϕ is prefix-ordered monotone

SMC (POM) with respect to (µ,λ,κ) if there exists a satisfy-

ing assignment µ, an associated restriction ρµ, an ordering

(renaming) λ : J → J over the index set J of the binary

variables b, an ordering κ : I → I over the index set

I = {1, . . . , |C|} of the auxiliary variables a, and m ≥ 2
such that:

(i) ϕB ↾ ρµ → ψ(bλ(1), . . . , bλ(m))
∧m

i=1(bλ(i) → aκ(i))
(ii) ψ is prefix-ordered with respect to (bλ(1), . . . , bλ(m)).

Example 1 (POM Formulas). Consider an SMC formula ϕ1

and its propositional abstraction defined as follows

ϕB1 := (b0 ∨ b1) ∧ (b0 → b3) ∧ (b1 → (b2 ∨ b3)) ∧ (b2 → b4)

∧ (b3 → b4) ∧

4
∧

i=0

(bi → ai) .

Such a formula is analogous to those obtained from the

encodings of motion planning problems discussed in Sec-

tion IV-D2. Consider the restriction ρ1 associated with the

satisfying assignment µ1 such that [[b0]]µ1
= [[b2]]µ1

= ⊥ and

[[b1]]µ1
= [[b3]]µ1

= [[b4]]µ1
= ⊤, i.e., ρ1(0) = ρ1(2) = 0 and

ρ1(1) = ρ1(3) = ρ1(4) = ∗. We obtain

ϕB1 ↾ ρ1 := b1 ∧ (b1 → b3) ∧ (b3 → b4) ∧ (b1 → a1)

∧ (b3 → a3) ∧ (b4 → a4) .

By Definition VI.6, we conclude that ϕ1 is POM with respect

to µ1, the Boolean variables (b1, b3, b4), and the associated

auxiliary variables (a1, a3, a4).
Consider now an SMC formula ϕ2 whose propositional

abstraction is defined as follows

ϕB2 := (b0 ∨ b1 ∨ b2) ∧

2
∧

i=0

(bi → ai) .

Such a formula is analogous to those obtained from the

encodings of secure state estimation problems discussed in

Section IV-D3. We observe that any restriction ρ2 to two of

the Boolean variables of ϕ2, for example, ρ2(0) = 0 and

ρ2(1) = ρ2(2) = ∗, would lead to a formula such as

ϕB2 ↾ ρ2 := (b1 ∨ b2) ∧ (b1 → a1) ∧ (b2 → a2).

However, neither (b1 ∨ b2) → (b1 ∧ (b1 → b2)) nor

(b1 ∨ b2) → (b2 ∧ (b2 → b1)) holds true. Therefore, there are
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no satisfying assignments and variable orderings that make

ϕ2 POM.

A POM formula ϕ can drastically simplify the task of

finding a minimal UNSAT certificate. By Definition VI.6, there

exists a set of falsifying assignments (implicants) that can be

ordered based on their prefixes, and assume the following

forms: ¬bλ(1), bλ(1) ∧ ¬bλ(2), bλ(1) ∧ bλ(2) ∧ ¬bλ(3), . . . .

Importantly, because (¬aκ(i) → ¬bλ(i)) holds for all i ∈
{1, . . . ,m}, the same prefix structure transfers to the auxiliary

variables, so that ¬aκ(1), aκ(1)∧¬aκ(2), aκ(1)∧aκ(2)∧¬aκ(3),
. . . , are also falsifying assignments for ϕ, and can be used as

UNSAT certificates. It is according to this prefix-based order-

ing of the falsifying implicants that we define a “minimal”

UNSAT certificate for ϕ. In fact, finding a minimal certificate

amounts to looking for the longest prefix associated with a

set of consistent convex constraints before an inconsistent

constraint is reached according to the variable ordering. We

observe that, since we aim to find the earlier occurrence of an

inconsistent constraint, a minimal certificate with respect to the

prefix order would usually produce a small clause. However,

such a clause does not necessarily correspond, in general, to

a minimal IIS for the associated set of convex constraints in

the sense of Definition VI.1.

We formalize the objective above as follows. Given a POM

formula ϕ with respect to (µ,λ,κ), let L be the number of vari-

ables that are asserted by the valuation µ(b, a) of SAT-SOLVE,

and a′µ = (a′µ,1, . . . , a
′
µ,L) be such set, ordered according to

κ. We also denote by {(g′µ,1(x)⊳ 0), . . . , (g′µ,L(x)⊳ 0)} the

set of convex constraints in ϕ associated with the variables

a′µ. Then, for a constant δ ∈ Q+, we define the function

ZEROPREFIXδ : RL
+ → N as:

ZEROPREFIXδ(s1, . . . , sL) = min k s.t.
k
∑

i=1

|si| > δ.

Intuitively, for small δ, ZEROPREFIXδ returns the first nonzero

element of the sequence s = (s1, . . . , sL), and therefore

the length of its “zero prefix.” Using this function, we can

then look for sequences of slack variables that maximize the

number of initial elements set to zero before the first nonzero

element is introduced, by solving the following optimization

problem:

Problem 1.

max
s1,...,sL∈R

x∈W⊆R
n

ZEROPREFIXδ(s1, . . . , sL)

s.t. g′µ,i(x)⊳ si, i = 1, . . . , L

where W is the domain of the real variables x and the

functions g′µ,i, for all i, are defined above. Problem 1 is a

modified version of a conventional feasibility problem, where

convex constraints are perturbed by adding slack variables si.
By looking at the longest prefix of zero slack variables, the

solution to Problem 1 specifies the longest sequence of convex

constraints that are consistent, before an inconsistent constraint

is found. If the optimum prefix length is k∗, then k∗ is also

the length of the resulting UNSAT certificate.

Algorithm 3

(CSTATUS, x, ϕce) = C-SOLVE.PREFIX(µ,M, κ, δ)

1: s∗ := SOLVE-PROBLEM2(µ,M, κ, δ);
2: if

∑L

i=1 |s
∗

i | ≤ δ then
3: CSTATUS = SAT;
4: return (CSTATUS, x∗, 1)
5: else
6: CSTATUS = UNSAT;
7: k∗ := ZEROPREFIXδ(s

∗

1 . . . s
∗

L);

8: ϕce :=
∨k∗

i=1 ¬a
′

µ,i;
9: return (CSTATUS, x∗, ϕce);

10: end if

A remaining drawback is the possible intractability of

Problem 1 whose objective function, basically counting the

number of zero elements in the prefix of a sequence, is non-

convex. It is, however, possible to still find the optimum k∗

from Problem 1 using a convex program. To state this result,

we consider formulas ϕ(b, x) such that the domain W ∈ Rn

of its real variables x is bounded. Under this assumption, we

are guaranteed that there is always an upper bound to the

minimum sum of slack values that can make any conjunction

of convex constraints in ϕ feasible. We can define such a

bound s̄ as follows.

Definition VI.7. Let W ∈ Rn be a bounded convex set, and

{(g1(x)⊳ 0), . . . , (g|C|(x)⊳ 0)} the set of convex constraints

in the monotone SMC formula ϕ. We define s̄ as the solution

of the following convex optimization problem:

max
x∈W

min
s1,...,s|C|∈R

|C|
∑

i=1

|si| s.t. gi(x)⊳ si, i = 1, . . . , |C|

The bound s̄ can easily be pre-computed offline for a given

ϕ. Then, for a given tolerance δ ∈ Q+, we can use the

following problem to find the maximum length of the zero-

prefix of a sequence of slacks:

Problem 2.

min
s1,...,sL∈R

x∈W⊆R
n

L
∑

i=1

|si|

s.t. g′µ,i(x)⊳ si, i = 1, . . . , L

s

δ

(

i−1
∑

k=1

|sk|

)

≤ |si| i = 2, . . . , L (29)

Problem 2 is a modified version of the SSF problem because

of the addition of constraints (29)2. However, we observe

that, if the problem is feasible, constraints (29) become re-

dundant. Therefore, if the sum of slacks at optimum is zero

(in practice, the condition
∑L

i=1 |si| ≤ δ is satisfied), then

µ is indeed a valid assignment. If, instead, this is not the

case, constraints (29) induce an ordering over the non-zero

2While constraints (29) are non-convex, they can be translated into
linear constraints using standard transformations dealing with the
minimization of the sum of absolute values.
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slack variables which can be used to generate the prefix-based

minimal certificate. It is therefore sufficient to solve Problem 2,

as established by the following result, whose proof, for brevity,

can be found in the Appendix.

Theorem VI.8 (Prefix-Based Certificate). Let ϕ be a POM

formula with respect to (µ,λ,κ), where µ is a satisfying

assignment for the propositional abstraction ϕB , and ϕ is

defined over a bounded real variable domain W . Let δ ∈ Q+,

and s ∈ R+ be defined as in Definition VI.7, with s ≥ δ. Let

Problem 2 be the feasibility problem associated with µ, s̄, and

δ. Then, the following hold:

• If Problem 2 is feasible with
∑L

i=1 |s
∗
i | ≤ δ and x∗ is the

optimum for x, then ([[b]]µ, x
∗) |= ϕ;

• If Problem 2 is feasible and k∗ is the minimum index k such

that
∑k

i=1 |s
∗
i | > δ, then, the following clause:

ϕPOM-ce :=

k∗
∨

i=1

¬a′µ,i, (30)

is an UNSAT certificate which is minimal with respect to

(µ,λ,κ).

The prefix-based certificate generation procedure can then

implemented as in Algorithm 3. By Theorem VI.8 we can

then state the following guarantees of Algorithm 1 with the

generation of UNSAT certificates in Algorithm 3.

Proposition VI.9. Let ϕ be a monotone SMC formula and

δ ∈ Q+ a user-defined tolerance used by C-SOLVE.CHECK

and C-SOLVE.PREFIX in Algorithm 1 to accommodate nu-

merical errors. Assume that ϕ is POM for all the satisfying

assignments generated by Algorithm 1, so that Algorithm 3

can be used at each iteration of Algorithm 1. Algorithm 1

with the UNSAT certificate from Algorithm 3 is δ-complete.

Proof (Proposition VI.9). The proof, along the lines of the one

for Proposition V.1, directly follows from Theorem VI.8.

Overall, as summarized in Table I, IIS-based certificates are

generally the shortest and most effective, but potentially more

expensive to compute. IIS-based and SSF-based certificates

can be used with any monotone SMC formula, while prefix-

based certificates are the most efficient to compute for POM

formulas. As also mentioned in Section IV-D, POM formulas

can be used to encode the runs of a finite-state transition

system. Coupled with continuous dynamics, this pattern arises

in several systems, including switched systems, linear hybrid

systems, piecewise affine systems, and mixed logical dynam-

ical systems [21].

VII. RESULTS

We implemented all our algorithms in the prototype solver

SATEX [54]. We use Z3 [26] as a SAT solver and CPLEX [55]

as a convex optimization solver. To validate our approach, we

first compare the scalability of the proposed SMC procedure

with respect to state-of-art SMT and MIP solvers, such as Z3

and CPLEX, on a set of synthetically generated monotone SMC

formulas. We then demonstrate the performance of SATEX

and different UNSAT certificates on the CPS design problems

illustrated in Section III. All the experiments were executed on

an Intel Core i7 2.5-GHz processor with 16 GB of memory.

CPLEX was configured to utilize 1,2,3, or 4 processor cores.

A. Scalability

To test the scalability of our algorithm, we generated

SMC problem instances as follows. We used purely Boolean

problem instances from the 2014 SAT competition (application

track) [56] and selectively included Boolean clauses from

these instances to create SMC problems with an increasing

number of Boolean constraints, from 1000 to 130,000, over

a maximum number of 4,288 Boolean variables. We then

augmented the Boolean instance with clauses of the form

¬bi ∨ hi(x) ≤ 0 where bi is a pre-existing Boolean variable

and hi is a randomly generated affine function. The Boolean

instances were certified to be satisfiable while the affine

constraints were generated to be feasible, so that SATEX could

terminate after one iteration.

Figure 6 (left) reports the execution time of SATEX as the

number of Boolean constraints in an SMC instance increases

for a fixed number of real variables. For instances with a

relatively small number of Boolean constraints (less than

15,000), MIP techniques, based on branch-and-bound and cut-

ting plane methods, show a superior performance. However, as

the number of Boolean constraints increases, the performance

of SATEX, relying on SAT solving, exceeds the one of MIP

techniques by 4-5 orders of magnitude in execution time. The

performance gap between the lazy procedure of SATEX and

Z3 is also observed to increase with the number of Boolean

constraints, and reach more than one order of magnitude. On

the other hand, when the number of continuous variables in

the affine constraints increases, as shown on the right side

of Figure 6, Z3 reaches a 600-s timeout on problem instances

with more than 1500 continuous variables, while optimization-

based algorithms show the expected polynomial degradation,

with SATEX running approximately twice as fast as MIP for

problems with a relatively small number of real variables.

The gap between SATEX and MIP decreases as the number

of real variables increases for a fixed number of Boolean

constraints, which is expected, since MIP tends to perform

better on problem instances dominated by convex constraints

on the reals.

Next, we consider SMC formulas that are certified to be

unsatisfiable, since they are directly created using UNSAT

Boolean instances from the SAT 2014 competition, augmented

with affine constraints as above. As shown in Figure 7, again,

when relying on SAT solving to detect unsatisfiability, SATEX

runs faster by two orders of magnitude with respect to MIP

based techniques. Its performance is, in this case, comparable

with the one of Z3.

B. Application to Secure State Estimation

We apply SATEX to solve the secure state estimation

problem illustrated in Section III-C using the formulation in

Section IV-D3. We randomly generate the matrices Hi for

an increasing number of sensors, randomly select a set of

sensors to be under attack and calculate the sensor outputs Yi
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Fig. 6. Execution time on SMC problem instances, when the number of Boolean constraints increases for a fixed number of 100 real variables (left side) and
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Fig. 7. Execution time on UNSAT SMC instances due to UNSAT Boolean
constraints: the number of Boolean clauses varies from 225 to 960, while the
number of real variables is fixed at 500.

using (23), where the value of αi is also assigned randomly.

Figure 8 compares the performance of SATEX (using the

SSF and IIS-based certificates) with the one of a MIP solver

(running on two and four cores). SATEX outperforms the MIP

solver by up to 1 order of magnitude as the number of sensors

(hence the number of Boolean variables and constraints)

increases.

The number of iterations, hence the execution time, of

the SMC algorithm changes based on the certificate used. In

particular, IIS-based certificates are often not better than SSF-

based certificates, even if they are minimal, because of the cost

paid for constructing them. In all our benchmarks, Z3 exceeds

the 600-s timeout, possibly because of the longer run times of

the nonlinear real arithmetic theory required by the quadratic

constraints. Overall, the SMC framework allows providing an

exact formulation and efficient solution techniques for this

combinatorial problem, which was previously mostly tackled

using expensive brute force search or approximate convex

relaxation approaches.

C. Application to Motion Planning

The reach-avoid problem examined in Sections III

and IV-D2 reduces to a POM formula ϕ for each satisfying

assignment µ of the propositional abstraction ϕB , as also

suggested by the ordering of the Boolean variables associated

with the different regions according to the transition system in

Figure 5. We can, therefore, exploit our results on prefix-based

UNSAT certificates.
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Fig. 8. Execution time on instances of the secure state estimation problem
when the number of sensors increases. Z3 exceeds a 600-s timeout in all
benchmarks.

1) Comparison with MIP and SMT Solvers: Figure 9 shows

the runtime performance of SATEX with respect to a MIP

solver on instances of the reach-avoid problem using the

formulation in Section IV-D2. We operate with the linearized

dynamics of a quadrotor (having 14 continuous states) moving

in a 3-dimensional workspace. We partition the workspace into

cubes of size 1m×1m×1m and randomly select some of them

to be obstacles. We keep the workspace width and height

fixed at 4 m and let its length increase (along the x axis).

This translates into increasing both the number of Boolean

and continuous variables in ϕ, since L must also increase

in order to reach the target. Consistently with our previous

observations, increasing the number of Boolean variables

directly maps into a larger performance gap associated with

prefix-based UNSAT certificates, which outperform both the

IIS-based and MIP-based approaches. As the x-dimension

increases, the gap between SATEX and CPLEX increases.

Similarly to our previous experiments, the execution time

using both Z3 and DREAL exceeds the timeout threshold of

15 minutes and is not shown in Figure 9.

2) Comparison with Sampling-based Motion Planning

Techniques: Sampling-based techniques have become, in the

last decade, the most efficient way of solving motion planning

problems in robotics. We compare the performance of our

SMC-based motion planner with the one of state-of-the-

art sampling-based techniques, as implemented in SYCLOP

(Synergistic Combination of Layers Of Planning), which have

shown to outperform traditional sampling-based algorithms by
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Fig. 9. Execution time on a set of SMC instances for the motion planning
problem as the size of the workspace increases. The execution times for Z3
and DREAL exceed the 15-min timeout and are not shown in the figure.

orders of magnitude [57]. SYCLOP, available from the Open

Motion Planning Library (OMPL)3, is a meta-planner that

combines a high-level guide computed over a decomposition

of the state space with a low-level planning algorithm. The

progress that the low-level planner makes is fed back to the

high-level planner which uses this information to update the

guide. We consider two motion planner versions, namely,

SYCLOP RRT and SYCLOP EST using, respectively, the RRT

(Rapidly-exploring Random Trees) and EST (Expansive Space

Trees) algorithms as their low-level planners.

We consider robot dynamics captured by chains of integra-

tors, one chain for each coordinate of the workspace shown in

Figure 10, and a sampling time of 0.5 s. The robot starts at the

point with coordinates (0.5, 0.5) (in meters) and is required

to reach the point (5.5, 2.0), while higher order derivatives

are set to 0 both at the initial and target points. The upper

bound on the control input is u = 0.2, in appropriate units

based on the number of integrators in the chain. Table II

reports the execution times of different algorithms as the

number of integrators in the chain, hence the number of

state variables, increases. Times are averaged over 20 trials.

RRT and EST-based planners show much higher variability in

execution time than the SMC-based planner, as is expected

because of their randomized search schemes. SYCLOP EST

performs better for a small number of continuous states, but

its runtime rapidly increases and reaches a 1-hour timeout for

a chain of four integrators. Our algorithm scales better over

the whole range of continuous states scoring more than one

order of magnitude reduction in computation time. Moreover,

the generated trajectory, as shown in Figure 10, is usually

smoother.

3) Multi-Robot Motion Planning: As discussed in Sec-

tion IV-D2, the motion planning problem for a team of robots,

required to achieve a set of goals under collision avoid-

ance constraints, can also be translated into the satisfiability

problem for a monotone SMC formula. We first show the

effectiveness of the encoding scheme on the workspace in

Figure 11, where the robots are required to traverse the same

workspace region as they move from their initial positions to

their targets, subject to reach-avoid specifications. Table III

reports the performance of our motion planner as the number

of robots (hence the number of Boolean variables in the

problem) and the number of integrators (hence the continuous

3https://ompl.kavrakilab.org/planners.html

TABLE II
EXECUTION TIME OF DIFFERENT MOTION PLANNING ALGORITHMS AS A

FUNCTION OF THE NUMBER OF CONTINUOUS STATES FOR THE

WORKSPACE IN FIG. 10. RESULTS ARE AVERAGED ACROSS 20 TRIALS.
TIMEOUT IS SET TO 1 HOUR.

Number of SMC-Based Synergistic Synergistic
States [s] RRT [s] EST [s]

4 3.007 33.166 0.6151

6 4.590 3216.402 791.444

8 7.502 timeout timeout

10 10.207 timeout timeout

12 34.775 timeout timeout

14 60.413 timeout timeout

16 39.070 timeout timeout

18 70.631 timeout timeout

20 75.843 timeout timeout

π3

π2π1

x [m]

y
[m

]

x [m]

y
[m

]

Fig. 10. (Left) Workspace used in our experiments; (right) trajectories
generated by the SMC-based (black), Synergistic RRT (dashed blue), and
Synergistic EST (dotted red) motion planners for the double integrator
dynamics.

states in the problem) increase. Trajectories for a 2-robot and

a 4-robot scenario are visualized, respectively, on the left and

right sides of Figure 11, illustrating the satisfaction of the

collision avoidance constraints with a safety margin ǫ = 0.2 m.

We then demonstrate the capabilities of our framework on

a multi-robot scenario subject to more complex high-level

specifications. We consider the same workspace in Figure 10,

which contains 3 regions, denoted by π1, π2 and π3, a team

of four robots, and the following specification: “Infinitely

often all robots shall simultaneously visit region π1; moreover,

infinitely often, two robots shall simultaneously visit region π2

x [m]

y
[m

]

x [m]

y
[m

]

Fig. 11. Workspace and trajectories under reach avoid specifications for a
2-robot scenario (left) and a 4-robot scenario (right).
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Fig. 12. Trajectories of robots R1, R2, R3, and R4 (from left to right), subject to the following specification: “Infinitely often all robots shall simultaneously
visit region π1; moreover, infinitely often, two robots shall simultaneously visit region π2 while the other two robots shall simultaneously visit region π3.”
The trajectories of R1 and R2 visit region π2 while the ones of R3 and R4 touch region π3 as specified.

TABLE III
PERFORMANCE OF THE SMC-BASED MOTION PLANNER AND SIZE OF THE

PROBLEM IN MULTI-ROBOT SCENARIOS WITH REACH-AVOID

SPECIFICATION AS WELL AS A MORE COMPLEX HIGH-LEVEL

SPECIFICATION. TIMEOUT IS SET TO 30 MINUTES.

Number Number SMC-Based SMC-Based
of of States Reach-avoid specification High-level complex specification

Robots (per robot) time #real #Boolean time #real #Boolean
[s] vars vars [s] vars vars

4 0.3346 336 19.269 960
6 0.822 420 44.72625 1200

2 8 1.0625 504 66 67.6701 1440 2370
10 0.915 588 76.3877 1680
12 2.444 672 665.4057 1920

4 0.7170 504 105.661 1440
6 2.1074 630 196.425 1800

3 8 3.8263 756 117 253.077 2160 3449
10 15.005 882 1151.087 2520
12 8.654 1008 466.6257 2880

4 0.9621 672 444.354 1920
6 5.1138 840 829.665 2400

4 8 6.3493 1008 180 986.9366 2880 4648
10 44.4658 1176 timeout 3360
12 80.0632 1344 timeout 3840

5 4 5.8121 840 255 1334.822 2400 5967

6 4 26.4051 1008 342 timeout 2880 7406

7 4 142.896 1008 441 timeout 3360 8965

8 4 1229.5425 1344 552 timeout 3840 10644

while the other two robots shall simultaneously visit region

π3.” This specification can be captured by an LTL formula

that can be then encoded into a set of Boolean constraints

over a fixed time horizon [36]. We report in Table III the

performance of our motion planner as the number of robots

and chained integrators increase, while being subject to a

similar specification as the one above, together with the

problem size in terms of number of Boolean and real variables.

The trajectories for the 4-robot scenario are separately shown

in Figure 12.

D. Application to an ARPOD Mission

We finally apply our algorithm to the ARPOD test-case

introduced in Section III-A, following the formulation in

Section IV-D1. In our experiments, we also introduce a set of

obstacles in the rendezvous phase, which must be avoided by

the spacecraft. Figure 13 shows the final spacecraft trajectory

in the rendezvous and docking phases from two different

angles. As shown at the top of Figure 13, the spacecraft first

lowers its altitude to avoid the obstacles and then increases it

again until it reaches the center of the LOS cone opening. At

this point, the docking phase starts, and a higher sampling rate

0 2 4 6 0

1

2

1

1.5

2

0 2 4 6
0

1

2

1

1.5

2

Fig. 13. Trajectory generated by SATEX for the ARPOD test-case (all units
are in km). The different views show the shape of the obstacles and the LOS
cone (top) as well as the position of the start and docking points (bottom).

is used for the spacecraft trajectory. The spacecraft navigates

within the LOS cone until it reaches the docking point with

zero velocity, when the docked phase starts. The trajectory was

generated in 3.2 minutes.

VIII. CONCLUSIONS

In this paper, we revisited the connection between Boolean

methods and convex programming toward a novel, scalable

framework for reasoning about the combination of discrete and

continuous dynamics that can address the complexity of cyber-

physical system applications. We introduced a procedure for

determining the satisfiability of a class of logic formulas over

Boolean variables and convex constraints, termed monotone

satisfiability modulo convex (SMC) formulas, that appear in

the formulation of estimation and control design problems

arising in different contexts. We showed that SMC formulas

are the most general class of formulas over Boolean and

nonlinear real predicates that can be solved via a finite number

of convex programs. For these formulas, we proposed a

lazy combination of satisfiability (SAT) solving and convex
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programming, namely, satisfiability modulo convex program-

ming, to provide a satisfying assignment or determine that the

formula is unsatisfiable. By leveraging the strengths of both

SAT solving and convex programming as well as efficient

conflict-driven learning strategies, our approach outperforms

state-of-the-art satisfiability modulo theory (SMT) and mixed

integer convex programming (MICP) solvers on problems

with complex Boolean structure and a large number of real

variables. The proposed SMC scheme can then be used to

build effective and scalable decision procedures for a wide

variety of problems including the verification and control of

cyber-physical systems.
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APPENDIX

Proof of Theorem VI.8

To prove Theorem VI.8 it is enough to show the following

result.

Theorem A.1. Let s ∈ R+, as in Definition VI.7, and δ ∈ Q+

satisfy s ≥ δ. Then, an optimal solution of Problem 2 is also

an optimal solution of Problem 1.

We first state and prove an intermediate result that is used

to prove Theorem A.1.

Proposition A.2. For a valid assignment µ from SAT-SOLVE,

let (a′µ,1, . . . , a
′
µ,L) be the set of variables that are asserted,

ordered according to the ordering κ, with respect to which ϕ
is a POM formula. Let the variables s1, . . . , sL be selected

as the solution of Problem 2, i.e., to minimize
∑L

i=1 |si| such

that the following constraints are satisfied:

g′µ,i(x)⊳ si, i = 1, . . . , L (31)

s

δ

(

i−1
∑

k=1

|sk|

)

≤ |si| i = 2, . . . , L (32)

where g′µ,i(x), δ ∈ Q+, and s are defined as in Section VI-C,

and s ≥ δ holds. The following results hold:

• Assume |sj | > 0 for some j ∈ {1, . . . , L}. Then, for all

j′ ∈ {1, . . . , L}, j′ > j, we obtain:

|sj′ | ≥ Os,δ(j
′ − j)

(

j
∑

k=1

|sk|

)

, (33)

where Os,δ(j
′ − j) is a constant that depends only on

j′ − j.

• Assume further that |sj | > δ for some j ∈ {1, . . . , L}.

Then, the constraints in (33) hold as equalities, i.e., for

all j′ ∈ {1, . . . , L}, j′ > j, we obtain:

|sj′ | = Os,δ(j
′ − j)

(

j
∑

k=1

|sk|

)

. (34)

Proof. If |sj | > 0 holds and constraints (32) are satisfied, it is

straightforward to show, e.g., by induction, that the following

inequality holds for all j′ > j:

|sj′ | ≥
s

δ

(

j
∑

k=1

|sk|

)

(

1 +
s

δ

)j′−j−1

, (35)

which leads to (33) after setting Os,δ(j
′ − j) =

s
δ

(

1 + s
δ

)j′−j−1
.

To prove (34) for all j′ > j, assume |sj | > δ. Then, (35)

implies |sj′ | ≥
s
δ

(

∑j
k=1 |sk|

)

≥ s
δ
|sj | > s. Any solution of

Problem 2 under the assumption |sj | > δ would then produce

slack variables |sj′ | larger than s for all j′ > j. On the other

hand, since s is an upper bound on the minimum slacks that

make all convex constraints consistent over all x ∈ W , we also

observe that a sequence of slack values such that |si| ≤ s for

all i would be enough to satisfy all the constraints in Problem 2

except for constraints (32). Therefore, as Problem 2 attempts

to minimize the sum of the slacks subject to constraints (32),

all the slack variables |sj′ | with j′ > j will be pushed towards

their lower bounds in (32). The subset of constraints (32) with

i ∈ {j + 1, . . . , L} will then be active at optimum, i.e., they

will hold as equality constraints. Finally, at optimum, (35) will

also turn into equality by the same argument, thus leading to

|sj′ | =
s

δ

(

j
∑

k=1

|sk|

)

(

1 +
s

δ

)j′−j−1

= Os,δ(j
′ − j)

(

j
∑

k=1

|sk|

)

, (36)

for all j′ > j, which is what we wanted to prove.

We are now ready to prove Theorem A.1.

Proof (Theorem A.1). As a first step, we consider the follow-

ing optimization problem in the context of our formulation:

Problem 3.

max
s1,...,sL∈R

x∈W⊆R
n

ZEROPREFIXδ(s1, . . . , sL)

s.t. g′µ,i(x)⊳ si, i = 1, . . . , L

s

δ

(

i−1
∑

k=1

|sk|

)

≤ |si| i = 2, . . . , L (37)

Problem 3 is a constrained version of Problem 1, due

to the introduction of the constraints (37). However, for

any optimal solution (s̃1, . . . , s̃L) of Problem 1 of the form

(|s̃1|, . . . , |s̃j−1|, |s̃j |, |s̃j+1|, . . . , |s̃L|) with
∑j−1

k=1 |s̃k| ≤ δ
and |s̃j | > δ, we can always construct an opti-

mal solution (s1, . . . , sL) of Problem 3 of the form
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(|s1|, . . . , |sj−1|, |sj |, |sj+1|, . . . , |sL|) and such that |sk| =
|s̃k| for all k = 1, . . . , j, and |sj′ | satisfies

|sj′ | = Os,δ(j
′ − j)

(

|sj |+

j−1
∑

k=1

|sk|

)

= Os,δ(j
′ − j)|sj |,

for all j′ such that j + 1 ≤ j′ ≤ L, Os,δ(j
′ − j) being

the constant defined as in Proposition A.2 in the Appendix.

Therefore, the maximum of Problem 1 is also achieved by

Problem 3, and solving Problem 3 is enough to retrieve it.

To prove our final result, it is then enough to show that a

solution of Problem 2 is also a solution of Problem 3. To do

so, we proceed by contradiction. Let

s∗ = (s∗1, . . . , s
∗
L), i = 0, . . . , L

be an optimal solution of Problem 2. We then assume that s∗ is

not a solution of Problem 3, i.e., there exists s = (s1, . . . , sL)
such that:

ZEROPREFIXδ(s
∗
1, . . . , s

∗
L) < ZEROPREFIXδ(s1, . . . , sL),

(38)

or equivalently,

ZEROPREFIXδ(s
∗
1, . . . , s

∗
L) + 1 ≤ ZEROPREFIXδ(s1, . . . , sL).

(39)

Given j = ZEROPREFIXδ(s
∗), by definition of ZEROPREFIXδ

and by (39), we obtain:

j
∑

i=1

|s∗i | > δ,

j
∑

i=1

|si| ≤ δ. (40)

Moreover, by (39) and the definition of s, we can state, without

loss of generality, that s satisfies the following properties:

0 ≤ |sj+1| ≤ s, (41)

∀ i ∈ {j + 2, . . . , L} :

0 ≤ |si| ≤ Os,δ(i− j − 1)

(

j
∑

k=1

|sk|+ s

)

, (42)

where the upper bound in (42) is obtained by using the result

in Proposition A.2 and (41).

We compute now the cost function of Problem 2 for both

s∗ and s. In the first case, we obtain

L
∑

i=1

|s∗i | =

j
∑

i=1

|s∗i |+ |s∗j+1|+

L
∑

i=j+2

|s∗i |

(a)
> δ + |s∗j+1|+

L
∑

i=j+2

|s∗i |

(b)
> δ + s+

L
∑

i=j+2

|s∗i |

(c)
= δ + s+

L
∑

i=j+2

Os,δ(i− j − 1)

(

j
∑

k=1

|s∗k|+ |s∗j+1|

)

(d)
> δ + s+

L
∑

i=j+2

Os,δ(i− j − 1) (δ + s) (43)

where (a) follows from (40), (b) follows from (29), which

implies that |s∗j+1| ≥
s
δ

(

∑j
i=0 |s

∗
i |
)

> s
δ
· δ = s, (c) follows

from Proposition A.2 and the assumption that s ≥ δ, and (d)
follows again from (40) and (29). On the other hand, we also

obtain

L
∑

i=1

|si| =

j
∑

i=1

|si|+ |sj+1|+

L
∑

i=j+2

|si|

(e)

≤ δ + |sj+1|+
L
∑

i=j+2

|si|

(f)

≤ δ + s+

L
∑

i=j+2

Os,δ(i− j − 1)

(

j
∑

k=1

|sk|+ s

)

(g)

≤ δ + s+

L
∑

i=j+2

Os,δ(i− j − 1) (δ + s) (44)

where (e) follows from (40), (f) follows from (41) and (42),

and (g) follows from (40).

From both (44) and (43), we finally conclude

L
∑

i=1

|s∗i | >

L
∑

i=1

|si|, (45)

stating that s∗ is not a minimal point for the objective

function of Problem 2, which is in contradiction with the initial

assumption of s∗ being an optimal solution.
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