
smcql: Secure Querying for Federated Databases

Johes Bater
Northwestern University

johes@u.northwestern.edu

Gregory Elliott
Northwestern University

GregoryElliott2016@u.northwestern.edu

Craig Eggen
Northwestern University

CraigEggen2016@u.northwestern.edu

Satyender Goel
Northwestern University

s-goel@northwestern.edu

Abel Kho
Northwestern University

Abel.Kho@nm.org

Jennie Rogers
Northwestern University

jennie@eecs.northwestern.edu

ABSTRACT

People and machines are collecting data at an unprecedented
rate. Despite this newfound abundance of data, progress has
been slow in sharing it for open science, business, and other
data-intensive endeavors. Many such efforts are stymied by
privacy concerns and regulatory compliance issues. For ex-
ample, many hospitals are interested in pooling their medi-
cal records for research, but none may disclose arbitrary pa-
tient records to researchers or other healthcare providers. In
this context we propose the Private Data Network (PDN),
a federated database for querying over the collective data
of mutually distrustful parties. In a PDN, each member
database does not reveal its tuples to its peers nor to the
query writer. Instead, the user submits a query to an honest
broker that plans and coordinates its execution over multi-
ple private databases using secure multiparty computation
(SMC). Here, each database’s query execution is oblivious,
and its program counters and memory traces are agnostic
to the inputs of others.

We introduce a framework for executing PDN queries
named smcql. This system translates SQL statements into
SMC primitives to compute query results over the union of
its source databases without revealing sensitive information
about individual tuples to peer data providers or the honest
broker. Only the honest broker and the querier receive the
results of a PDN query. For fast, secure query evaluation,
we explore a heuristics-driven optimizer that minimizes the
PDN’s use of secure computation and partitions its query
evaluation into scalable slices.

1. INTRODUCTION
Federated database systems, wherein many autonomous

databases are united to appear as a single engine for query-
ing, are having a renaissance in “big data” applications. In-
terestingly, many such federations contain data owned by
mutually distrustful parties who are willing to have the union
of their data analyzed, but will not disclose their raw tuples.
We call a database federation that spans mutually distrust-
ful sources a private data network or PDN. Federations of
this kind contain data that is privately held and not avail-
able for upload to the cloud.

This work is licensed under the Creative Commons Attribution
NonCommercialNoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/byncnd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 10, No. 6
Copyright 2017 VLDB Endowment 21508097/17/02.

In exploring this topic, we identified use cases for PDNs
in medicine, data markets, banking, online advertising, and
human rights work. Typically, PDN members either up-
load their data to a trusted intermediary or they use one-off
privacy-preserving algorithms to mine it [15, 2]. We posit
that PDNs will see broader adoption if their users express
their analytics as declarative SQL statements.

For example, a consortium of hospitals is interested in
pooling their patient records for clinical data research and
each site is in charge of securing their own data. A uni-
versity researcher, operating independently of the hospitals,
wants to evaluate a new treatment for rare disease X. Her
first step is to ask if there is a large enough cohort of X suf-
ferers in the consortium to form a study. She writes SELECT
COUNT(DISTINCT patient id) FROM diagnosis WHERE

diag=X; to the consortium coordinator. If this query were
run in a standard database federation, the coordinator would
collect and merge patient IDs for X from each site, eliminate
duplicates, and counts them. This approach is undesirable
because it reveals the patient IDs of individuals affected by
X to the coordinator. A secure framework is needed that
enables researchers to execute distributed queries without
exposing information to unauthorized parties about their
source data or intermediate results.

The PDN architecture is shown in Figure 1. Here, a user
submits their query to the federation’s honest broker, a neu-
tral third party that plans and orchestrates its execution
over two or more private data providers. The federation has
a shared schema that is supported by all parties. The exe-
cution of a PDN query is distributed over a secure compute
cluster of private data providers. Each provider executes a
secure protocol provided by the honest broker that produces
a share of the query output. The honest broker assembles
the shares into output tuples and sends them to the end user.
From the user’s perspective, the PDN behaves exactly like a
conventional federated database where one submits SQL and
receives query results. In our example above, the end user is
the researcher, the hospitals are private data providers, and
the honest broker is the consortium coordinator.

At setup time, the PDN has a shared set of table defini-
tions. This schema is annotated with the level of protection
required for each of its attributes. For identifiers that span
multiple data providers, such as patient IDs that appear in
multiple hospitals, the honest broker works with the PDN
members to carry out secure record linkage as in [3, 18, 22].

smcql is our framework for planning and executing PDN
queries. It uses secure multiparty computation (SMC) to
evaluate distributed queries among mutually distrustful par-

673

Honest

Broker

End User

SQL

query

q

output of q run on

all DBs in PDN

secure query plan

shares of q’s output

(1/data provider)

Secure Compute Cluster

Private Data

Provider

Figure 1: Private data network architecture

ties. SMC is a subfield of cryptography that studies methods
whereby two or more parties compute a function over their
data while each keeps their individual inputs private. SMC
makes query evaluation oblivious such that each party’s com-
putation is independent of the inputs of others. An exam-
ple of secure function evaluation is Yao’s Millionaire Prob-
lem [38]. He asked, “If Alice and Bob are millionaires who
are interested in determining which one of them is richer,
how can they solve for this without either party revealing
their net worth?”. Speaking imprecisely, SMC provides a
black box within which the mutually distrustful parties com-
bine their sensitive tuples for query evaluation.

Since SMC computes distributed query evaluation obliv-
iously, it exacts a high performance cost in comparison to
plaintext query evaluation. For example, if one runs a join
using SMC, the output of this operator will be the size of
the cross product of its inputs. Its output is padded with
encrypted nulls to maintain the query’s obliviousness. With
cascades of oblivious database operators, the cardinality of
their intermediate results grows rapidly. It is not uncom-
mon to see secure functions run multiple orders of magni-
tude slower than their plaintext counterparts.

In our work, a PDN seamlessly translates database oper-
ators within a query execution plan into SMC primitives.
It carefully manages its use of SMC so that its queries run
efficiently. The query planner first identifies when SMC is
needed in a query by modeling the flow of sensitive data
through its operator tree. After that, it optimizes the sub-
tree’s execution using heuristics. Lastly, the system gen-
erates secure code for the optimized plan. In this paper,
we present a query planner and executor for two mutually
distrustful parties.

smcql offers an honest-but-curious threat model. In other
words, we trust each data provider to faithfully execute the
protocol provided by the honest broker. On the other hand,
participants may attempt to deduce the sensitive data of
others during a secure query execution using side channels
including program counters and memory accesses. We do
not address the question of malicious queriers who try to
infer sensitive data by examining the output of many PDN
queries. Differential privacy [8] tackles this issue by inject-
ing controlled levels of noise into the data at query time to
obscure the role of an individual in a larger dataset.

In contrast, we propose a rule-based approach to protect-
ing sensitive data that returns precise query results. Here,
the PDN’s stakeholders create a policy defining the queries
they will admit for execution. This policy may stipulate a
minimum number of parties that must participate in each
secure computation or attributes that are never accessible to

end users in plaintext. These rules reflect the cultural norms
and best practices of a PDN’s domain. For example, when
hospitals share health records, they typically protect patient
privacy with the heuristics of HIPAA Safe Harbor [9].

We hypothesize that with a combination of common-sense
rules and external incentives (e.g., legal remedies for bad
actors), we can make a much larger set of data available
for sharing. One of the questions we are pursuing with this
work is how far a rule-based PDN security policy will go
in a real-world setting. Going forward, if users wish to add
rigorous tuple-level privacy to their SQL workflow, they may
integrate differentially private querying into a PDN using
the techniques described in [26].

smcql is a substantial departure from existing research on
secure databases. Prior work used homomorphic encryption
for the outsourced storage and querying of private data [30].
Our approach keeps data in the hands its originators and
uses SMC to conceal the query’s computation rather than
the data itself. Researchers have also studied secure com-
putation for outsourced database systems [1, 7]. In con-
trast, a PDN distributes secure computation among the data
providers and removes the need for any trusted intermedi-
aries beyond a lightweight honest broker for coordinating
query evaluation.

There are numerous existing approaches to making SMC
available to untrained users, including domain-specific pro-
gramming languages [23, 25, 32] and extending existing
languages [39]. Our approach differs from them in that we
do not require the programmer to reason explicitly about
how to combine the data of each party. Instead we use
SQL’s semantics to translate queries into SMC. To the best
of our knowledge, this is the first system that enables users
to take advantage of SMC without reasoning about the se-
curity properties of the underlying system. We decouple
the security policy from the querier by providing the honest
broker with a schema-based security policy at startup.

Our main contributions in this work are:

• A novel generalization of federated databases for query-
ing over data providers that do not trust one another.

• A code generator that automatically translates SQL
into secure computing primitives.

• A heuristics-based optimizer for PDN query execution

• An in-depth evaluation of this system on real-world
medical data.

The remainder of this paper is organized as follows. In
Section 2 we describe the basics of SMC and introduce a
running example for PDNs. Section 3 provides an overview
of the smcql system. Next, we describe our code generator
in Section 4. Section 5 describes our PDN security policy
and how we use it to identify the subtree of a query plan
for which SMC is needed. We then explore our secure query
plan optimizations. After that, we present the results our
experimental evaluation over real-world data. Finally, we
survey the relevant literature and conclude.

2. BACKGROUND
smcql leverages existing SMC primitives for secure query

evaluation. In this section, we briefly describe these building
blocks and give an intuition about how they work. We also
introduce a running example from clinical data research. For
clarity, we refer to two mutually distrustful data providers
as Alice and Bob.

674

2.1 Secure Multiparty Computation
SMC systems allow parties to jointly compute functions

while keeping each party’s inputs secret. In PDNs, database
operators act as secure functions that are evaluated over the
sensitive data of two or more parties. smcql performs secure
computation using garbled circuits, and conceals its access
patterns of sensitive tuples with oblivious RAM. We chose
these classical techniques because they are heavily optimized
in existing work and easily accessible for code generation.
Garbled Circuits For secure query evaluation, we gener-
ate garbled circuits to compute database operators over the
data of multiple parties. Garbled circuits are a series of
logic gates (e.g., AND, XOR) that hide the program traces
of their computation. These circuits use the same distribu-
tion of execution time, regardless of their inputs, to make
it impossible for a party to deduce the inputs of others. In
our framework, the only information available to the data
providers is the number of tuples provided by each party.
Garbled circuits are quite expressive, and can be used to
compute any arbitrary function [6]. This technique has been
extended for three or more parties [12].

Each garbled circuit securely computes a function, such
as a ≥ b in Yao’s Millionaire Problem. In order to not reveal
the inputs of Alice and Bob, we execute the entire circuit in
the worst-case performance scenario. If we were computing
a ≥ b in plaintext, we’d find the most significant bit where
Alice and Bob’s inputs differ and use it to determine the
circuit output. A garbled circuit must instead compare all
of the bits in order to not disclose the most significant one
where the inputs differed. In smcql, the first data provider,
Alice, generates the garbled circuits, and the second one,
Bob, evaluates them.
Oblivious RAM In addition to covering the compute traces
effected by the input of another party, our engine hides the
memory access patterns of a secure program. We use obliv-

ious RAM (ORAM) [11] to store arrays of tuples as they
move through the secure query executor. This data struc-
ture shuffles the tuple array at each read or write, thereby
making all memory accesses indistinguishable from one an-
other. This prevents attackers from using reads and writes
in a secure program to learn about the underlying data.
ORAM enables us to reduce the depth of our garbled cir-
cuits by creating a small circuit for each database operator
and securely passing the output of one operator to the next
through oblivious reads rather than evaluating the query in
a single, massive circuit.

2.2 HealthLNK Running Example
Throughout the text, we use a running example of a group

of hospitals that wish to mine the collective data of their
electronic health record systems for research while keeping
individual tuples private. We first examine the architec-
ture of this system and then describe a set of representative
queries with which we explore smcql.

A clinical data research network or CDRN is a consortium
of healthcare sites that agree to share their data for research.
CDRN data providers may be mutually distrustful parties.
We examine this work in the context of HealthLNK [29],
a CDRN prototype for Chicago-area healthcare sites. This
repository contains records from seven Chicago-area health-
care institutions, each with their own member hospitals,
from 2006 to 2012, totaling about 6 million records. The
data set is selected from a diverse set of hospitals, including

academic medical centers, large county hospitals, and local
community health centers.

HealthLNK is the forerunner for the Chicago Area Patient-
Centered Outcomes Research Network (CAPriCORN), which
is itself part of a national network in the US, the Patient-
Centered Outcome Research Network (PCORnet). The CAPri-
CORN consortium includes 481 data sources, each of which
has protected health information (PHI) such as gender, times-
tamps, and diagnoses [19]. CAPriCORN and HealthLNK
share the majority of their stakeholders and this group de-
signed these systems to meet the needs of clinical researchers,
especially ones exploring personalized medicine.

In the absence of a secure query evaluation framework
like smcql, CDRNmembers resort to computing distributed
queries entirely within the honest broker. Because each data
provider is in charge of their own HIPAA compliance, they
will often only volunteer their least sensitive database at-
tributes for querying. Although each site will not disclose
its PHI, they are willing to compute queries over sensitive
data when multiple records are accessed together.

In addition to limiting the queryable attributes in a CDRN,
this hub-and-spoke architecture will not scale to hundreds of
data providers. This is an issue we are already seeing in the
field. On the other hand, this setting makes it is possible
for individual tuples to “hide in the crowd” of the data from
many participating healthcare sites. This makes CDRNs a
prime use case for smcql. We are investigating deploying a
prototype of smcql on CAPriCORN.

2.2.1 Query Workload

We now explore the workings of smcql with three rep-
resentative queries based on clinical data research proto-
cols [14, 28]. In addition, we evaluate the system with this
workload on de-identified medical records from the HealthLNK
data repository.
Comorbidity Clostridium difficile, or c. diff, is an infection
that is often antibiotic-resistant. Our first query finds the
most common types of ailments that arise for c. diff sufferers:

SELECT diag, COUNT(*) cnt

FROM diagnoses

WHERE patient_id IN cdiff_cohort

GROUP BY diag

ORDER BY cnt

LIMIT 10;

The query selects the diagnoses of individuals in the c. diff

cohort and counts the diagnoses for each condition, return-
ing the most common ones to the user. With comorbidity,
we explore practical techniques for minimizing the use of
SMC in distributed query evaluation.
Recurrent C. Diff C. diff sufferers have a high rate of
re-infection after treatment. When patients are treated at
multiple hospitals, recurrent c. diff frequently goes unde-
tected. This is exactly the type of problem that smcql is
designed to solve. This query identifies a cohort of recur-
rent c. diff patients whose second infection occurs between
15 and 56 days after an initial diagnosis:

WITH rcd AS (

SELECT pid, time, row_no() OVER

(PARTITION BY pid ORDER BY time)

FROM diagnosis

WHERE diag=cdiff)

675

SELECT DISTINCT pid

FROM rcd r1 JOIN rcd r2 ON r1.pid = r2.pid

WHERE r2.time - r1.time >= 15 DAYS

AND r2.time - r1.time <= 56 DAYS

AND r2.row_no = r1.row_no + 1;

We first select for c. diff, and use a window aggregate to
number the diagnoses of each patient in chronological order.
We then compare the ith diagnoses to the (i + 1)th one
using a self-join to find recurring infections in the prescribed
date range. Lastly, the query eliminates duplicate patient
IDs. We use this query to examine how fine-grained data
partitioning (by patient ID) improves smcql’s performance.
Aspirin Count In our final query, we identify the number
of heart disease sufferers who were prescribed Aspirin. Here,
researchers are investigating the effectiveness of Aspirin in
preventing repeated heart attacks. We calculate the Aspirin

Count of heart disease patients as:

SELECT COUNT(DISTINCT pid)

FROM diagnosis d JOIN medication m ON d.pid = m.pid

WHERE d.diag = hd AND m.med = aspirin

AND d.time <= m.time;

The query first filters the diagnosis table for heart dis-
ease patients and the medications for Aspirin. It then joins
these tables to identify patients who were prescribed As-
pirin during or after a heart disease diagnosis. Lastly, we
count the distinct patient IDs that meet this criterion. This
query tests the smcql optimizer’s ability to create high-
performance query plans for complex sequences of operators.

3. SYSTEM OVERVIEW AND ROADMAP
In this section, we walk through the steps smcql takes

to translate a SQL statement into a secure query execution
plan, as detailed in Figure 2. The honest broker starts with a
SQL statement provided by the user. The statement is writ-
ten against the PDN’s shared schema. The honest broker
parses the statement into a directed acyclic graph (DAG) us-
ing well-known techniques [31]. This tree of database opera-
tors, such as joins and aggregates, provides the steps needed
to compute a given query. The honest broker examines this
tree, confirming that it is runnable within the PDN’s secu-
rity policy.

Next, we generate a secure plan that identifies the minimal
subtree in the query’s DAG that must run obliviously to
uphold the PDN’s security policy. We describe this process
in Section 5.2. The planner traverses the tree bottom-up,
modeling the flow of sensitive attributes through its nodes.

Next, as described in Section 6, smcql optimizes the se-
cure query tree using heuristics that partition database op-
erators into small, scalable units of secure computation. We
also propose methods for reducing the secure computation
performed within an operator.

Armed with a tree of optimized operator specifications,
the planner generates SMC code for execution on the data
providers using the techniques in Section 4. For each rela-
tional algebra operator, the code generator looks up a tem-
plate for it and populates this outline with query-specific
information including the width of its tuples in bits and fil-
ter predicates.

When the code generator completes we have an executable
secure plan. The honest broker distributes the compiled se-
cure code to the data providers, along with plaintext source

SQL
Statement

Operator
Tree

Secure
Plan

Optimized
Plan

Generated
SMC Code

Executable
Plan

Figure 2: smcql query compilation and execution

queries for generating inputs for SMC. The data providers
run their source SQL queries within their databases with
standard methods and coordinate with one another to gen-
erate and evaluate garbled circuits for the secure operators
using the specifications provided by the SMC code.

End-to-end, smcql implements a wide range of SQL op-
erators. It supports selection, projection, aggregation (in-
cluding DISTINCT), limit, and some window aggregates. For
joins, we handle equi-joins, theta joins, and cross products.
At this time we do not support outer joins or set operations.
We detail how the latter’s semantics would be implemented
in Section 5.2.

4. SECURE QUERY EXECUTOR
We now examine the process whereby smcql translates

physical operators in a PDN plan into executable, secure
code. We first prepare the plan by adding steps that combine
tuples from multiple parties. After that, we generate secure
code for each relational operator in the operator tree.

This secure code uses garbled circuits to jointly compute
an operator over the participating parties, and stores the
result in ORAM. The engine uses this secure data structure
to pass intermediate results between nodes in the operator
tree. The query executor carries out this secure compu-
tation–with Alice generating the circuits and Bob evaluat-
ing them–for every subsequent operator in the tree until it
reaches the root node. Each party ships their garbled result
from the root node to the honest broker for decoding the
query’s output tuples.

To create garbled circuits and ORAM for PDN query
evaluation, we use a domain-specific programming language,
ObliVM [23]. This language has a C-style syntax. Among
other features, ObliVM offers callable functions, loops, and
if-then statements. A programmer declares and accesses
ORAM in ObliVM using the C language’s bracket notation.
This framework compiles its code in two steps. First, it
translates the code into a set of logic gates and ORAM ac-
cesses. Then, at execution time, it generates the garbled
circuits on the fly to prevent replay attacks. This language
is backend-agnostic, so if one were to research new garbled
circuit protocols, they would be able to seamlessly compile
them into the code generated by smcql.

Each secure operator starts with a template, or a param-
eterized C-style program for the operator’s execution logic.
Templates have variables for filter predicates, input tuple
widths, and for projecting their output as needed. The sys-
tem has a library of operator-specific templates, including
ones for the optimizations introduced in Section 6.

We show an example template for joins in Figure 3. The
template’s parameters are denoted with a “$”. The system
populates the template’s variables using parameters from its
relational query plan. This join function takes in two arrays

676

int$dSize[m*n] join(int$lSize[m] lhs, int$rSize[n] rhs) {

int$dSize[m*n] dst;
int dstIdx = 0;

for(int i = 0; i < m; i=i+1) {
int$lSize l = lhs[i];
for(int j = 0; j < n; j=j+1) {

int$rSize r = rhs[j];
if($filter(l, r) == 1) {

dst[dstIdx] = $project;
dstIdx = dstIdx + 1;

}
}

}
return dst;

}

Figure 3: Template for secure join

of tuples, one for each input. Each array contains tuples
from both parties. The variables $lSize and $rSize denote
the number of bits per tuple in each input relation. The
tuples per input table are stored in n and m, and the SMC
executor infers these values at runtime.

After populating an operator’s template, we compile it
into a low-level representation with logic gates and ORAM
accesses. This is the code that each data provider executes.
These low-level directives automatically generate all of the
garbled circuits (and their coded inputs) at runtime to pro-
tect the secure query evaluation from replay attacks.

4.1 SMC Performance Costs
All SMC techniques incur substantial overhead in com-

parison to their plaintext counterparts. To get an intuition
for the performance costs and optimization opportunities
associated with secure query evaluation, we hand-coded the
three queries in Section 2.2 as oblivious programs. We ran
these carefully optimized, fully-SMC implementations on a
randomly selected subset of tuples that matched the query’s
initial selection criteria. The details of our experimental con-
figuration are in Section 7.1. To bound the duration of our
experiments, our input samples had 50 tuples per table.

Our results are shown in Table 1. We see that a purely
secure query evaluation is on the order of 4–5 orders of mag-
nitude slower than its plaintext execution. This is unaccept-
ably slow. We see that for complex plans with cascades of
operators, like aspirin count, the runtime explodes. In order
to keep their computation oblivious, each step in the query
has an output cardinality equal to its maximum possible
size. For example, the output of a join is the size of the
cross product of its inputs. Thus aspirin count’s aggregate
after the join must process all of these tuples–despite many
of them being nulls–to avoid revealing information about the
contents of the join inputs.

Instead of näıvely using SMC on the entire query plan,
we need a more nuanced approach. The smcql optimizer
in Section 6 uses SQL semantics to minimize the work per-
formed in SMC and it breaks this secure computation into
small, scalable partitions for speedy evaluation. These op-
timizations are agnostic to the SMC primitives used in dis-
tributed query evaluation. Selecting the highest-performance
SMC protocol for a given query is a promising direction for
future work. Before we can discuss our optimizations, we
first introduce a security model with which we identify query
evaluation over sensitive data. This model allows us to for-
mally describe our optimizations and verify that the system
satisfies the security requirements of its stakeholders.

Table 1: Slowdown of HealthLNK queries run with SMC.

Test Plaintext Secure Slowdown
Comorbidity 158 253,894 1,609X
Recurrent C. Diff 165 159,145 967X
Aspirin Count 193 8,195,317 43,337X

5. SECURITY MODEL
We now formulate the challenge of creating oblivious query

execution plans. First, we describe smcql’s user-facing se-
curity policy for PDN queries. This attribute-level model
specifies who may access the PDN’s data and under what
conditions. After that, we explore smcql’s security type
system, with which the planner identifies the minimal set of
operators in a query plan that require oblivious evaluation
to protect a PDN’s sensitive data.

5.1 Security Policy
smcql offers a simple, yet powerful security model to pro-

tect PDN data from unauthorized access. Recall that a PDN
begins with a common set of table specifications and that
they define the level of protection needed for their data one
column at a time. This approach mirrors how PDN stake-
holders often reason about the sensitivity of their data.

Our model offers three levels of data access: public, pro-
tected, and private. By working with stakeholders, a DBA
creates an annotated schema that specifies the PDN’s secu-
rity policy. This policy also enables the smcql optimizer to
create efficient, secure plans.

Public attributes are readable by all parties, including the
honest broker, data providers, and end users. These columns
have the lowest sensitivity, and often have a low proba-
bility of being independently replicable. In HealthLNK,
anonymized patient IDs, lab results, and blood pressure
readings are public attributes.

Protected data is visible in their originating site and condi-
tionally available to the end user and honest broker. smcql
uses k-anonymity to control access to protected attributes.
A selection is k-anonymous iff each of its tuples is indis-
tinguishable in its protected attributes from at least k − 1
records. This policy is one of many possibilities for control-
ling access to protected data. Any distributed query evalu-
ation over these attributes is done securely. In our running
example, protected attributes include diagnosis codes, age,
and gender.

Private attributes are the most sensitive ones in a PDN,
and they are not disclosed to anyone outside of the initial
data provider. Computation over these attributes must be
carried out obliviously. Private attributes may not appear
in any results returned to the user. Timestamps and zip
codes are examples of private attributes in HealthLNK.

This access control policy governs when and how a PDN
uses secure computation. In addition, the PDN is config-
ured with a query admission policy. This policy may dis-
allow certain patterns of querying, such as repeated, but
slightly modified ones designed to unmask individuals in a
database. It may also enable data providers to hide in the
crowd with requirements such as “at least k data providers
must contribute tuples to a secure computation”. A PDN
may automatically reject queries that do not meet its policy,
using a system such as DataLawyer [36]. Another approach
is to audit query trails to determine if a sequence of queries
is threatening to unmask sensitive views of the data [27].

677

We now address the planning and optimization of PDN
queries. Since query processing takes place within the data
providers, we treat protected attributes as if they are pri-
vate.

5.2 Secure Information Flow
Our first tactic for optimizing a PDN query is to minimize

the number of operators it runs securely. We use a security
type system [17, 34, 35, 37] to analyze the flow of secure
attributes through an operator tree. The planner traverses
the tree bottom-up, recording the operators that will be ex-
ecuted obliviously to fulfill the requirements of the PDN’s
security policy. In each operator, we examine the prove-
nance of its output columns and determine the protection
level needed for each one by taking the maximum security
policy of its source attributes.

The security type system begins with a grammar with
which the planner interprets the query’s operator tree. Gram-
mar 1 shows the syntax with which the type system will an-
alyze a query tree to determine whether each of its database
operators needs oblivious evaluation. This syntax closely
follows that of relational algebra.

〈phrases〉 ρ ::= e | E | Op

〈expressions〉 e ::= a | n | e + e’ | e ≤ e′ | e ∧ e′ | ...

〈sets〉 E ::= {e1, e2, . . . en}

〈operators〉 Op ::= Op’(Op(.))
| Op’(Op(.), Op(.)) | scan(E)
| σe(E) | πE′(E) | E ⊲⊳e E′

| agg(E) | limit(E) | sort(E)
| E ∪ E′ | E ∩ E′ | E \ E′

Grammar 1: Grammar for SQL query plans.

All objects in a query plan are phrases, represented by
ρ. A phrase may be an expression (e), a set of expressions
(E), or a relational operator (Op). Expressions may describe
attribute references (a), string and integer literals (n), arith-
metic operators, comparisons or logical connectives.

We reason about a query plan as a set of relational opera-
tors. Operators are arranged in a tree and each operator has
up to two children. An operator takes in a set of expressions,
E, and produces a new set, E′, as output. The grammar of-
fers table scans, filters (σe(E)), projections (πE′(E)), joins
(⊲⊳), aggregates, sorts, limit, and set operations.

〈security types〉 τ ::= s ∈ {low, high}

〈phrase types〉 ρ ::= τ | τ set | τ exec

Grammar 2: Grammar for secure information flow analysis

The security type system assigns a label to each phrase
in a query plan. To model the flow of secure attributes
through the query tree, we label each phrase as low or high.
If a phrase is low, it does not require oblivious computing
and we run it within the source databases like a conventional
federated query. A high phrase requires oblivious evaluation.
We use low to denote computing over public attributes or

e-base γ ⊢ e : high

e-low
h 6∈ attrs(e)

γ ⊢ e : low

e-set

E = {e1, . . . , en}
∀i ∈ {1 . . . n} : (γ ⊢ ei : τ)

γ ⊢ E : τ set

Figure 4: Rules for information flow in relational data.

in a setting where secure evaluation is not needed. Private
attributes are handled with high operators and we call the
set of high attributes in a PDN schema h. In addition to
judging each phrase as low or high, the system records the
type of each phrase to show whether it is referring to an
expression (the default), set of expressions, or an operator
execution. This syntax is shown in Grammar 2.

For each typing rule, we say

assumptions

type judgement

to denote the conditions under which we assign a security
label to a given phrase. Each type judgement rule is of the
form γ ⊢ ρ : τ type. This rule says that in type system γ,
we judge phrase ρ as security type τ ∈ {high, low}, with a
phrase type of expression, set, or execution.

Figure 4 shows the rules for labeling expressions and sets
thereof. In rule e-base we say that any phrase may be
evaluated as high. An expression may be labelled as low iff
none of the attributes referenced in it are high. In e-set

we assign a type to a set of expressions, E, by resolving its
elements to a single label, τ . If E contains a mix of low and
high expressions, the system uses type coercion to assign a
high label to the set.

The type system rules for labeling relational algebra op-
erators in a query plan are shown in Figure 5. We classify
each relational algebra operator into one of two categories:
tuple-at-a-time or multi-tuple evaluation. Most tuple-at-
a-time operators, or ones that emit output by considering
each tuple discretely, have no need for secure evaluation un-
less they consume data from one or more secure children.
Operators of this kind are scan, SQL project (for altering
the attributes in intermediate results), limit, and filters with
low predicates. As shown in r-filter, a filter needs to be
evaluated obliviously iff its predicate changes the operator’s
output cardinality based on private attributes. Scans are un-
conditionally public because they are executed locally and
their output cardinality is not altered by any attributes.

Multi-tuple operators–including sorts, joins, and set oper-
ations–combine data from multiple source engines, and they
execute at the level of their most sensitive inputs. The type
judgements of this kind are r-aggregate, r-distinct, r-
join, r-setop, and r-sort. This, in conjunction with the
nesting rules, ensure that these operators leak no informa-
tion about private data.

All additional operators are covered by r-nest; it states
that a new operator Op′ executes at a security level greater
than or equal to that of its child. In r-nest-bin, we gen-
eralize this to operators with two inputs, i.e., joins and set
operations. If a binary operator has at least one high child,
then the operator is judged as high. The nesting judgements

678

r-aggregate
γ ⊢ E : τ set

γ ⊢ agg(E) : τ exec

r-distinct
γ ⊢ E : τ set

γ ⊢ distinct(E) : τ exec

r-filter
γ ⊢ exp : τ

γ ⊢ σexp(E) : τ exec

r-join

γ ⊢ E : τ set
γ ⊢ E

′ : τ set

γ ⊢ E ⊲⊳ E
′ : τ exec

r-scan γ ⊢ scan(E) : low exec

r-setop

γ ⊢ E : τ set
γ ⊢ E

′ : τ set

γ ⊢ E opE
′ : τ exec

r-sort
γ ⊢ E : τ set

γ ⊢ sort(E) : τ exec

r-nest

γ ⊢ Op(.) : τ exec
γ ⊢ Op

′(.) : τ exec

γ ⊢ Op
′(Op(.)) : τ exec

r-nest-bin

γ ⊢ Op(.) : τ exec
γ ⊢ Op

′(.) : τ exec
γ ⊢ Op

′′(.) : τ exec

γ ⊢ Op
′′(Op(.), Op

′()) : τ exec

Figure 5: Typing system rules for information flow in rela-
tional algebra query tree.

ensure that no subsequent operators leak information about
a prior secure computation.
Security Proof We prove the security of our information
flow type system by induction. The type system traverses a
query tree bottom-up.
Base Case: The leafs of the query tree are all table scans.
By r-scan every branch of the tree begins as low. Table
scans are unconditionally oblivious–the contents of the tu-
ples do not alter the data flow of this operator.
Step 1: There are two cases for the parent operator of a
scan. The operator may process data one tuple at a time.
Recall that projects, limits, and low filters are in this cate-
gory. By r-filter, the filter operator ceases to be oblivious
when its predicate references non-public attributes. Other-
wise, the filter executes at the same security level as its child
by r-nest. Likewise, SQL project and limit operators are
deterministic in the cardinality of their outputs, so they re-
veal no information that is not already visible from running
them at the security of their source operator.

The remaining operators–aggregation, distinct, join, set
operations, and sort–compute over multiple tuples. Thus,
they may execute over the data of mutually distrustful par-
ties. Each of these operators executes at the security level of
the most sensitive attribute in their input expressions. By
e-set, the type system determines the security label of the
expressions in an operator’s fields. The resolver labels the
operator with the set’s security level, τ , using the operator-
specific rules in Figure 5.

Step n: Each subsequent step executes at a security level
greater than or equal to that of its children. By r-nest and
r-nest-bin, an operator is typed with the label of its source
nodes. Therefore, even if an operator only references pub-
lic attributes, such as DISTINCT patient id in recurrent c.

diff, the plan reveals no information about the output of
secure computation performed by its source operators.

6. SECURE QUERY OPTIMIZATION
Armed with our security model, we can now examine op-

timizations to improve the performance of smcql for secure
querying. The optimizer begins with a secure query plan,
wherein each operator is labelled high or low using the type
checker in Section 5.2. It then transforms this logical plan
into a low-level physical one. Using heuristics, smcql re-
duces a secure plan’s use of secure computation and parti-
tions query evaluation into small, scalable units. The opti-
mizations described below are generalizations of distributed
query optimization [5]. Since these adjustments change the
program structure of a secure plan, we extend the security
proof in Section 5.2 for them.

6.1 Scalable Physical Plans
The optimizer identifies opportunities to slice its secure

query evaluation by partitioning the input data into smaller,
more manageable units of computation. This fine-grained
partitioning enables us to reduce our secure code complex-
ity, thereby speeding up the secure computation of eligible
queries. Slicing also makes it possible to parallelize secure
query evaluation. The optimizer assigns each operator in a
secure plan to one of three execution modes:

• Plain: Operators are of type low and they evaluate in
the source database.

• Sliced: High operators run securely over tuples that
are horizontally partitioned by a public expression.

• Secure: High operators executed using a single SMC
program run on the inputs of all data providers.

All paths in the tree start with plaintext scans over a
database table. When the executor encounters a high oper-
ator, the engine switches to sliced or secure execution mode.
If an operator is in sliced mode, then its ancestors must run
in sliced or secure mode so that the query’s computation
remains oblivious.

Each sliced operator that receives plaintext data bins its
input by a slice key, or an expression on public attributes
upon which the engine divides up a secure operator’s com-
putation. Each distinct value associated with a slice key, or
slice partition, is computed independently. For each rela-
tional algebra operator in Grammar 1, we identified if and
how it is sliceable.

Joins with public predicates are runnable one slice par-
tition at a time. Likewise, it is possible to slice sorts by
all or part of their sort key. Sliced aggregates compute one
group-by bin at a time and DISTINCT operators break up
their computation by the attributes they reference. Since
filters and projections work one tuple at a time, they are
agnostic to slicing and assume the slice key of their parent
or child operator, whichever enables more sliced evaluation.
Set operations with any slice key will produce the correct
outputs because a non-empty key guarantees that any tu-
ples needing comparison will be grouped together.

679

Slicing is a powerful optimization because it is compos-
able. The optimizer identifies sequences of secure operators
that partition their computation on the same slice key. For
example, in the recurrent c. diff query every operator after
its initial table scan is computed securely and all oblivious
operators are sliced by patient ID.

Function planExecution

Input: DatabaseOperator o

Output: ExecutionMode e ∈ {P lain, Sliced, Secure}
e = Plain;
if o.label = low then

return e;
end if

for c ∈ o.children() do

childMode = planExecution(c);
if childMode == Secure then

e = Secure;
else if childMode == Sliced then

if o.sharesSliceKey(c) and e 6= Secure then

e = Sliced;
else

e = Secure;
end if

end if

end for

// if o.label = high and all children computed in plaintext
if e == Plain and o.sliceKey 6= ∅ then

e = Sliced;
else

e = Secure;
end if

return e

Algorithm 1: Method for assigning execution mode to
database operators in a secure query plan.

The optimizer identifies sequences of sliced computation
by traversing a query tree bottom-up using Algorithm 1.
All low operators are run in plaintext. If a high operator
has only plain children and a nonempty slice key, then it
is assigned to slice mode. The optimizer then checks to
see if the operator shares a slice key with its parent. Two
operators are sliced alike if their slice key is equal, or for
joins, at least one side of an equality predicate appears in
the slice key of each of its descendants. If a high operator
does not qualify for slicing, we switch to secure mode.
Security Proof Each sliced query evaluation is equivalent
to running a secure operator without slicing where we insert
a filter over public attributes for each distinct slice parti-
tion. The optimizer identifies partitions of computation by
running SELECT DISTINCT <slice key> FROM ... on each
data provider. By r-distinct this query is public. After
that, we evaluate each slice partition securely using the pre-
vious plan with an added filter for each slice partition. By
r-filter this filter is public, thus we retain the security
properties of the previous plan.

6.2 Minimizing Secure Computation
We now introduce optimizations that reduce a query’s

use of secure computation. The first delays its entry into
SMC by partially computing an operator in a lower execu-
tion mode. The second reduces the data that the engine
evaluates securely.
Split Operators A splittable operator may partition its ex-
ecution into discrete phases, such as local plaintext followed
by distributed secure computation. For example, if we are
computing a COUNT(*), the query executor may have each

data provider calculate a local partial count and use SMC to
add them up. Aggregates and filters are splittable operators.

Each splittable operator has a low phase and a high phase,
and the low phase is executed first. For aggregates, the low

phase partially computes the aggregate over the input tuples
and the high one combines the partial aggregates. Filters
with conjunctive predicates are splittable into clauses that
reference sensitive attributes and ones that do not. All other
operators are not trivially splittable.
Security Proof For an aggregate with no group-by its
output is exactly one tuple, and it is trivially oblivious. To
handle aggregates with a group-by on sensitive attributes,
we take advantage of the PDN’s architecture to reduce our
overhead. Recall that the parties do not reveal protected or
private attributes to one another and that none of the data
providers have access to the output of a secure query eval-
uation. If an operator computes over |A| partial aggregates
from Alice and |B| from Bob, the output cardinality of its
high phase is unconditionally |A| + |B|–with null-padding
as needed. This fixed output length precludes each data
provider from learning the group-by values of a partial ag-
gregate that is not their own. A split filter is analogous to
creating two separate selections, one for low predicates fol-
lowed by another for high ones. We perform a type judge-
ment on each one with r-filter and assign its execution
mode accordingly.
Secure Semi-Join We can further reduce our reliance on
secure computation by performing it only on slice partitions
that are present in greater than one data provider. For
example, in recurrent c. diff if a given patient ID is present
in just one hospital, we evaluate the medical records of this
individual locally in plaintext, sending the output of this
computation to the honest broker over an encrypted channel.
Hence, the query execution plan has two tracks for sliced
operators: a secure one for partitions that appear in multiple
data providers and plaintext one for all others.
security proof To determine the distributed slice parti-
tions, the honest broker collects the distinct slice partitions
as in the proof in Section 6.1. It then takes the intersection
of their sets. By r-setop the computation of an intersection
of two public inputs is public. By using only public values
in our slice keys, this optimization reveals no additional in-
formation in comparison to its predecessors.

6.3 Optimized Plans
Let’s put this all together by examining our optimized

smcql plans for the queries in our running example. We
display the query trees in Figure 6.

Comorbidity starts by executing the diagnosis scan in plain-
text on each host, filtering its input tuples for ones in the
c. diff patient registry. Since this query’s slice key is the
diagnosis code, a protected attribute, its execution cannot
be trivially partitioned. Next, it performs a split aggregate,
wherein each host computes a partial diagnosis count for
each condition locally. Each site feeds its partial counts into
a single unit of secure computation and the parties work
together to sum up their counts for overlapping diagnoses,
sort them, and take the most common ones.

Recurrent c. diff runs almost entirely in sliced mode. The
filter–its first high operator–checks for an infection diagnosis.
It takes on the slice key of its parent, a window aggregate
partitioned on patient ID. The window aggregate numbers
the infection diagnoses of each patient, where the diagnoses

680

diagnosis

σpid∈cdiffCohort

γdiag,count(∗)

sort(count)

limit 10

Secure

(a) Comorbidity

diagnosis

σdiag=cdiff

rowno

rename(rcd) distinct

⊲⊳

rcd rcd

Sliced on Patient ID

(b) Recurrent C.Diff

COUNT(*)

distinct

⊲⊳

σdiag=hd σmed=aspirin

diagnosis medication

Sliced on Patient ID

Secure

(c) Aspirin Count

Figure 6: Optimized PDN query execution plans for running example.

are sorted on timestamp. We then self-join this table one
patient at a time to identify the ones with a recurring diag-
nosis, and eliminate duplicates using the same slice key.

Aspirin count begins in plaintext with scans on the med-
ication and diagnosis tables. Next, we filter on a protected
attribute, and this step is sliced on patient ID. We then join
the two tables to identify heart disease patients who received
an Aspirin prescription. After that, we eliminate duplicate
patient IDs one slice at a time. Finally, we switch to secure
mode to count up the patient IDs over all slices.

In summary, we optimize our use of secure computation
in three ways. First, smcql horizontally partitions the data
over public attributes to reduce the time and complexity of
our oblivious computing. Second, the query evaluator splits
up query operators to prolong its time in a less expensive
execution mode. Lastly, the optimizer identifies tuples that
do not require distributed secure computation and evaluates
them within their source DBMS.

7. RESULTS
We now verify that smcql produces efficient query plans

using the workload introduced in Section 2.2. We first re-
view our experimental design. Next, we explore the effec-
tiveness of this system’s heuristics-based optimizer at man-
aging our use of SMC. Then we examine the impact of SMC
on assorted database operators. After that, we test the scal-
ability of smcql as it executes over data of increasing size.
Lastly, we reveal the performance profile of this system in
comparison to a hypothetical federated database where the
parties trust one another.

7.1 Experimental Setup
We evaluate smcql on medical data from two Chicago-

area hospitals in the HealthLNK data repository [29] over
one year of data. This dataset has 500,000 patient records,
or 15 GB of data. To simplify our experiments, we use a
public patient registry for common diseases that maintains
a list of anonymized patient identifiers associated with these
conditions. We filter our query inputs using this registry.

smcql’s query executor is built atop PostgreSQL 9.5 run-
ning on Ubuntu Linux. We evaluated our two-party proto-
type on 8 servers running in pairs. The servers each have 64
GB of memory, 7200 RPM NL-SAS hard drives, and are on
a dedicated 10 Gb/s network. Our results report the aver-
age of three runs per experiment. Unless otherwise specified,
the results show the end-to-end runtime of a query, includ-
ing its plaintext and secure execution. All figures display
their runtimes on a logarithmic scale.

1

10

100

1000

10000

100000

Aspirin Count Recurrent C. Diff Comorbidity

E
x
ec

u
ti

o
n

 T
im

e
(s

ec
s)

Query

Baseline

SMC Minimization

Fully Optimized

Figure 7: System performance on sampled data.

7.2 Secure Query Optimization
We now examine the role of smcql’s optimizations in

making PDN queries run with efficiency and scalability. The
results in this section are from query executions over sam-
ples of HealthLNK data with 50 tuples per data provider.
The samples were taken uniformly at random, with the re-
striction that each sample has at least one distributed slice
partition so that the query uses secure computation.

We evaluate the optimizer’s heuristics with three tests.
First we use a baseline of fully secure execution with no
optimizations. This test is analogous to a query execution
where all of the attributes in a PDN’s schema are protected.
The baseline has the same configuration as the results in
Section 4.1. The second approach, SMC minimization, eval-
uates optimizations that reduce the subtree of a query’s plan
that is executed securely and the data processed therein. For
comorbidity, this tests split operators. In aspirin count and
recurrent c. diff, it showcases the secure semi-join. Lastly,
we measure the system’s performance when fully optimized.
These results show the system performance with the previ-
ous optimizations plus sliced execution.

Figure 7 displays the runtime for each query end-to-end.
It is clear that our baseline execution is very slow, even for
modest data sizes. Leveraging the PDN’s security policy is
important for efficient query evaluation in this setting. The
SMCminimization techniques substantially improve the sys-
tem’s performance for all queries. With the split operator
evaluation, comorbidity runs 5X faster than the baseline.

681

0.1

1

10

100

1000

10000

100000

Merge Win. Agg Join Distinct

E
x

ec
u

ti
o

n
 T

im
e

(s
ec

)

Query Operator

Baseline

SMC Minimization

Fully Optimized

Figure 8: Optimized performance of recurrent c. diff.

This query has no sliced operators, so it realizes no addi-
tional speedup in the fully optimized test.

We see the most dramatic performance improvement from
aspirin count. The secure semi-join heuristic substantially
reduces the number of tuples processed in this query and
it has a speedup of 1700X over the baseline. This query
benefits less from sliced execution because its tuples are not
evenly distributed over the slice partitions. This skewed
distribution reduces the effectiveness of slicing because its
largest partitions are comparable in size to the single parti-
tion run in the SMC minimization experiment.

In contrast, recurrent c. diff’s SMC minimization has a
less pronounced improvement of 17X over the baseline. This
query has fewer opportunities for optimization because its
plan has a simpler tree of operators in comparison to aspirin

count. On the other hand, recurrent c. diff responds better
to slicing owing to its tuples having an even distribution
over the query’s partition keys. Its fully-optimized version
is nearly 350X faster than the baseline.

Let’s drill down to how smcql’s optimizations improve
the performance of recurrent c. diff. We show the break-
down of this query’s runtime on each of its secure operators
in Figure 8. We see a gradual performance improvement as
we add more optimizations. The merge and window aggre-
gate operators both make simple passes over the data, and
their oblivious runtimes are proportional to the size of their
inputs. The unoptimized join is costly because it computes
the cross product of its input relations. The DISTINCT op-
erator has a substantial SMC-induced performance penalty
owing to its large input from the exhaustive join.

Secure semi-join noticeably improves the performance of
each operator. By reducing the cardinality of the secure
input data, the first two operators run much faster. This
is primarily owing to the reduced I/O costs associated its
oblivious memory accesses on smaller arrays of data. The
join shows a reduction in runtime due to its performing fewer
tuple comparisons. Likewise, the final distinct operator has
a strong performance improvement over the baseline owing
to its smaller input data.

We see that slicing bolsters the performance of the recur-

rent c. diff query. Building multiple small oblivious tuple
arrays speeds up our data ingest. Window aggregate en-
joys even greater gains since slicing partitions the data by

1

100

10000

1000000

100000000

100 200 400 Full

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

Input Size (tuples)

Secure

Plaintext

Figure 9: Runtime of comorbidity on increasing data sizes.

its group-by clause–further simplifying its secure code. The
join also becomes faster because it is computing the cross
product over fewer tuples. The cost of finding the distinct
patient IDs goes to less than a second because each slice par-
tition simply checks if it has a non-empty array of tuples.

7.3 System Scale Up
We now test the performance of smcql as it scales to

larger input data. For this experiment, we ran the comor-

bidity query. We artificially limited the size of the SMC in-
put–the partial counts of comorbid conditions in the c. diff

cohort–to 100, 200, and 400 tuples. We ran also ran this
test on the full dataset; it had nearly 800 diagnosis codes
with each party supplying around 650 partial counts. We
report runtimes for this experiment in milliseconds.

Figure 9 shows our scale up results. The plaintext exe-
cution time of this query grows slowly as we scale up. The
dominant cost of plaintext comorbidity is in local comput-
ing, wherein it scans each table, filters for the cohort, and
computes the local partial count.

In contrast, comorbidity’s secure execution shows a sub-
stantial increase in duration as the framework computes over
more data. This is primarily caused by increasing costs asso-
ciated with larger oblivious tuple arrays instances for storing
and accessing the data. Because the secure array shuffles the
data every time we access an element, its cost increases in
proportional to its input size. In addition, the query execu-
tion takes longer because its secure operators perform more
comparisons among the inputs to sum up partial counts.

The smallest scale run in this analysis has a slowdown of
2,700X in comparison to its plaintext execution. With an
input size of 400 tuples, the query’s duration jumps to nearly
74,000X its conventionally executed counterpart. When we
run over the entire SMC input, our runtime goes to 6.5 hours
or 56,000X the baseline.

Zooming out to look at the system’s end-to-end perfor-
mance, we now appraise the effects of its entire query opti-
mization system. For this experiment, we used a full year of
health records. Our results are shown in Figure 10. These
results are a scaled-up evaluation of the fully optimized test
in Figure 7.

All of these queries run 5–6 orders of magnitude more
slowly than their plaintext counterparts. smcql executes

682

10

1000

100000

10000000

1000000000

Aspirin Count Recurrent C. Diff Comorbidity

E
x
ec

u
ti

o
n

 T
im

e
(m

s)

Query

SMCQL

Plaintext

Figure 10: Runtime on full year of HealthLNK records.

recurrent c. diff in 37 hours, aspirin count in 23 hours, and
comorbidity in 6 hours. These queries are accessing a collec-
tive 42 million diagnoses and 23 million medication records.
By using fine-grained partitions of the underlying dataset,
the SQL operators scale reasonably to large volumes of data.

We see noticeably higher runtimes for aspirin count and
recurrent c. diff. Both of these take upwards of a single day
to run. The primary source of the slowdown arises from
their join operators that have hundreds of input tuples and
they perform O(n2) comparisons for oblivious evaluation.
More work is needed to manage this challenge of securing
large in-memory data structures.

One potential solution for scaling smcql to large datasets
is to partition the work into smaller units and use the honest
broker to assemble the results. This approach would require
an analytical cost model to identify how finely to partition
the work based on the rate at which the honest broker can
accept and assemble the final results. It would also require
the planner to analyze the cardinality of intermediate results
to ensure that the honest broker does not receive unautho-
rized access to protected or private attributes. In our run-
ning example, this would mean ensuring that intermediate
results received by the honest broker were k-anonymous in
their protected attributes and had no private data.

In summary, our results demonstrate that smcql provides
practical secure query evaluation over SQL for mutually dis-
trustful parties. We found that joins are the most costly
oblivious operator and that their large output cardinalities
impact the execution time of their parent operators. Slicing
reduces the slowdown associated with secure query execu-
tion, and it is most effective for datasets where the tuples
are evenly partitioned over the slice key space. Our results
show that query runtime grows rapidly as the system scales
up to larger datasets.

8. RELATED WORK
Several approaches to secure query processing exist in the

literature. Most of this work is designed for outsourced com-
putation [20, 21, 30]. In contrast, a PDN keeps query pro-
cessing in the database as much as possible and performs
SMC within the hosts from which the data originated. This
enables data providers who do not trust the cloud (or some
other third party) to share information.

CryptDB [30] stores its data on a remote server using ho-
momorphic encryption. Also, in [1], the authors proposed
outsourcing database query evaluation by storing the entire
database as secret shares spread over two or more cloud
providers. The work of [20, 21] computes database fil-
ters and joins using SMC that is run on trusted third-party
servers. Sharemind [4] supports federated databases, but
does not allow for arbitrary SQL queries and uses encrypted
cloud storage for their data. Because smcql runs SMC lo-
cally on the hosts that provide the data, we make our queries
faster by minimizing our use of SMC. This is not possible
in outsourced systems since they do not have access to the
unencrypted input data.

Chow, et al. [7] proposed outsourced SMC for SQL queries
over data from multiple source systems. Our work removes
the reliance on trusted third parties by performing the se-
cure computation within the hosts of each data provider.
In addition, the existing work did not support arbitrary tu-
ple comparisons (e.g., ≤, ≥) and it leaked information for
nested queries. smcql has both of these features.

There is a plethora of domain-specific programming lan-
guages for working with SMC, including ObliVM [23], VM-
Crypt [24], TASTY [13], and FAIRPLAY [25]. They all
generate secure code for procedural programs. These sys-
tems rely on the user explicitly specifying how to manage
and compare the data from each party. In contrast, sm-

cql seamlessly injects SMC into an existing declarative lan-
guage, SQL.

Kerschbaum [16, 17] broke ground by optimizing the use
of SMC in imperative programs using a secure type flow sys-
tem. We extend their approach with a security type system
for SQL. This existing work operated in the context of all
parties learning the plaintext output of secure computation.
The authors use this information to deduce the intermedi-
ate states of a SMC program that are safe to reveal to the
data providers. Rastogi [33] generalizes and expands upon
this work using a knowledge inference approach. In our re-
search, PDN members do not have access to the output of
secure computation. The optimization techniques used here
are more conservative than their predecessors in how they
handle intermediate results.

9. CONCLUSIONS AND FUTURE WORK
In this work, we introduce the private data network (PDN),

a novel generalization of federated database systems for mu-
tually distrustfully parties. We propose smcql, a framework
for translating SQL queries into secure multiparty compu-
tation primitives for evaluating PDN queries. We introduce
several strategies for optimizing PDN query plans, includ-
ing partitioning data before securely computing on it and
partially evaluating database operators in plaintext.

Our results demonstrate that by partitioning query pro-
cessing at a fine granularity, we offer usable performance for
complex PDN workloads. Our PDN queries, that are based
on a real medical use case and evaluated on de-identified
medical records, complete within a reasonable time even in
the presence of large datasets. We designed this system to
be practical. To this end, we are preparing smcql for an
open source release. In addition, we are collaborating with
stakeholders in a clinical data research network to start test-
ing it in the field.

There are numerous opportunities for future research on
PDNs. We are investigating how to generalize smcql to

683

three or more parties. Scaling out to more parties requires
changes to our SMC protocols, as well additional algorithms
for assigning work to PDN nodes. PDNs with a large num-
ber of parties also introduce opportunities for parallelizing
their plans. Another future research direction is to iden-
tify automatic SQL rewrite rules that further delay our en-
try into SMC by reordering commutative database opera-
tors. Optimizing the SMC primitives and protocols used in
a PDN plan is another future avenue of inquiry. There are
many choices for how to implement the secure computation
within a PDN, including randomized key protocols [7] and
garbled ORAMs [10]. In addition, there are garbled cir-
cuit protocols optimized for reduced CPU time, minimizing
network bandwidth, and for scaling to a large number of
parties. Lastly, extensive research exists on SMC protocols
for specific algorithms, such as linear regression and matrix
multiplication, but we are aware of no work on improving
the performance of secure SQL operators.

10. ACKNOWLEDGMENTS
We thank Katie Jackson and Jess Joseph Behrens for their

guidance and assistance with CAPriCORN and HealthLNK
data. We appreciate the HealthLNK team for sharing de-
identified electronic health record data for this study. We
are grateful to Ben Slivka and Mike Stonebraker for their
feedback on early drafts of this work.

11. REFERENCES
[1] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-Molina,

K. Kenthapadi, R. Motwani, U. Srivastava, D. Thomas, and
Y. Xu. Two can keep a secret: A distributed architecture for
secure database services. CIDR, 2005.

[2] R. Agrawal and R. Srikant. Privacy-preserving data mining.
2000 SIGMOD, 29(2):439–450, 2000.

[3] A. Al-Lawati, D. Lee, and P. McDaniel. Blocking-aware private
record linkage. In Proceedings of the 2nd international
workshop on Information quality in information systems,
pages 59–68. ACM, 2005.

[4] D. Bogdanov, M. J. oemets, S. Siim, and M. Vaht.
Privacy-preserving tax fraud detection in the cloud with
realistic data volumes. Technical Report T-4-24, Cybernetica
AS, 2016.

[5] S. Chaudhuri. An overview of query optimization in relational
systems. In ACM PODS, pages 34–43. ACM, 1998.

[6] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty
Unconditionally Secure Protocols. STOC, pages 11–19, 1988.

[7] S. S. Chow, J.-H. Lee, and L. Subramanian. Two-party
computation model for privacy-preserving queries over
distributed databases. In NDSS, 2009.

[8] C. Dwork. Differential privacy. Proceedings of the 33rd
International Colloquium on Automata, Languages and
Programming, pages 1–12, 2006.

[9] K. E. Emam. Heuristics for de-identifying health data. IEEE
Security & Privacy, 6(4):58–61, 2008.

[10] C. Gentry, S. Halevi, S. Lu, R. Ostrovsky, M. Raykova, and
D. Wichs. Garbled ram revisited. In Annual International
Conference on the Theory and Applications of Cryptographic
Techniques, pages 405–422. Springer, 2014.

[11] O. Goldreich. Towards a theory of software protection and
simulation by oblivious rams. In STOC, pages 182–194, New
York, NY, USA, 1987. ACM.

[12] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any
Mental Game. Stoc ’87, pages 218–229, 1987.

[13] W. Henecka, A.-R. Sadeghi, T. Schneider, I. Wehrenberg, et al.
Tasty: tool for automating secure two-party computations. In
CCS, pages 451–462. ACM, 2010.

[14] A. F. Hernandez, R. L. Fleurence, and R. L. Rothman. The
ADAPTABLE Trial and PCORnet: shining light on a new
research paradigm. Annals of internal medicine,
163(8):635–636, 2015.

[15] A. F. Karr, X. Lin, A. P. Sanil, and J. P. Reiter. Secure
Regression on Distributed Databases. Journal of
Computational and Graphical Statistics, 14(2):263–279, 2005.

[16] F. Kerschbaum. Automatically optimizing secure computation.
In ACM CCS, pages 703–714. ACM, 2011.

[17] F. Kerschbaum. An information-flow type-system for mixed
protocol secure computation. Proceedings of the 8th ACM
SIGSAC symposium on Information, computer and
communications security - ASIA CCS ’13, page 393, 2013.

[18] A. Kho, J. Cashy, K. Jackson, A. Pah, S. Goel, J. Boehnke,
J. Humphries, S. Kominers, B. Hota, S. Sims, B. Malin,
D. French, T. Walunas, D. Meltzer, E. Kaleba, R. Jones, and
W. Galanter. Design and implementation of a privacy
preserving electronic health record linkage tool in chicago.
Journal of the American Medical Informatics Association,
22(5):1072–1080, 2015.

[19] A. N. Kho, D. M. D. Hynes, S. Goel, A. E. Solomonides,
R. Price, B. Hota, S. A. Sims, N. Bahroos, F. Angulo, W. E.
Trick, and Others. CAPriCORN: Chicago Area
Patient-Centered Outcomes Research Network. Journal of the
American Medical Informatics Association, 21(4):607–611,
2014.

[20] S. Laur, R. Talviste, and J. Willemson. From oblivious AES to
efficient and secure database join in the multiparty setting.
Lecture Notes in Computer Science, 7954 LNCS:84–101, 2013.

[21] S. Laur, J. Willemson, and B. Zhang. Round-efficient Oblivious
Database Manipulation. ISC’11, pages 262–277, 2011.

[22] I. Lazrig, T. Moataz, I. Ray, I. Ray, T. Ong, M. Kahn,
F. Cuppens, and N. Cuppens. Privacy preserving record
matching using automated semi-trusted broker. In IFIP
Annual Conference on Data and Applications Security and
Privacy, pages 103–118. Springer, 2015.

[23] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi. ObliVM :
A Programming Framework for Secure Computation. Oakland,
pages 359–376, 2015.

[24] L. Malka. VMCrypt: modular software architecture for scalable
secure computation. In CCS, pages 715–724. ACM, 2011.

[25] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, et al. Fairplay-secure
two-party computation system. In USENIX Security
Symposium, volume 4. San Diego, CA, USA, 2004.

[26] F. D. McSherry. Privacy integrated queries: an extensible
platform for privacy-preserving data analysis. In 2009 ACM
SIGMOD, pages 19–30. ACM, 2009.

[27] R. Motwani, S. U. Nabar, and D. Thomas. Auditing SQL
queries. In ICDE, pages 287–296. IEEE, 2008.

[28] PCORI. Characterizing the Effects of Recurrent Clostridium
Difficile Infection on Patients. IRB Protocol, ORA: 14122,
2015.

[29] PCORI. Exchanging de-identified data between hospitals for
city-wide health analysis in the Chicago Area HealthLNK data
repository (HDR). IRB Protocol, 2015.

[30] R. Popa and C. Redfield. CryptDB: protecting confidentiality
with encrypted query processing. SOSP, pages 85–100, 2011.

[31] R. Ramakrishnan and J. Gehrke. Database management
systems. McGraw-Hill, 2000.

[32] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria: A
programming language for generic, mixed-mode multiparty
computations. In 2014 IEEE Symposium on Security and
Privacy, pages 655–670. IEEE, 2014.

[33] A. Rastogi, P. Mardziel, M. Hicks, and M. A. Hammer.
Knowledge inference for optimizing secure multi-party
computation. In Eighth ACM SIGPLAN workshop on
Programming languages and analysis for security, pages 3–14.
ACM, 2013.

[34] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. IEEE Journal on selected areas in communications,
21(1):5–19, 2003.

[35] F. B. Schneider, G. Morrisett, and R. Harper. A
language-based approach to security. In Informatics, pages
86–101. Springer, 2001.

[36] P. Upadhyaya, M. Balazinska, and D. Suciu. Automatic
enforcement of data use policies with DataLawyer. In
SIGMOD, pages 213–225. ACM, 2015.

[37] D. Volpano, C. Irvine, and G. Smith. A sound type system for
secure flow analysis. Journal of computer security,
4(2-3):167–187, 1996.

[38] A. C. Yao. Protocols for secure computations. FoCS, pages 1–5,
1982.

[39] S. Zahur and D. Evans. Obliv-C: A language for extensible
data-oblivious computation. Cryptology ePrint Archive,
Report 2015/1153, 2015.

684

