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Abstract

This paper reviews briefly the formulations used over the last 40
years for the solution of problems involving tensile cracking, both with
the discrete and smeared crack approaches. The paper focuses in the
smeared approach, identifying as its main drawbacks the observed
mesh-size and mesh-bias spurious dependence when the method is
applied “straightly”. A simple isotropic local damage constitutive
model is considered, and the (exponential) softening modulus is reg-
ularized according to the material fracture energy and the element
size. The continuum and discrete mechanical problems corresponding
to both the weak discontinuity (smeared cracks) and strong discon-
tinuity (discrete cracks) approaches are analyzed and the question of
propagation of the strain localization band (crack) is identified as the
main difficulty to be overcome in the numerical procedure. A tracking
technique is used to ensure uniqueness of the solution, attaining the
necessary stability and convergence properties of the corresponding
discrete finite element formulation. Numerical examples show that the
formulation derived is well posed, stable and remarkably robust. As
a consequence, the results obtained do not suffer from spurious mesh-
size or mesh-bias dependence, comparing very favorably with those
obtained with other fracture and continuum mechanics approaches.
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1 Introduction

Cracking is an essential feature of the behaviour of concrete structures. Even
under service loads, concrete structures are normally full of cracks. They may
be present as basic defects in the constituent materials, or they may be in-
duced by inadequate design or construction or during service life. Clearly,
tensile cracking must be taken into account in predicting ultimate load ca-
pacity as well as service behavior.
The tensile fracture of concrete is regarded as (quasi)brittle. Concrete

has no yield behavior as exhibited by metals. Its tensile stress-strain dia-
gram is nearly linear up to the peak stress, whereupon it immediately starts
to descent. In spite of this, concrete shows considerable toughness. This
toughness is related to the existing of a descending branch in the nominal
stress-strain curve. This is known as strain softening.
Tensile cracking, with similar behavior to that of concrete, is also of

primary concern in advanced composite materials, and in specific brittle ma-
terials like ceramics, glass and ice.
Therefore, it was very soon realized that means for assessing the stability

of tensile cracks were necessary. The first one to wonder about the phe-
nomenon of cracking was Galileo Galilei [1], in the XVII century. In 1921,
A. A. Griffith [2], a British aeronautical engineer, introduced the first frac-
ture mechanics theory, from observations done during his investigation on
the fracture of glass sheets. For Griffith, a crack becomes unstable when the
elastic energy stored by the material around the tip of the existing crack is
greater than the energy necessary for extending the crack. In 1959 and 1960,
Barenblatt [3] and Dugdale [4] introduced the concept of cohesive forces in
the crack tip region, the first within the limits of elasticity theory and the
second assuming an elastic-perfectly plastic material behaviour. These were
the first attempts to bring closer the two different existing theories of Solid
Mechanics: fracture mechanics (FM) and continuum mechanics (CM).
Also in the 1960’s, digital computers and the Finite Element Model

(FEM) started to be used by structural engineers in their attempts to obtain
and quantify solutions in Structural and Solid Mechanics. With the evolving
of time, this has eventually led to two different conceptions of the phenom-
enon of tensile cracking: the discrete and the smeared crack approaches.
Although nowadays many structural engineers and computational solid

FE codes are decanted in favor of the smeared crack approach, the observed
mesh-size and mesh-bias dependence make the academic world very suspi-
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cious about the solutions obtained within this format. A lot of effort has been
spent in the last 40 years to investigate and remedy the observed drawbacks
of this approach.
It will be shown in this paper that the difficulties encountered in crack

propagation problems when using the smeared crack approach are not re-
lated neither to the format of the standard continuum equations nor to the
local definition of the constitutive laws considering softening. In recent pa-
pers ([5] and [6]) it is shown that mesh objective solutions, convergent upon
refinement and exhibiting highly localized shear bands (or slip lines), can be
obtained using local J2-plasticity and damage models. The key to obtain
these satisfactory solutions is to overcome the incompressibility constraint
posed by the isochoric flow of inelastic strains imposed by the constitutive
model. This is achieved by (i) using the suitable mixed format of the bal-
ance equations (which include the appropriate continuity equation) and (ii)
using an stabilization technique especially designed to stabilize the selected
interpolation fields for the primary variables (displacements and pressure).
Hence, it must be concluded that with the appropriate (standard) continuum
framework and with (standard) local constitutive models, the problem can be
solved if the shortcomings of the spatial discretization used are satisfactorily
surmounted.
As a consequence, the objectives of this paper are threefold: (i) to investi-

gate the numerical difficulty that causes the mesh bias encountered in tensile
localization problems when using the classical smeared crack approach, (ii)
to propose a numerical procedure to overcome the identified numerical diffi-
culty, and (iii) to assess the performance of the proposed procedure by means
of solving selected numerical examples which exhibit tensile cracking.
The outline of the paper is as follows. In the next section we briefly

review the main historical developments occurred both in the discrete and
smeared crack approaches in the last 40 years, focusing in the several diffi-
culties encountered along the way. Then, a simple isotropic scalar Rankine
damage model, suitable for degradation under tensile straining, is presented.
The necessary regularization of the softening modulus according to the size
of the elements inside the localization band is discussed. Later, the cor-
responding standard irreductible boundary value problems for the so-called
weak and strong discontinuity approaches are formulated. Strong and weak
forms of the corresponding continuum and discrete problems are presented
and the well posedness of the resulting equations is discussed. Also, the well
known difficulties of solving localization problems using this standard, weak
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discontinuity, local formulation are explained. Both mesh size and mesh bias
dependence are discussed. Tracking of the crack through the fixed FE mesh
is presented as a remedy to overcome this last difficulty. Also, a Section
is include to discuss the theoretical and practical difficulties posed by the
so-called non local constitutive models. Finally, selected numerical examples
are presented to assess the present formulation and to show the attained
benefits as compared to the “straight” use of the standard local formulation.

2 Discrete and smeared approaches to crack

propagation

2.1 Discrete crack approach

The earliest applications of the FEM to concrete structures, back in the
1960’s, already dealt with the problem of crack propagation and they were
some of the first nonlinear structural applications of the method ([7], [8], [9]).
They focused on two essential ingredients: how to insert a crack in a FE mesh
and the criteria for crack instability and direction of crack growth. Today,
after more than four decades, these questions remain open to discussion in
the research community.
In those early days, cracks were modelled by separation of nodal points

initially occupying the same spatial position. An obvious restriction of such
models is that cracks can only be formed along the element boundaries (Fig.
1a). Thus, the response is strongly mesh-dependent. Furthermore, when a
crack propagates, the topology of the mesh is changed, and the updating
procedures are time consuming. The DC approach was later refined so that
new elements could be introduced whose boundaries were along the spread-
ing crack (Fig. 1b). This obviously reduces the mesh dependency of the
approach, but then remeshing techniques are required and the computing
time increases.
Although the primitive studies have been based in a simple maximum

tensile stress criterion to decide on the moment of crack propagation, it was
very early recognized that the stress and strain fields that develop at the
tip of the crack are singular and stress criteria were not reliable. Then,
Computational Fracture Mechanics was born as the natural consequence of
Fracture Mechanics theory. Criteria for crack propagation and, eventually,
the prediction of the direction of propagation come directly from this theory,
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which is, mostly, based on energy criteria. Also, it was noted that standard
FE were not appropriate to capture these singular stress and strain fields
[10]; consequently, special FE were developed (see reference [11]).
Alternatively, in the last decade, an effort has been made to tackle the

discretization problem directly. Recently, Belytschko and coworkers ([12],
[13], [14]) have introduced the so-called extended finite element method (X-
FEM), which effectively overcomes most of the cited disadvantages of the
DC approach. The X-FEM allows for crack propagation without remeshing,
at the expense of tracking the advance of the crack through the FE mesh
and progressively enriching the nodal degrees of freedom with new ones that
represent both the displacement jumps across the crack and the developed
singular field at the tip of the advancing crack (Fig. 1c, where the “enriched”
nodes are marked).
Other of these efforts to model discrete cracks without the need of remesh-

ing is the so-called strong discontinuity approach ([15], [16], [17], [18], [19],

(a) (b)

(c) (d)

Figure 1: Discrete approaches to crack propagation: (a) without remesh-
ing, (b) with remeshing, (c) with nodal enrichment and (d) with elemental
enrichment
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[20]). The strong discontinuity concept does not really depart from the usual
Continuum Mechanics framework (as it will be shown below, its theoretical
formulation is very similar to that of contact problems) but it leads to a new
formulations for finite elements with “embedded discontinuities”, depending
on the kinematical and statical assumptions adopted. Interestingly enough,
their application invariably needs the use of “tracking” algorithms ([18], [20],
[50], [21]), in order to establish which elements lie in the crack path and need
to be enriched (Fig. 1d, where the elements with “embedded” discontinu-
ities are marked). This, as the explicit control on the energy dissipated in
the formation of the crack, represents another link with the well established
tradition of fracture mechanics.
It is remarkable how the X-FEM, originated fromComputational Fracture

Mechanics has so many similarities with the Strong Discontinuity approach,
originated from Computational Continuum Mechanics (see [19]).

2.2 Smeared crack approach

The smeared crack (SC) approach was born directly from Computational
Continuum Mechanics. This means that, at least initially, the criteria for
crack propagation and, eventually, the prediction of the direction of prop-
agation came directly from this theory, which is, mostly, based on failure
criteria expressed in terms of stresses or strains. SC models do not account
for discontinuities in the topology of the FE mesh, so remeshing is unneces-
sary (Fig. 2a). On the contrary, the cracked material is assumed to remain

(a) (b)

Figure 2: Smeared approaches to crack propagation: (a) without remeshing
and (b) with remeshing
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a continuum and the mechanical properties (stiffness and strength) are mod-
ified to account for the effect of cracking, according to the evolving states
of strain and/or stress. This leads to the concept of generalized constitutive
models, strongly nonlinear and with strain softening.
This approach was first used by Rashid in his 1968 historical paper [22]

to study prestressed concrete pressure vessels. It must be said that the sim-
plicity of this conception caught the attention of the engineering community
immediately and, during many years, the smeared crack concept practically
monopolized the field of crack propagation. The approach can be imple-
mented in any nonlinear FE code by simply writing a routine for a new
material constitutive model. Even today, more than 35 years later, most of
the commercial FE codes use this approach, with little refinement over the
original Rashid’s ideas.
Unfortunately, it was very early realized in the 1970’s that if a smeared

crack is only one element across, the total energy dissipated in the cracking
process is proportional to the size (the volume) of the element. Upon mesh
refinement, for infinitesimally small elements, the dissipated energy vanishes.
This is unacceptable from the physical point of view. The problem was
satisfactorily solved in 1983, when Bazant and Oh [24] proposed the crack
band model, which is essentially identical to the previous Hillerborg’s [23]
cohesive crack model, but developed in the context of CM and, therefore,
easily implemented in standard FE codes. These new ideas showed that the
always controversial concept of strain softening should not be considered as
a characteristic of the material, but it is related to the fracture energy of
the material and the size of the FE crossed by the smeared crack. This has
certainly to be considered as a mile-stone in the road to crack modelization
because it was the first serious success in bringing FM and CM theories to
a common standpoint. Today, most of the commercial FE codes implement
models with strain softening according to this idea of relating the dissipated
energy to the fracture energy of the material.
In the 1980’s, the constitutive models used were mostly orthotropic and

max. principal stress driven. A lot of effort was devoted to the apparent
“stress locking” effect that was observed when the directions of principal
strain rotated along the analysis. Reference [25] presents a review of damage-
based approaches for the fracture of quasi-brittle materials, linking them to
the now old-fashioned, although still very popular, fixed and rotating smeared
crack models of the 1980’s.
Since the 1990’s isotropic damage or plasticity models are usually pre-
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ferred to model crack propagation. This choice implies that the macroscopic
anisotropy of the structural behaviour has to be captured by means of the
finite element approximation to within the resolution of the adopted mesh
([26], [27], [28], [29], [30]).
But once the problem of mesh-size dependence was quite satisfactorily

overcome, a more difficult one was recognized. FE solutions based on SC
suffer from mesh-bias dependence in such a strong manner that it can not
be ignored. However, if the spatial discretization is designed in such way
that an “appropriate” path for the advancing crack is available, the solutions
obtained are immaculate (see Fig. 2b). In fact, remeshing has been suggested
as a partial solution to this problem (see [31], [32]).
Since the early 1990’s until now, for more than a decade, a significant part

of the research effort in Computational Solid Mechanics has been devoted to
this problem. It is clear that in a computational failure model, set up within
the CM framework, three pieces are necessary: (i) a continuum model that
defines the variables and equations of the continuum BVP to be solved,
(ii) a constitutive (material) model for the cracked and non-cracked parts
of the domain, and (iii) a discretization procedure both in space and time
that will turn the continuum differential equations into discrete algebraic
equations. These three pieces are independent of each other; their basis
must be established and their requirements must be fulfilled independently.
If the resulting computational failure model has a flaw, its origin must be
sought in one of the “pieces” of the puzzle. The well-known fact that “well-
aligned” meshes produce good results strongly suggests that the flaw is in
the spatial discretization procedure.
However, this evidence has not been generally recognized. Up to now,

the disagreeable effects of mesh dependence have been attributed to the fact
that, when strain-softening occurs and the slope of the local stress-strain
curve becomes negative, the governing equations of the continuum problem
lose their “natural” elliptic character. To remedy this, many so-called non-
local constitutive models have been proposed in the last decade in different
versions (micropolar models ([33], [34], [35]), gradient-enhanced models ([33],
[37], [38], [39], [40], [41], [42], [43]), in different versions). All these strategies
introduce a “localization limiter” (a length parameter) into the problem that
effectively precludes the occurrence of sharp displacement gradients (strains).
After more than 35 years of research, it has come the moment of looking

back to all the developments that have taken place, and to try to restore the
original formulation of the smeared crack approach, that is, that crack prop-
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agation can be solved efficiently within a local, rate-independent constitutive
format.
Let us conclude this Section on the smeared crack approach with two

remarks about isotropic continuum damage and strain softening:

� In the FM community a technique known as “element extinction” is
sometimes used. This consists on simply deleting from the FE mesh
those elements lying along the crack path. The results obtained are
satisfactory if the finite element mesh used is fine enough. In a CM
framework, the same can be done, but this “extinction” should be
made with care, that is, taking into account the elastic energy released
when performing it. This is, precisely, what an isotropic damage ac-
complishes: when the damage index reaches its final value, d = 1,
the totally degraded element is effectively removed from the mesh; but
this process takes place gradually, and while it is occurring the stored
elastic energy is adequately released according to the brittleness of the
particular element.

� It is often argued, particularly from the fracture mechanics commu-
nity, that a material with negative tangential moduli is not a sound
concept, as such material would be unstable and would not propagate
waves. This is true, but the fact that the constitutive model, formulated
in terms of nominal stresses and strains, contemplates strain softening
does not mean that the real material softens. Damage models explic-
itly state that the stresses that the real material is sustaining are the
effective stresses, which are not affected by damage; the lower nom-
inal stresses are obtained by taking into account the surface density
of defects in the damaged material, which is, by conception ([44], [45],
[46]), the damage index. In this sense, the behaviour of the softening
damaged material upon straining has perfect meaning as an average
of the non-softening intact material and the growing density of defects
that are developing inside it.
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3 Isotropic Rankine damage model

3.1 Constitutive model

The constitutive equation for the isotropic damage model is defined as:

σ = (1− d) σ = (1− d) C : ε (1)

where the effective stresses σ, σ = C : ε, can be computed in terms of the
total strain tensor ε, ε =∇s

u, where u are the displacements, (:) denotes
the double contraction and d, the damage index, is an internal-like scalar
variable whose definition and evolution is given below.
In the present work, the equivalent stress will assume the following form:

τ = σ̄1 (2)

where σ̄1 is the largest principal effective stress and · are the Macaulay
brackets ( x = x, if x ≥ 0, x = 0, if x < 0).
With this definition for the equivalent effective stress, the damage crite-

rion, Φ, is introduced as:

Φ (τ , r) = τ − r ≤ 0 (3)

where r is an internal stress-like variable that is interpreted as the cur-
rent damage threshold, in the sense that its value controls the size of the
(monotonically) expanding damage surface. The initial value of the damage
threshold is ro = σo, where σo is the initial uniaxial damage stress.
The expansion of the damage bounding surface for loading, unloading

and reloading conditions is controlled by the Kuhn-Tucker relations and the
damage consistency condition, which are

ṙ ≥ 0 Φ (τ , r) ≤ 0 ṙΦ (τ , r) = 0 (4a)

if Φ (τ , r) = 0 then ṙ Φ̇ (τ , r) = 0 (4b)

leading, in view of Eq. (3), to the loading condition

ṙ = τ̇ (5)

This, in turn, leads to the explicit definition of the current values of the
internal variable r in the form

r = max { ro, max(τ)} (6)
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Finally, the damage index d = d(r) is explicitly defined in terms of the
corresponding current value of the damage threshold, so that it is a monoton-
ically increasing function such that 0 ≤ d ≤ 1. In this work, we will use
the following exponential function:

d(r) = 1− ro
r
exp −2HS

r − ro
ro

ro ≤ r (7)

where HS ≥ 0 is a constant.

3.2 Strain-softening and fracture width regularization

In FE analysis, the straight use of strain softening constitutive models entails
the loss of objectivity of the results, in the sense that the strains tend to
localize in a band that is only one element across, independently of the
element size he. Upon mesh refinement, as he tends to zero, strains tend to
concentrate on a band of zero thickness (a geometrical line), and no energy
is dissipated in the failure process. Clearly, this is physically unacceptable.
In order to remedy this well-accounted for fact, Bazant and Oh [24] pro-

posed the use of the so-called “fracture energy regularization technique”,
nowadays used in many FE applications. This strategy is extremely con-
venient from the computational standpoint, while guaranteeing a correct
dissipated energy upon mesh refinement.
The fracture energy regularization technique is based on the assumption

that dissipation takes place in a band only one element thick, irrespective of
the element size. The basic concept consists on modifying the softening law
in such a way that the energy dissipated over a completely degraded finite
element be equal to a given value, which depends on the fracture energy of
the material and on the element size. In each element, the computational
width of the fracture zone is called the element characteristic length lch [47].
The specific dissipated energy D is then scaled for each element so that

the equation

D lch = Gf (8)

holds, where Gf is the mode I fracture energy of the material, regarded to
be a material property. This makes the softening modulus HS dependent on
the element size.
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For the isotropic damage model with exponential softening it can be
proved that the specific dissipated energy is

D = 1 +
1

HS

σ2o
2E

(9)

and, therefore

HS =
HS lch

1−HS lch
≥ 0 (10)

whereHS = σ2o/ (2EGf) depends only on the material properties, as Gf is the
mode I fracture energy per unit area, σo is the uniaxial strength and E is the
Young’s modulus. Note that the specific softening parameter HS measures
the brittleness of the material, while the elemental softening parameter HS
measures the brittleness of the finite element. It is clear from Eq. (10) that the
introduction of the characteristic length implies a limitation on the maximum
size of the finite elements used in the mesh, he ≤ 1/HS. The greater the
elements, the steeper is the softening branch of the response, and, locally,
the fracture process is more brittle. For he > 1/HS the dissipated energy
D = Gf/he is smaller than the elastic energy stored by the element, and a
dynamic snap-back would occur at the onset of damage.
For linear simplicial elements, the characteristic length can be taken as the

representative size of the element, lch = he. Assuming that the elements are
equilateral, the size of the element can be computed as h2e = 4/

√
3 Ae for

triangular elements, Ae being the area of the element, and as h
3
e = 12/

√
2 Ve

for tetrahedral elements, where Ve is the volume of the element.
It is remarkable how this simple technique solves the problem of mesh-size

dependence satisfactorily. To show this, consider the 1D problem of a straight
bar under tensile straining, with a small defect located at a given position
inside the bar. Obviously, the only reasonable solution is a crack initiating
and progressively opening at the location of the defect. If the problem is
solved with small enough time increments so to ensure that only the finite
element containing the defect opens at the proper time step, and the element
size is adequately taken into account to regularize the local softening, the
global response of the bar, in terms of load vs. end displacement is unique
and perfectly objective upon mesh refinement.
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4 Boundary value problem

The possibilities to model tensile cracks with finite elements within the Con-
tinuum Mechanics framework are several, and both the weak and the strong
discontinuity approaches have been followed. In the first, the objective is
to capture the crack as precisely as possible, with standard continuous ele-
ments. In the second, the displacement field is enhanced with discontinuous
functions so that the “true” discontinuity line can be captured. In fact, both
approaches are perfectly compatible. On one hand, a weak discontinuity
can be interpreted as the regularization of a strong one over a given width,
for instance with the discontinuity “smeared” across the maximum possible
resolution of the mesh, that is, one element; on the other hand, a strong
discontinuity is the limit case of a weak one with vanishing width. Figure 3a
sketches both approaches to strain localization.

Figure 3: Strain localization: (a) weak discontinuity; (b) strong discontinuity

13



4.1 Weak and strong discontinuity approaches

4.1.1 Weak discontinuity approach

The strong form of the continuum mechanical problem can be stated as: find
the displacement field u, for given prescribed body forces f , such that:

∇ · σ+ f = 0 in Ω (11)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions. Eq. (11) is subjected to appropriate Diritchlet
and Neumann boundary conditions. In the following, we will assume these in
the form of prescribed displacements u = u on ∂Ωu, and prescribed tractions
t on ∂Ωt, respectively.
Note that in the following, the damage distribution is assumed to be

known. The standard formulation merely states the problem for a given
damage configuration; observe that, by itself, it does not include any criterion
to trigger strain localization under increasing straining.
Multiplying by the test functions and integrating by parts, the associated

weak form of the problem can be stated in the standard form as:

(∇s
v,σ)− (v, f)− v,t

∂Ωt
= 0 ∀v in Ω (12)

where v ∈ V are the variations of the displacement field, V = H1 (Ω) is
the space of continuous functions with discontinuous derivatives, and (·, ·)
denotes the inner product in L2 (Ω), the space of square integrable functions
in Ω.
The corresponding discrete problem is

(∇s
vh,σh)− (vh, f)− vh,t ∂Ωt

= 0 ∀vh in Ω (13)

where vh and σh represent the discrete counterparts of the fields v and σ.
In the weak discontinuity approach, the discrete displacement space uh

consists of polynomial functions inside the elements and interelement con-
tinuity is enforced by nodal compatibility; therefore, uh is piece-wise con-
tinuous. The discrete stress field σh is a continuous function (through the
constitutive equation) of the discrete strain field, εh=∇s

uh, which consists of
polynomial functions (of one degree less than the displacements) inside the
elements, but is discontinuous at the interfaces between elements. Therefore,
strain localization can be optimally reproduced by highly localized displace-
ment gradients (strains) across one single element.
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4.1.2 Strong discontinuity approach

In the strong discontinuity approach ([15], [16], [17], [18], [19]) it is assumed
that it exists a material discontinuity S ⊂ Ω of zero measure (that is, S can
be mapped onto R(ndim−1)) and that discontinuities in the displacement field
may occur across S (see Fig. 4). This is the case of a line crack in 2D or a
surface crack in 3D.
Note that in the following, the position and extension of the discontinuity

S is assumed to be known. The formulation merely states the problem for
a given configuration; it is emphasized that, by itself, it does not include
any criterion to establish the stability of the crack or to govern its possible
extension with time under increasing loading. This has to be derived from
different considerations, like bifurcation analysis [17].
The strong form of the continuum mechanical problem can be stated as:

find the (discontinuous) displacement field u, for given prescribed body forces
f , such that:

∇ · σ+ f = 0 in Ω\S (14a)

t
Ω\S = t

S in S (14b)

where Ω\S is the part of Ω outside the discontinuity S. Eq. (14a) is subjected
to appropriate Diritchlet and Neumann boundary conditions. Note that Eq.
(14a) represents internal equilibrium in each one of the two parts, Ω− and
Ω+, in which S divides Ω; on the other hand, Eq. (14b) represents continuity

Figure 4: Strong discontinuity approach
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of tractions across the discontinuity S. It can be observed that these are the
same equations that govern contact between two bodies.
Multiplying by the corresponding test functions and integrating by parts

the first equation, the associated weak form of the problem can be stated in
the form:

(∇s
v,σ)− (v, f)− v,t

∂Ωt
= 0 ∀v in Ω\S (15a)

v, tΩ\S − v, tS = 0 ∀ṽ in S (15b)

where v ∈ V are the variations of the continuous part of the displacement
field, V = H1 (Ω) , and v ∈ V are the variations of the discontinuous part of
the displacement field, V= L2 (Ω). Note that the displacement field u in Ω is
discontinuous across S and it can be split as u = ū+u, where ū is continuous
in Ω and u is discontinuous across S. Eq. (15b) is necessary to determine u.
Note that the stress field σ needs to be defined only in Ω\S, and not at

S. In fact, to solve the problem it is necessary to relate the tractions t to the
displacement jumps across S. This would call for a decohesive traction versus
jump law at the interface, and there would be no necessity of introducing
the concept of a softening stress versus strain law for the material in the
solid domain. However, the following artifice is possible. Let us extend the
definition of the stress field σ in S in such a way that

t
S = σS · n in S (16)

where n is a unit vector orthogonal to S (see Fig. 4). In this way, the
decohesion law relating tractions with displacement jumps can be interpreted
as the projection onto S of a strain-softening constitutive law relating (certain
components of the) stress with (certain components of the) strain, defining
the strain tensor in S as ε =∇s

u, in a distributional sense ([17], [48]).
The corresponding discrete problem is

(∇s
vh,σh)− (vh, f)− vh,t ∂Ωt

= 0 ∀vh in Ω\S (17a)

vh, t
Ω\S
h − vh, t

S
h = 0 ∀ṽh in S (17b)

where vh,vh and σh, th represent the discrete counterparts of the fields v,v
and σ, t.
In the strong discontinuity approach, several possibilities appear when

defining the spatial discretization of the displacement field. One of them
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is to use finite elements with embedded discontinuities. Here, the elements
crossed by the discontinuity, and only them, are enriched with additional
degrees of freedom to parametrize the discontinuous part u. Precisely, Eq.
(17b) is necessary to determine these additional dofs. Therefore, the discrete
displacement space uh is piece-wise continuous in Ω\S, but discontinuous
across S. The discrete strain field εh consists of polynomial functions (of one
degree less than the displacements) inside the elements and discontinuous
at the interfaces between elements in Ω\S, but grows to infinity across S.
Figure 3b shows this situation.

4.2 Well posedness, ellipticity and stability

Over the last years, many researchers have supported the idea that the under-
lying reason why the standard, local, rate-independent constitutive models
are inadequate to model localized straining correctly is the local change of
character of the governing equations (see, for instance, [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43]). Let us consider this question by consid-
ering both the weak and strong discontinuity approaches.
The governing Eq. (11) can be rewritten in term of the deviatoric and

volumetric parts of the deformation as

∇ · (G∇s
u) +∇ (K ∇ · u ) + f = 0 in Ω (18)

where G and K are the shear and bulk moduli, respectively.
A standard stability (or energy) estimate for problem (18) is obtained by

multiplying the left hand side by u and integrating by parts over the domain
Ω, to yield

(∇s
u,G∇s

u) + (∇ · u,K ∇ · u) = u
2
E > 0 (19)

where · 2E is the energy norm (equal to the elastic free energy). For strictly
positive elastic moduli, G,K > 0, the elliptic character of the elastic govern-
ing equation is evident.
For an isotropic damage model, the governing equation reads

(∇s
u,Gsec∇s

u) + (∇ · u,Ksec ∇ · u) = u
2
E > 0 (20)

where the elliptic character of the equation can be guaranteed as long as the
secant moduli, Gsec = (1−d)G andK sec = (1−d)K, remain strictly positive,
that is, for damage index d < 1. Eq. (20) still holds if the secant moduli
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vanish completely (d = 0) only in a subdomain S ⊂ Ω of zero measure. The
problem is obviously unstable if there are subdomains of non-zero measure
in Ω which lose the stiffness completely.
Regarding the discrete problem, the same restrictions apply for the gov-

erning equation

(∇s
uh,Gsec∇s

uh) + (∇ · uh,Ksec ∇ · uh) = uh
2
E > 0 (21)

where uh represent the discrete displacement field. It would seem that ellip-
ticity can only be maintained if uh is discontinuous (strong discontinuity),
ensuring that the secant moduli vanish completely only in a subdomain of
zero measure in Ω. However, in a less strict sense, it can be stated that
the problem remains elliptic if the secant moduli vanish only in a “properly
restricted” subdomain in Ω. This leaves the possibility of solving crack propa-
gation problems using standard elements with continuous displacement fields
uh (weak discontinuity) open, if the extension of the totally damaged areas
is “properly restricted”. Also, the problem formulated in this way remains
elliptic upon mesh refinement along the crack path.

5 The problem of crack propagation

5.1 Local approximation error

In Fracture Mechanics, the two basic ingredients of the physical model are:
(a) the criterion for crack propagation (instability), which is usually estab-
lished in terms of the stored elastic energy, and (b) the criterion for selecting
the direction of crack propagation, which is established empirically among
several possibilities [49]. Once these two ingredients are established, the
problem of crack propagation is invariably tackled in a staggered, two stage,
procedure: for a given crack configuration, (i) solve the mechanical problem
in order to compute the stress field and, consequently, to determine if the
crack is unstable and (ii) update the crack path, by advancing the crack tip
a small distance, according to the selected criterion for crack propagation.
No surprisingly, crack tracking algorithms are always an essential part of FM
based codes, and are also crucial in the application of the X-FEM.
In a Continuum Mechanics framework, the same procedure can be fol-

lowed, now involving: for a given damage distribution, (i) solve the mechan-
ical problem in order to compute the stress field Eq. (21) and, consequently,
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(ii) update the damage distribution. This second stage involves two different
operations: (ii.a) to update the damage index in those elements previously
damaged and (ii.b) to decide which elements are newly damaged.
Observe now the implications of proceeding in this way. Stage (i) consists

of solving a linear elastic BVP, with a given distribution of (positive) elastic
moduli. The problem is obviously linear, well posed, elliptic, stable and the
solution is unique. Note also that while solving this problem it is never
necessary to evaluate any negative tangent elastic modulus. Stage (ii.a) is
trivial, as damage is an explicit function of the strain history. Stage (ii.b),
deciding which elements are newly damaged, requires some more deliberation.
In the classical smeared crack approach it has always been implicitly un-

derstood that the criterion for the onset of cracking, which is always estab-
lished in terms of stresses/strains, also must automatically define the direc-
tion of propagation. This is a natural assumption in the continuum problem,
with proper evaluation of stress and strain values and directions. However,
in the discrete problem the stress and strain fields evaluated in the vicinity
of the crack tip differ greatly from being exact. In fact, the tip of the crack is
a (nearly) singular point, and the L∞-norm of the error on the displacement
gradients (strains) in the computed discrete solution is unbounded. As a
consequence, the automatic application of the cracking criterion for the eval-
uation of the direction of crack growth leads to an unacceptable dependence
on the mesh bias in this region.
This local approximation error due to the spatial discretization in the

vicinity of the crack tip is the only real difficulty to be overcome when solving
the problem of tensile crack propagation. When using the Fracture Mechanics
approach, this was traditionally accomplished by the use of special finite
elements in the discretization of this region (see reference [11]). More recently,
the X-FEM applied to LEFM problems proves effectively that mesh bias is
eliminated if the functional space of the discrete displacement field is enriched
with functions that contain the analytical solution in the vicinity of the crack
tip ([12], [13], [14]).
The same situation arises when using the Continuum Mechanics ap-

proach. Remarkably, and although it was not always explicitly stated, all
successful applications of the strong discontinuity approach use tracking al-
gorithms to lead the direction of crack propagation. In fact, Mosler and
Meschke [50] have proved that if tracking is not used, the strong disconti-
nuity formulation leads to the same spurious mesh bias dependence as the
standard weak discontinuity approach.
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All these evidences lead to the conclusion that solving in an adequate
manner the problem of crack propagation (crack tracking) is essential also in
a continuum framework of the crack growth problem, both if continuous or
discontinuous displacement fields are used in the interpolation basis.

5.2 Evaluation of the propagation direction

In this work we will explicitly consider the evaluation of the propagation
direction as a separate problem, obviously coupled to that of solving the in-
ternal equilibrium equation (13). This evaluation must be consistently linked
to the cracking criterion, as this is the established cracking mechanism at con-
tinuum level, and it cannot be locally dependent on the discrete stress/strain
fields, as these may be substantially off-track.
An essentially identical procedure was proposed in reference [18] in the

strong discontinuity framework, and it has been already applied in 2D and
3D applications [20].
For a Rankine damage criterion, let us assume that the crack propagates

following a surface (a line in 2D) which is orthogonal to the direction of the
maximum positive principal stress. Let n be a field of unit vectors in this
direction at each point of the domain and s and t be any two orthogonal
unit vectors orthogonal to it. Let θ be a scalar field such that its gradient
is parallel to the given vector field n, so that n =∇θ/ ∇θ . It is clear
that the iso-level surfaces (lines in 2D) defined by θ = cte are orthogonal to
n. Therefore, the crack propagates along one particular iso-level surface S
defined by θ = θ̄o. Thus, the problem of evaluating the direction of crack
propagation is equivalent to finding the scalar field θ and determining the
iso-level locus θ = θ̄o.
This is conveniently formulated as the following evolutionary linear BVP:

find the scalar field θ, such that:

Cθ̇ +∇ · (K ·∇θ) = 0 in Ω (22)

where Ω is the open and bounded domain of Rndim occupied by the solid in
a space of ndim dimensions.
Eq. (22) is subjected to appropriate initial and boundary conditions. In

the following, we will assume that the initial conditions θ(x, t = 0) = θo are
selected to satisfy that θ(xo, t = 0) = θ̄o at the point(s) xo of the boundary
where the crack is to be initiated; natural boundary conditions are imposed at
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∂Ω, except at (at least) two points selected as to ensure that θ̇(xo, t ≥ 0) = 0
(see Fig. 5a).
The coefficientC and the second-order tensorK couple the scalar problem

to the evolution of the mechanical solution, Eq. (11). Noting by S̄ ⊂ S the
part of the iso-level surface S where the cracking criterion has already been
violated (consolidated part of the crack), they take the following values:

C =
0 if x /∈S̄
1/ε if x ∈S̄ , K = s⊗ s+t⊗ t+εn⊗ n (23)

where ε is a small perturbation value. These values are defined to ensure that
θ̇ = 0 for points x ∈S̄ of the already formed crack and that n =∇θ / ∇θ .
The associated weak form of the problem can be stated as:

Cθ̇, η + (K ·∇θ,∇η) = 0 ∀η (24)

where η ∈ Q are the variations of the scalar field, Q = H1 (Ω). The corre-
sponding discrete problem is

C θ̇h, ηh + (K ·∇θh,∇ηh) = 0 ∀ηh (25)

where θh and ηh are the discrete counterpart spaces of θ and η. In the discrete
problem, when the smeared crack approach is adopted, the “points” belong-
ing to S must be understood as the elements crossed by the iso-surface (or
line) S.

(a) (b)

Figure 5: Tracking algorithm: (a) definition, (b) iso-level curves
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Problem (25) is very simple, as it is linear, elliptic and it only involves
one unknown per node. Besides, it is sufficiently well behaved (if ε = 0, K is
singular) and it does not present any (nearly) singular point in the vicinity of
the advancing crack. It can be solved in the same FE mesh as the mechanical
problem and the coupling to it can be solved in a staggered manner once per
time increment. Once it is solved, and the elements e lying along the iso-level
curve S, such that θ = θ̄o, are identified, these are subsequently known to
the mechanical solver when performing the check on the crack criterion; only
those elements crossed by S are allowed to crack, and those actually cracked
are added to the consolidated part of the track S̄ ⊂ S.
Implementation of equation (25) is straightforward in a standard FE

framework [51], and it becomes trivial in those FE codes intended for coupled
multifield formulations, such as thermo-mechanical or seepage-mechanical
problems.

6 On nonlocality and strain localization

Since their advent in 1990 [46], precisely with an isotropic scalar damage
model, the whimsical concept of nonlocal constitutive models, applied to
strain localization problems, has become very popular and been the subject
of innumerable publications. A recent and extensive review of their develop-
ment can be found in [43].
Regardless of their trendiness, nonlocal models pose several theoretical

and practical difficulties. To start with, a nonlocal stress/strain relation vi-
olates the principle of local action [52]: in determining the stress at a given
particle, the motion outside an arbitrary neighborhood of the particle may
be disregarded. This excursion out of the established framework of Contin-
uum Mechanics has many consequences. One is the well-known difficulty to
state “realistic” boundary conditions for the nonlocal variables. A similar
difficulty occurred to the now almost forgotten micropolar models. Another
consequence, less generally recognized, is that they produce solutions where
the peak stresses do not occur at the domain boundaries when they should.
It has been analytically proved by Simone [53] that a nonlocal models fails to
predict maximum values of the stress field at the tip of a sharp crack. This is
not only contrary to experience and observed behavior, but to common sense
also. This, in itself, should preclude the use of this class of models from the
problem of crack propagation.
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A very interesting clarification on the internal workings of the nonlocal
models has been recently provided by Rodriguez-Ferran et al. ([54], [55]). It
is shown there that, being the differential displacement-(local)strain operator
linear (for infinitesimal deformation) and being also linear the convolution
operator typically used in NL models to average the strains, they can com-
mute. In this way, a “new” NL model can be formulated where “nonlocal
displacements” û are obtained by averaging of the “local displacements” u.
Then “nonlocal” strains are obtained in the form ε̂ =∇s

û. Finally, a local
stress-strain relation is used to determine the stresses. This set out is useful
because it reveals that the so-called NL models really consist of a filtering
of the deformation modes, artificially implemented to introduce a length (re-
lated to the averaging radius) into the problem. In particular, no explanation
has been offered as to how to relate this length to the fracture energy of the
material.
Another interesting question is which variable or variables should be non-

local. Should it be the total strain, the elastic strain, the inelastic strain or
some other internal variable of the model? As it is known, different com-
binations of these have been tried, always with different results but never
with any real justification (see, for instance, Table 1 in [43], which proposes
7 different formats for an isotropic damage model).
From the practical point of view the disadvantages are also clear. First,

the notion of a NL model violates the main assumption of the FEM, this
being that the contribution of an individual FE to the global internal forces
and stiffness can be computed from the nodal dofs of that FE. Violating this
means using a data structure significantly more complex than that of a stan-
dard FEM code and, therefore, writing your own “nonlinear” code. Also,
NL averaging translates in a significant increase of the number of nodes con-
nected to a given one. The corresponding increase in the computer memory
and CPU time required by the solver of equations is simply prohibitive for
any real application, 3D being out of the question.
But if NL models have these serious drawbacks, why have they extended

in such a way in the academic community? The reason is that they seem to be
effective against the two main diseases exhibited by local models: mesh-size
and mesh-bias dependence. Let us clear this out.
Nonlocal models do introduce, albeit in a very artificial manner, a length

scale into the formulation. By doing so, they preclude the occurrence of any
real strain localization (sharp displacement gradients) in the solution. As
mesh-size dependence is a consequence of strain localizing in a band which
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is only one finite element across, avoiding this cures the disease. But, unfor-
tunately, introducing a “localization limiter” requires using FE which are 10
to 50 times smaller than the introduced length in order to show convincing
resolution of the localization bands. This degree of discretization cannot be
applied to real engineering applications.
Nonlocal models do not suffer from mesh-bias dependence very much for

the same reason. If the occurrence of really sharp displacement gradients is
hindered by the “localization limiter”, the displacement field is very smooth,
and standard FE are able to reproduce it. Also, the filtering performed on
the strain field acts similarly to the smoothing of non-continuous FE quan-
tities done for post-processing purposes and used by many error estimation
procedures to produce “improved” stress fields. In particular, it is easily ob-
served that the estimation of the direction of maximum principal stress can
be improved by this averaging procedure, see, for instance, [56] (note that,
on the other hand, the peak stress values may be severely underestimated).
It is worthwhile to remark that this beneficial averaging has always been
conducted without regard to any NL concept.

7 Numerical examples

The formulation presented in the preceding sections is illustrated below by
solving three benchmark problems. Performance of the standard continu-
ous displacement (weak discontinuities) finite elements is tested considering
standard2 D plane-stress 3-noded linear triangular meshes.
The examples are solved using the isotropic damage model presented

in Section 3 with exponential strain softening, regularized according to the
element size, and the global tracking algorithm presented in Section 5.
The Newton-Raphson method is used to solve the non-linear system of

equations arising from the spatial and temporal discretization of the discrete
weak form of the mechanical problem. In all cases 200 equal time steps are
performed to complete the analyses. Convergence of a time step is attained
when the ratio between the iterative and the incremental norm of the com-
puted displacements is lower than 0.001 (0.1 %).
Calculations are performed with an enhanced version of the finite element

program COMET [57], developed by the authors at the International Center
for Numerical Methods in Engineering (CIMNE). Pre and post-processing is
done with GiD, also developed at CIMNE [58].
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7.1 Double edge notched specimen (DENS)

This example is selected because it corresponds to a series of tests fully
documented in Nooru-Mohamed’s Doctoral Thesis [59] and it has been nu-
merically simulated in many occasions using different crack approaches ([18],
[21], [60], [61]).
The specimen is square shaped and double edge notched (DENS), with

dimensions 200 × 200 × 50 mm3, and notch depths of 25 mm and widths of
5mm. A schematic diagram of the geometry of the specimen and the testing
arrangement is shown in Figure 6.
The experiments were designed to subject the specimen to mixed-mode

tensile cracking. The DENS was placed in a special rigid loading frame to
allow for the analysis of various loading paths combining shear and tension
under force and/or displacement control. The specimen to be studied here
was supported at the bottom and along the right-hand side below the notch.
The shear force Ps was applied through the frame along the left-hand side of
the specimen above the notch and the normal force P was applied at the top.
The frames were glued to the specimen. The relative normal deformation in
the fracture zone δ was measured between the points marked in the sketch,

Figure 6: Geometry and load for double edge notched specimen (DENS)
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(a) (b) (c)

Figure 7: Experimentally obtained crack patterns for double edge notched
specimen s

65 mm apart and 30 mm from the left-hand side boundary.
Three different load-paths are investigated here, 4a 48-03, 4b 46-05 and

4c 47-06. They are characterized by different values of the firstly applied
shear force Ps (while P = 0): 5 kN for DENS-4a, 10 kN for DENS-4b and
Pmaxs =27.5 kN for DENS-4c. The experiment continues by keeping the ap-
plied shear force Ps constant, while progressively increasing the axial vertical
displacement. The corresponding normal reaction P is measured throughout
the experiment.
Figure 7 shows the crack patterns obtained in the experiments. It should

be observed that, although very interesting, these experimental results can-
not be accepted unquestionably. First, the difference in cracking between the
front and the rear faces indicates that the specimens were not really tested
under pure membrane action, some bending may have spuriously happened.
Furthermore, the cracks at the top and bottom of the specimens do not show
the symmetry that would be expected from the intended boundary condi-
tions. This may be due to a number of reason dealing with the set up of
the fixings. Anyhow, they are affecting the strain/stress field in at least one
half of the specimens significantly. Other comment is that it was reported
that the frame and the specimens, although being glued, suffered separation
in some cases, particularly at the top-right and bottom-left corners, where
some spurious cracking was observed in some specimens. Also, it is worth
to mention that all the numerical simulations referred to these tests tend to
evaluate peak values for the normal forces P which are overestimated when
compared to the experimental values. This may be due to the mentioned de-
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ficiencies in the experimental set up. Finally, the specimens were of different
ages in the moment of their testing. All this means that the confidence on
the experimental results must be critically evaluated.
The computational domain is discretized in two different unstructured

meshes of 2D plane-stress 3-noded linear triangular elements with average
mesh sizes of he = 5 mm (2,125 nodes) and he = 2.5 mm (8,391 nodes),
not shown. Although this may seem a very refined degree of discretization,
it must be observed that the difference in the global elastic stiffness under
the shear forces is 7 % between the “coarse” and “fine” meshes, the latter
being obviously smaller. This is because of the presence of the two notches,
which render the nearby areas nearly singular. Regarding the computational
boundary conditions, they have been defined exactly symmetrical, with the
central node of the mesh being fixed in the horizontal and vertical dofs.
For each of the load-paths, four different analyses have been performed:

(a.1) coarse mesh with tracking, (a.2) coarse mesh without tracking, (b.1) fine
mesh with tracking and (b,2) fine mesh without tracking. The pre-processor
used tends to introduce patches of equilateral triangles with predominant
directions at −60o, 0o and +60o with the horizontal axis, particularly for the
finer mesh. The results obtained are discussed in the following.

7.2 Load path 4a

For load-path 4a (specimen 48-03) the loading is applied in two stages: first, a
shear force Ps = 5 kN is applied, while keeping the normal force P = 0; later,
the experiment continues by keeping the applied shear force Ps constant,
while progressively increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 MPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.8 KPa
and mode I fracture energy Gf = 90 J/m

2.
As commented, four separate analyses are performed using th two meshes.

The computed deformed shapes of the specimen are shown in Figures 8a.1
and 8b.1, for the coarse and fine meshes, respectively (imposed total vertical
displacement ∆ = 0.2 mm, with a displacement amplification factor of 100).
The different element sizes in the meshes can be appreciated in these figures.
As shown, the computed cracks in the two analyses where tracking was per-
formed (top figures) follow very closely the same path, starting at the tip of
the notches and tilting slightly due to the orientation of the strain field. No
spurious mesh bias is observed in any of these analysis.
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(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 8: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen - load path 4a

If no tracking strategy is used, see Figures 8a.2 and 8b.2, the cracks
initiate correctly, but they turn horizontally almost immediately to run along
with the respective mesh alignment and too close to the horizontal axis.
Figure 9 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. In this example the load-
ing branch curves slowly as the cracks progress, turning into the softening
branch once the failure mechanism is fully developed. Load does not vanish
completely because only damage due to tensile effective stresses is considered,
and the state of stresses near the opposite notch is mostly compressive.
Note that the overall global response is very similar upon mesh refinement,

although the effect of the different spatial discretizations can be observed
even in the global elastic stiffness of the specimen. This shows that solving
problems involving singular stress points requires a high level of resolution.
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Figure 9: Load versus displacement for double edge notched specimen - load
path 4a. Comparison between different mesh sizes

No spurious brittleness is observed when the size of the elements in the mesh
is reduced.
Figure 10 shows the results obtained using the proposed formulation on

the fine mesh. The three columns represent, respectively, the evolution, at
three different time steps of the analysis, of: (a) the contours of total dis-
placements, (b) the contours of the damage index and (c) the maximum
principal strain vectors. The progressive concentration of the displacement
gradients (strains) in the elements along the crack paths is evident in the
three columns. The bottom figures show how, when the failure mechanism is
fully developed, all the deformation concentrates in the formed cracks, while
the elements outside these bands are mostly undeformed. Note that the reso-
lution of the cracks is optimal for the mesh used. Observe in the left bottom
plot how, once both cracks are formed, the central part of the specimen ro-
tates almost as a rigid body around the center of the specimen. For the
coarser mesh, similar results are obtained, although the strain localization is
smeared across a row of larger elements (see Fig. 8).
In the third column, it can be observed that, although this experiment has
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Figure 10: Results for double edge notched specimen (load path 4a) using
the proposed formulation. Evolution of: (a) displacement, (b) damage, (c)
vectors of max. principal strain

been devised as a mixed-mode cracking test, and the cracks indeed initiate at
an angle from the notches, the failure mechanism is mainly in pure mode I, as
the computed maximum tensile principal strain vectors (as the related vectors
of maximum tensile principal effective stress) are mostly orthogonal to the
crack path. Note also that the correct failure mechanism has been predicted
although the directions of some of the computed maximum principal strain
vectors are clearly dependent on the mesh bias, as they are not orthogonal
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(a)

(b)

Figure 11: Evolution of the profiles along the central vertical axis of: (a) ver-
tical displacement and (b) maximum principal strain for double edge notched
specimen (load path 4a)

to the crack path everywhere.
Finally, Figures 11a and 11b show the evolution, at three different time

steps of the analysis, of: (a) the vertical displacement and (b) the maximum
principal strain, along a vertical line along the centre of the specimen which
crosses both cracks. In these, it can be observed how the initially smooth
gradient of displacements progressively localizes into two very sharp (but
weak) jumps across one single element. Also, the strain profile progressively
localizes with very sharp resolution of the two (weak) discontinuities formed.
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It is here shown that, in practice, there exists little difference between a
highly resolved weak discontinuity and a strong discontinuity.

7.3 Load path 4b

For load-path 4b (specimen 46-05) the loading is also applied in two stages:
first, a shear force Ps = 10 kN is applied, while keeping the normal force
P = 0; later, the experiment continues by keeping the applied shear force Ps
constant, while progressively increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 MPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.2 KPa
and mode I fracture energy Gf = 80 J/m

2.
Again, four separate analyses are performed using the two different meshes.

(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 12: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen (load path 4b)
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The computed deformed shapes of the specimen are shown in Figures 12a.1
and 12b.1, for the coarse and fine meshes, respectively (imposed total ver-
tical displacement ∆ = 0.2 mm, with a displacement amplification factor of
100). As shown, the computed cracks in the two analyses where tracking was
performed (top figures) follow very closely the same path, starting at the tip
of the notches and tilting markedly due to the orientation of the strain field.
No spurious mesh bias is observed in any of these analysis. The elevation
that the top crack reaches above the horizontal axis matches almost exactly
that observed in the experiment (see Fig. 7b).
If no tracking strategy is used, see Figures 12a.2 and 12b.2, the cracks are

practically horizontal, running along with the mesh alignment and practically
coinciding with the horizontal axis. The analysis on the fine mesh fails along
this axis at a much earlier stage than expected.
Figure 13 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. In this example the loading
branch curves more slowly as the cracks progress, turning into the softening
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Figure 13: Load versus displacement for double edge notched specimen - load
path 4b. Comparison between different mesh sizes
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Figure 14: Results for double edge notched specimen (load path 4b) using
the proposed formulation. Evolution of: (a) displacement, (b) damage, (c)
vectors of max. principal strain

branch once the failure mechanism is fully developed. Load almost vanishes
completely at the end of the analyses.
As in the previous example, the overall global response is very similar

upon mesh refinement, and no spurious brittleness is observed when the size
of the elements in the mesh is reduced.
Figure 14 shows the results obtained using the proposed formulation on

the fine mesh. The three columns represent, respectively, the evolution,
at three different time steps of the analysis, of: (a) the contours of total
displacement, (b) the contours of the damage index and (c) the maximum
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(a)

(b)

Figure 15: Evolution of the profiles along the central vertical axis of: (a) ver-
tical displacement and (b) maximum principal strain for double edge notched
specimen (load path 4b)

principal strain vectors. The progressive concentration of the displacement
gradients (strains) in the elements along the crack paths is evident in the
three columns. The bottom figures show how, when the failure mechanism is
fully developed, all the deformation concentrates in the formed cracks, while
the elements outside these bands are mostly undeformed. The resolution
of the cracks is optimal for the mesh used. For the coarser mesh, similar
results are obtained, although the strain localization is smeared across a row
of larger elements (see Fig. 12).
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In the third column, it can be observed again that the dominant mecha-
nism for the progression of the crack is an almost pure tensile mode I, despite
the shearing stress/strain fields applied. Note that the correct crack path is
predicted although the directions of the computed maximum principal strain
vectors are clearly dependent on the mesh bias, as they are not necessarily
orthogonal to the crack path.
Finally, Figures 15a and 15b show the evolution, at three different time

steps of the analysis, of: (a) the vertical displacements, (b) the maximum
principal strain, along a vertical line along the centre of the specimen which
crosses both cracks. Again, it can be observed how it is difficult to main-
tain that there are practical differences between such highly resolved weak
discontinuities and a strong ones.

7.4 Load path 4c

For load-path 4c (specimen 47-06) the loading is also in two stages: first,
the maximum shear force that the specimen can sustain, Pmaxs = 27.5 kN,
is applied, while keeping the normal force P = 0; later, the experiment con-
tinues by keeping the applied shear force Pmaxs constant, while progressively
increasing the axial vertical displacement ∆.
The following material properties are assumed for this case: Young’s

modulus E = 30 MPa, Poisson’s ratio ν = 0.2, tensile strength σo = 2.2 KPa
and mode I fracture energy Gf = 80 J/m

2.
As commented, four separate analyses are performed using the coarse

and fine meshes. In the FE analyses, the maximum shear force sustained by
the coarse mesh was Pmaxs = 27.5 kN, but the fine mesh sustained a slightly
higher shear force of Pmaxs = 28.6 kN (6 % higher) to reach the same state of
crack propagation. This is due to the 7 % difference in the global stiffness of
the two meshes. This explains the differences observed in the corresponding
responses during the later stage of axial straining.
The computed deformed shapes of the specimen are shown in Figures

16a.1 and 16b.1, for the coarse and fine meshes, respectively (imposed total
vertical displacement ∆ = 0.2 mm, with a displacement amplification factor
of 100). As shown, the computed cracks in the two analyses where tracking
was performed (top figures) follow very closely the same path, starting at the
tip of the notches and progressively curving inwards due to the reorientation
of the strain field. Agreement with the experimental pattern (see Fig. 7c) is
remarkable. No spurious mesh bias is observed in any of these analysis.
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(a.1) with tracking (b.1) with tracking

(a.2) without tracking (b.2) without tracking

Figure 16: Deformed geometries (x 100) on the two meshes with and without
tracking for double edge notched specimen (load path 4c)

If no tracking strategy is used, see Figures 16a.2 and 16b.2, the cracks
form almost horizontally, in a totally unrealistic manner. As in the previous
example, the analysis performed with the fine mesh fails prematurely.
Figure 17 shows load vs imposed vertical displacement curves obtained

with the two different meshes, and using tracking. This graph is surprising,
as it shows that the axial force P turns rapidly to be negative, even if the
applied axial displacement is positive, corresponding to pulling apart the
fixing frames. Only reference [61] reports success in modelling this curious
result, while reference [60] clearly states that the model used there cannot
reproduce this compressive state.
Note that the value of the normal forces P involved in this case is much

lower than the shear forces Pmaxs . This explains the relative difference in the
results obtained with the two meshes.
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Figure 17: Load versus displacement for double edge notched specimen - load
path 4c. Comparison between different mesh sizes

Figure 18 shows the results obtained using the proposed formulation on
the fine mesh. As in the previous cases, the three columns represent, respec-
tively, the evolution, at three different time steps of the analysis, of: (a) the
contours of total displacement, (b) the contours of the damage index and (c)
the maximum principal strain vectors. The progressive concentration of the
displacement gradients (strains) in the elements along the crack paths is ev-
ident in the three columns and it is very clear in the bottom figures. For the
coarser mesh, similar results are obtained, although the strain localization is
smeared across a row of larger elements (see Fig. 16).
Finally, Figures 19a and 19b show the evolution, at three different time

steps of the analysis, of: (a) the vertical displacements, (b) the maximum
principal strain, along a vertical line along the centre of the specimen which
crosses both cracks. Comments are similar to those expressed for the previous
load cases.
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Figure 18: Results for double edge notched specimen (load path 4c) using
the proposed formulation. Evolution of: (a) displacement, (b) damage, (c)
vectors of max. principal strain

8 Conclusions

This paper shows the application of standard finite elements with continu-
ous displacement fields, such as linear triangles, to the solution of problems
involving the propagation of tensile cracks using the classical smeared crack
approach, that is, via a local isotropic continuum damage model with prop-
erly regularized strain softening.
A mesh objective formulation of the problem is obtained, which translates

in the achievement of three crucial goals:
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(a)

(b)

Figure 19: Evolution of the profiles along the central vertical axis of: (a) ver-
tical displacement and (b) maximum principal strain for double edge notched
specimen (load path 4c)

1. the solution of the corresponding boundary value problem exists
and it is unique,

2. the position and orientation of the localization paths (cracks) is
independent of the directional bias of the finite element mesh, and

3. the global post-peak load-deflection curves are independent of the
size of the elements in the localization path (crack).

The accomplishment of these objectives is attained by considering the
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determination of the direction of propagation of the strain localization band
as a separate problem, coupled to that of solving the equation of internal
equilibrium. The necessity of doing this stems from previous experience with
the discrete crack approach, both in the fracture and continuum mechanics
frameworks, but it is also deduced from the stability analysis of the weak
forms of the associated mechanical problem, both in continuum and discrete
formats.
The smeared formulation is compared to the discrete approach resulting

from applying the so-called strong discontinuity approach. It is shown that
both approaches are similar in many ways. Non local constitutive models are
also discussed, concluding that, albeit their current trendiness, they are not
suitable for the problem of crack propagation.
Numerical examples show, on one hand, the tremendous advantage of us-

ing a crack propagation algorithm to predict correct failure mechanisms with
localized patterns of tensile deformation, virtually free from any dependence
of the mesh directional bias; on the other, these techniques are shown to pro-
duce results which exhibit the correct amount of dissipated energy during the
localization (fracture) process, directly related to the fracture energy of the
material, yielding a correct global response in the softening regime. Finally,
computed solutions show that, as expected, the weak discontinuity concept
converges upon mesh refinement to the strong discontinuity approach.
The proposed smeared approach is shown to be convergent upon mesh

refinement, virtually free of the spurious size and bias mesh dependence usu-
ally found when directly applying the smeared crack concept to strain local-
ization problems. The derived method yields a robust scheme, suitable for
engineering applications in 2D and 3D.
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