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A recently proposed smeared crack model which properly handles nonorthogonal cracks is further
elaborated. It is proved that the model obeys the principle of material frame-indifference and some
comments on possible stress-strain laws within a smeared crack are made. Algorithms are presented or
indicated for the combination of plasticity and possibly multiple crack formation, for the combination
of visco-elasticity and cracking, and for the combination of cracking and temperature-dependent
material properties and phenomena like thermal dilatation and shrinkage.

1. Introduction

Two approaches may be distinguished for analyzing crack propagation in concrete struc-
tures, namely the discrete and the smeared crack approach. In the former method, nodes are
disconnected if the tensile force in that particular node exceeds a threshold value [1, 2]. This
concept has been refined in recent years as discrete crack models have been developed in
which the cracks are no longer forced to align with the original interelement boundaries [3, 4].

A major disadvantage that adheres to the discrete crack approach is the fact that the
topology of the finite element mesh is changed continuously. In practical applications such
concepts are rather unwieldy and most researchers now apply smeared crack models [5, 6]. In
this concept the crack is assumed to be distributed over the entire area belonging to an
integration point. Indeed, we look upon the smeared crack concept as a genuine continuum
approach in the sense that there is a representative domain for which we can define notions
like “stress”, “strain”, and so on. We recognize that objections may be raised against such a
conception, owing to the heterogeneity of concrete and the discontinuous nature of dominant
cracks. However, current experiences indicate that concrete including phenomena like crack
propagation can be described sufficiently accurately within the framework of continuum
mechanics [7-17].

The enhanced performance of smeared crack models is largely caused by the introduction of
a shear retention factor to model dowel action and aggregate interlock [6] and the application
of strain softening models for concrete in tension [9, 10, 17]. But even with these improve-
ments, a number of problems still adhere to most current smeared crack models. Prominent
amongst these are the combination of cracking and nonlinear behavior of the concrete
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between the cracks and the rotation of principal stress axes after primary crack formation.
This rotation of principal stress axes is caused by the development of shear tractions on the
faces of the crack and results in secondary cracking if the current major principal stress
exceeds the tensile strength. Yet, most analysts largely ignore this phenomenon as they allow
secondary cracks to form only orthogonal to primary cracks.

Although we consider a solution to these problems of crucial importance for a further
successful development of the smeared crack concept, these issues are rarely discussed in
literature. Amongst the exceptions, we mention a recent paper by Bazant and Chern [18] who
discuss the combination of cracking and creep of concrete, and some papers by Cope et al.
(e.g. [11]), who have drawn attention to the rotation of the principal stress axes after primary
crack formation. However, Cope’s solution, namely to co-rotate the material axes when the
stress rotation has exceeded a threshold angle, is theoretically not correct as it violates the
principle of material frame-indifference [19, 20].

In this paper we shall further elaborate a smeared crack model which removes both
above-mentioned deficiencies. We will present an extension and a generalization of previous
work, in which attention was primarily directed to the development of nonorthogonal cracks
in a smeared finite element model [13, 14]. In addition to proving that the model possesses the
property of material frame-indifference, we shall now concentrate on the combination of crack
formation and the nonlinear behavior of the concrete between the cracks. More specifically,
we will present accurate algorithms for the combination of (possibly multiple) cracks and
plasticity and for the combination of cracking and visco-elasticity, while an algorithm for the
combination of cracking and temperature-dependent material properties will be indicated.

2. Nonorthogonal multiple cracking

The basic assumption in our treatment is that the total strain rate £, is composed of a
concrete strain rate £y and several crack strain rates which we will denote by £,,, ,;, etc., so
that

élcl=é;?+élrci+éllcll+”" (1)
For the present, we will restrict ourselves to two active cracks, so that we have

. . .1 - 1I

=€ T Et 6 (2)
This restriction is not essential and we will generalize to an arbitrary number of cracks in a
subsequent section, but it serves the purpose of simplifying the algebraic expressions, The

concrete strain rate £,; is assumed to be related to some objective stress rate g, (e.g. the
Jaumann derivative of the Cauchy stress tensor) via

. . .0
o; = ?j?cl(sli? — &)t Ei/' s (3)

the summation convention with respect to latin subscripts being implied. The fourth-order
s]

tensor D, contains the instantaneous moduli of the concrete and 3, is a second-order tensor
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function which, e.g., represents relaxation effects. The autogeneous strain rate égl is the part
of the concrete strain rate which is independent of the stress (e.g., thermal dilatation or
shrinkage).

The constitutive law (3) is quite general. It embraces most rate-independent plasticity
theories including, for instance, Besseling’s fraction model [21), but also rate-dependent
models as visco-plasticity and visco-elasticity with degenerated kernels [22]. Please note that
the concrete strain rate itself may also be conceived as a summation of several components,
for instance of an elastic and a plastic part.

The relation between the stress rates in the crack o, and the crack strain rates &, of the.
primary crack is assumed to be given by

-

d-;jz Di/jklskl ) (4)

where the primes signify that the stress rate respectively the crack strain rate components of
the primary crack are taken with respect to the coordinate system of this crack. The
fourth-order tensor Di’jk[ represents the stress-strain relation within the primary crack and is
also formulated with respect to the coordinate system of the crack. Analogously, we have for a
secondary crack,

o 1 n R

o= D€ - (5)

The double primes mean that the stress rate components, the crack strain rate components,
and the crack stress-strain relation of the secondary crack are taken with respect to the
coordinate system of the secondary crack.

The strain rate tensor is an objective second-order tensor. If «;, are the direction cosines of
the global coordinate system with respect to the coordinate system of the primary crack, and if
B, are the direction cosines of the global coordinate system x, y, z with respect to that of the
secondary crack, we have the identities

é?j = aikajlél,cl ’ (6)
é;jl = Bix j/éZJ . (7)
Moreover, as we restrict our considerations to Cartesian tensors we also have

Gy = gy (8)

o :’1 = BkiB[j Ty - 9)

To derive the final stress-strain law of the cracked concrete, we proceed as follows. First
substitute the fundamental decomposition (1) in the constltutlve law for the concrete and
transform the crack strain rates in global coordinates s and s ! to local coordinates according
to (6) and (7). This results in

. 0 "
Uij = l]kl(ak/ kl - ak alp op Bkoﬁlpsop) + 21} (10)

'
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Transforming this expression for the stress rate to local coordinates according to the identities
(8) and (9), equating the resulting expressions to the right-hand sides of the crack stress-strain
relations (4) and (5) and rearranging gives, respectively,

Aljop + Buop op akialj[DIi?mn(émn - E.I(:Ul) + Ek[] ’ (11)
Ct]op op + Euop op lBszl][ klmn (Emu - 8'?rm) + Ekl] ? (12)

wherein we have put

Aijop = Dtjop +a,q,0,, npD/cc?mn ) (13)
Bijop = Oy alijanlecc?mn ) (14)
Ci;'ap = BriBlj %o anpD kimn > (15)
Eijap =D :';'op + BkiBlija BnpD lcc(IJmn . (16)

Solving for £, and &, and substituting these expressions in (10) finally gives

mn

. .0
. Uij - :]kl[Dklmn( mn 8mn) + Ekl] ’ (17)
with
— co - -1
Aijk[ - Bik 6_;'1 - Di]'ab Xy, abd[Acdef cdquuvwz szef] Qe alf
co ~
+ Dijab aac abd[Acdef - Bc‘dquuuwz szef] BefghEghmn Bkm Bln

+ Df]?zb BacBdecdefCefgk[Aghmn B Ekl C

ghuv~ upwz

- D:_:]c;b BacBbd[Ecdqr + E:défcefgh[Aghmn

thqu;vwz szmn] B lenopE;plqr] ﬁkq Blr :
(18)

Note that the major symmetry of the stress-strain law (17) with respect to the interchange of ij
and mn is preserved when the constitutive tensors D73, Dy, and Dy, are symmetric with
respect to the interchange of ij and kl.

The constitutive law (17) of the cracked concrete obeys the principle of material frame
indifference (objectivity) if the constitutive law for the intact concrete (3) obeys this principle.
This follows immediately from the objectivity of stress and strain rates, from the objectivity of
the stress-strain relation for the cracks as expressed through (4)—(9), and from the assumed
objectivity of (3). Hence, all quantities and constitutive assumptions which we use in deriving
(17) are objective, and so (17) is objective since this equation is simply the result of algebraic
manipulations with objective quantities.

More formally, material frame-indifference can be proved by considering the stress
response to a given strain rate in a rotated reference frame. In such a system we have

d'”-i‘/' - IjkI[Dklmn (émn mn) + Ekl] (19)

wzmn] akm @,
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where (;'ij and oy, are interrelated through
0= Q4 Q 10 - (20)

Q.. contains the direction cosines from the X, y, Z reference frame with respect to the x, y, z
reference frame. Similarly, we have

&= QiijIékl . (21)

Since the constitutive law for the concrete has been assumed to be objective, we have from (3)
and (21),

Dfr:)nqr(_.. Eqr) + Emn = Qmaan[ opqr( ' ) + E ] (22)
With (20) and (22), equation (19) can be rewritten as

(Tl] = Qkinija an */iifkl[ npqi(gqr - 6.qr) + “'op] (23)

Introducing the tensors a;; and Bi]., which contain the direction cosines of the global coordinate
system x, y, z with respect to the local coordinate system of the primary respectively the
secondary crack,

C-Eki = ka Qi (24)

Bki = kaﬁmi 3 (25)

we can derive that A, jor = Aijop> Bijop = Bijops Cijop = Cijop» and E,, = E, . when A,Jop, BUOP,

C,,op, and E,jop are defined similar to 4, B, ,, Cijop’ and E,]op, but for the replacement of a;,

by a; and B; by BU Using the identities Ailop =Aops Buop = Bijop> Cijop = Cijop» and
jop = Eijop We can subsequently show that

QkiQIijanpAklmn = Aiiap ’ (26)

which completes the formal proof.

It is obvious that a generalization to an arbitrary number of cracks also results in an
objective stress-strain relationship for the cracked concrete since an extra term in (1) does not
affect the objectivity of this equation, and since the definition of the stress-strain law in
subsequent cracks is essentially similar to the definitions (4)—(9) for the first two cracks.

Furthermore, the structure of (18) is quite similar to the structure of an elastoplastic
stiffness tensor at a yield vertex when the tensor 3, is omitted. Indeed, any constitutive law in
which a decomposition in the sense of (1) is assumed will lead to an equation with a similar
structure. This holds true for a yield vertex in which two yield surfaces are active, but for
instance also for the intersection of a yield surface and a fracture surface, an issue to which we
will return in a subsequent section.
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3. Crack stress-strain relation

A salient characteristic of crack formation concerns the fact that in the most general case of
a three-dimensional solid only 3 out of 6 components of the crack strain rate vector are
possibly nonzero, viz. the normal strain rate and two shear strain rates. We therefore assume
that the stress-strain law for the crack has a structure such that the other strain rate
components vanish. Moreover, we assume that the nonvanishing strain rate components are
related to the components of the stress rate vector via

’

! r 12 1 .
O xx D 1 D}z D;s € xx

T | =Pyt Do Dyl £y, (27)
Oz s Dy Dis]| €y, ‘

the meaning of the subscripts being explained in Fig. 1.

Equation (27) is a very general constitutive law for a crack as it allows for coupling effects
in the sense that, for instance, the normal stress rate in the crack not only depends on the
normal crack strain rate, but also on both shear crack strain rates. Similarly, any one of the
shear stress rates may depend on all nonvanishing crack strain rate components. Such coupling
effects occur, for instance, in crack-dilatancy theories [23]. Most applications are however
restricted to small crack strains and then the off-diagonal terms are less important. Con-
sequently, we have set the off-diagonal terms ‘equal to zero, so that (27) reduces to:

.| [C 0 07| ¢
Gol=]0 B*m 0 || &,]. (28)
gl L0 0 pBrul|éL

m. M.

Herein, the tangent modulus C represents the relation between the normal crack strain rate
and the normal stress rate (Fig. 2), u is the elastic shear modulus, and 8* is a shear stiffness

reduction factor,
In practice, the modulus C will be negative as we will normally have a descending relation
between the stress rate normal to a crack and the normal crack strain rate. Here, the

)

. ‘
\ /Y'

crackplane

Fig. 1. Sign convention of stresses in the coordinate system of a primary crack.
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Fig. 2. Stress-strain relation normal to the crack.

evaluation of C from test data entails a complication, as recent research [9, 17] indicates that a
straightforward translation from experimental data in a value for C leads to results which are
not objective with regard to mesh refinement. To overcome this problem, it has been
proposed to consider the fracture energy G;, which is defined as the amount of energy needed
to create one unit of area of a continuous crack [17, 24] as the fundamental parameter which
governs crack propagation. This so-called ““fictitious crack” or “tension-softening” model has
also been adopted in this study, although it is beginning to emerge that the concept is not
entirely free from deficiencies. This is particularly so when we allow for the possibility of
multiple cracks. Suppose that a primary crack has been created with'a softening modulus C
determined from the fracture energy G;. If upon formation of a secondary crack the same
crack stress-strain relation is adopted for the second crack, the fracture energy will be
consumed twice. If both cracks are orthogonal to each other, this is not unrealistic, but for any
other inclination angle it seems incorrect. A solution to this problem seems only possible
within a comprehensive stress-strain relation for a crack which incorporates at least an
objective (with regard to mesh refinement) relation for shear softening and possibly also some
theory for normal-shear coupling. Hence, the concept of a fracture energy as outlined above
does not seem to suffice for multiple crack formation. Indeed, a solution in which the fracture
energy is distributed over both cracks is not correct as the fracture energy G is not a scalar,
but a vector, although this does not seem to have been recognized widely. In this respect, use
of the term fracture energy for G, is perhaps somewhat misleading.

Other problems with the application of fracture energy concepts in smeared crack analysis
relate to axisymmetric configurations where the integration of the strain over the crack
bandwidth entails complications owing to the 1/r term, and to the shape of the softening
branch which may influence the results significantly [10].

The term B*u gives the relation between the shear stress rate in a crack and the shear crack
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strain rate and accounts for effects like aggregate interlock. The meaning of the reduction
factor B* differs from the classical shear retention factor B as introduced by Suidan and
Schnobrich [6]. A relation between 8 and B* can be derived from the consideration that the
total shear strain rate is resolved in a crack strain rate and a concrete strain rate. Assuming
that the concrete behaves in a linearly elastic manner, we may then derive that B* =
B/(1— B) if we have only one crack and B* =28/(1 — B) if we have two orthogonal cracks.
For multiple nonorthogonal cracks or for inelastic concrete behavior, more complicated
relations ensue. It should be emphasized that in the present approach the relation between the
shear stress and the shear crack strain is considered as being fundamental. Hence, B* is
conceived as a material parameter and the relation with the more familiar 8 has only been
derived to give the reader an idea of the range of values which can be used for 8*. In the
sample problems which we will present, 8* has been assumed to be a constant both for
loading and unloading, but a more realistic approach would be to make B8* a function at least
of the crack strain [25]. Unfortunately, few experimental data exist to support a particular
expression for B*.

Especially when we allow the formation of nonorthogonal multiple cracks, we face the
problem of crack arrest, unloading, and even closing of existing cracks. This nearly always
occurs when a secondary crack arises in an integration point. It is thus very important that a
crack closing option is included in a crack model. At present, we have adopted a secant
approach for the unloading branch, so that for unloading the tangent softening modulus C is
replaced by a secant modulus S for the normal stiffness D, (Fig. 2). '

In the past, a number of other smeared crack models have been developed, some of which
allow only one crack in an integration point [5,6,17], while other models permit the
formation of two cracks in an integration point [26-28]. It can be shown that some of these
models are obtained as a special case of the model considered here [14].

4. Matrix-vector formulation
For computational purposes, matrix-vector notation is usually preferable over tensor
notation which was employed in the preceding sections. Further advantages of matrix-vector
notation are that we can write (18) in a more compact form:
A=1I—D*N,MN; + D °NJMBE ~'N!, + DN, ,E "'CMN
—-D*Ny[E~' + ET'CMBE '[N}, , (29)

the symbol t denoting a transpose, and that we can generalize to an infinite number of cracks,
For convenience we will first define the matrices A, B, C, E and M:

A=D'+ND*N,, (30)
B=N'D“N,, (31)

C=N'D“N,, (32)
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E=D"+N.D*N , (33)
M=(A-BE™'C)™", (34)

and the transformation matrices N;, Ny, for the stress or strain vectors from the coordinate
system of the first respectively the second crack to the global coordinate system:

[ Im, In, ]
2
ly lymy lyny
li lzmz lzn‘z
N, = , (35)

2L, Iom,+1m,  Ln +1ln,

201, Im,+I,m, Ln, +1Ln,

20,0, Im +1lm, ln, + l_‘.an

the matrices Ny, Ny, etc. being defined similarly, /, /,, and /, are the cosines of the angle
between the x-axis and the x'-axis, respectively the y’-axis and the z’-axis, and the other
direction cosines are defined in accordance with this convention. As the stress rate vector and
the strain rate vectors normally have six independent components, we would expect N, etc. to
be 6 X 6 matrices and not 6 X 3 matrices. However, it is recalled from the preceding section
that the only nonvanishing crack strain components are the strain component normal to the
crack and two shear crack strain components. If we also assume that the nonvanishing
components of the crack strain rate are only related to the corresponding components (that is
the normal and the two shear stress rates) of the stress rate vector in the coordinate system of
the crack (see (27)), we may delete the appropriate columns from the transformation matrices
Ny, Ny, etc., so that we end up with the 6 X 3 matrix (35).

As a first step to express A in a more compact form, we note that (29) is equivalent to

A BTN
A=I-D*[N N][ ] [ ‘]. 36
1 11 C E ;I ( )
Next, define
D’ 0]
o _ 37
b [0 pl (37)

so that the stress rate vector &,

(4]

which assembles the stress rate components in the local coordinate systems of the cracks and
the crack strain rate vector é°,

e=[4]. (39)

£
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which contains the crack strain rate components in the local coordinate systems, are related by

§=D"é" . (40)
With the additional definition

N=[N; N,], (41)
we can derive that

A= I_DCON(Dcr + NtDcoN)—th ' (42)

It is important to distinguish ¢, which assembles all individual crack strain rates with

respect to their own coordinate system, from &, which is the sum of all crack strain rates
defined in the global xyz coordinate system. With the definition of the composite transforma-
tion matrix N, we observe that £° and ¢ are related through (see (6) and (7)):

£ =Né . \ (43)

Similarly, the vector §, which assembles the stress rates in the individual cracks with respect to
their own coordinate system, is related to the global stress rate ¢ by

§s=N'o. (44)

The generalization to more than two cracks in the same integration point is now straightfor-
ward, as we only have to expand the vectors s:

o
., d_ll
s=1gm s (45)
and é;
8’ !
s _ é" ,
ecr - m{? (46)

and the matrices D" and N to:

D' 0 0
a«_| 0 D" 0 -
D™ = 0 0 D//l R (47)
and . . . .
N=[N, Ny Ny 1, (48)

while (42) is unaffected.
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5. Cracking and plasticity

Neglecting stress-independent strain rates, a plasticity type constitutive law for the concrete
between the cracks is obtained by reducing (3) to

0'. — Depéco . ' (49)
In (49) D" is the elastoplastic stress-strajn matrix,

D?.‘?.fg_ .Q.f_lDe

D® =D~ aa‘;t o Pyt (50)
pt 2L pe 28
do dor

with D¢ the elastic stress-strain matrix. A represents the rate of hardening of the material,

of ok’ og
ok 0’ do”’ (51)

with f= f(o, k) and g = g(o, k) respectively the yield function and the plastic potential. « is
hardening parameter which is a functional of the plastic strain and the superscripts e and p
denote elastic and plastic quantities, respectively. In such an inviscid plasticity formulation 3
vanishes and we obtain for the stress-strain law of the cracked, inelastic concrete

¢ =[D*" — D°N[D* + N'D*"N]"'N'D*"]¢ . (52)

Unfortunately, this rate law is not very suitable for numerical integration, because D,
being a function of the stress tensor, varies during a loading step. To derive a rate law which is
more suitable for integration to finite increments, we recall that the situation in which cracking
and plasticity occur simultaneously can also be interpreted as a vertex in which a yield surface
and a fracture surface intersect, or if we have multiple cracking, as a vertex in which a yield
surface and several fracture surfaces intersect (Fig. 3). Consequently, we have the following

vertex

elastic
domain

yield

fracture
surface

surface

Fig. 3. Fan of possible inelastic strain increments at the intersection of a yield and a fracture surface.
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decomposition of the total strain rate:
E=6"+ 67+ &%, (53)

when we assemble all crack strain rates in the vector £°.
In plasticity theory, the elastic strain rates are assumed to be related to the stress rates by

o=D€", (54)
while the plastic strain rates are derivable from the plastic potential g,

P=)agloo, (55)
with A a nonnegative multiplier which can be determined from the condition that during

loading, the stress must satisfy the consistency condition f=0. Using the definitions of f and ,
f=0 can be elaborated as:

aft .

— e =+ = .

rpeld hA=0 (56)
We now proceed in a manner which is essentially similar to the derivation in the preceding

and we first substitute the decomposition (53) in (54). With the relations (43) and (55) for £
and €° we obtain:

o rel o ey 98 ]

o=D [e Né“ — A ol (57)
Premultiplying this equation with (8f/80)' and invoking (56) gives:

of e 98 } A ener _ O e,

[MD o T h|A+ o= DNeT =2 D% . (58)
Similarly, premultiplying (57) with N' and invoking (44) and (40), we get:

N'D® % A+ [D* + N'D°N]é“ = N'D° . (59)
Solving for A and é°* and substituting these expressions in (57) finally yields:

et 08 " Lot
D Jo BO'D

o =1{D —

t é » (60)
8L pet 98
o o

with D° the elastic-fracture matrix,

D =D°®— D°N[D” + N'D°N]"'N'D* . (61)
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In principle, (60) and (61) are exactly identical with (50) and (52), but (60) is more feasible
for integration to finite increments than (52). For a finite increment we have

t Def_a_g_ _aitDcf
e do 0 .
AFLM Def - 27 ledr. (62)
8f ef ag
h+— D" —=
dor Jdo

During the calculation of the trial stress increment Ao *,
Ao*=D"Ag, (63)

no plasticity is assumed to occur, but only the possibility of cracking is considered. This
implies that during this predictor phase, we have the identities

D¢ =¢*, (64)
oft .. .
£ o' =f, (65)

so that we can rewrite (62) as

N
, fp* £
Ao = jr_m o* - o oz dr. (66)
ht o D do
Introducing the notation
o*=0"+Ao*, (67)

with o° either the contact stress at the intersection of the stress path and the yield surface or
the stress at the beginning of the loading step, we get with a single-point numerical integration
rule:

£
N o', K of 0
Ag=Agr— —LEHK) e 38 (68)
of o 08 io’
h+ L per 28
dor Jior

as by definition we have f(o’ ) = 0. Numerically, this condition need not be satisfied as the
stresses resulting from the previous step may violate the yield criterion slightly. By putting
f(a®, k) =0 we strive to satisty the yield criterion at any stage of the loading process, rather
than to satisfy the consistency condition f =0, so that inaccuracies from previous loading steps
are not carried along.

The approach becomes very simple when the gradients to the yield function f and the plastic
potential g are evaluated for o = o*. In this approach, there is no need to determine the
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intersection point of the stress path with the yield function if the response is partly elastic and
partly plastic within the loading step, which may simplify the computer code significantly. In
fact, this algorithm constitutes a generalization of the well-known radial return scheme used in
metal plasticity [29, 30], for as we leave out cracking (D" = D*) and adopt a von Mises yield
criterion with an associated flow rule (f=g), the present procedure reduces to an elastic
predictor-radial return scheme [15].

The algorithm for handling plasticity and fracture is not only relatively simple, but it is also
quite accurate. Indeed, if we have linear hardening or softening for the yield function and for
the fracture function, if we have a constant shear reduction factor in the crack 8*, and if we
have no physical changes during the loading step (e.g., crack closing), we can prove that the
algorithm guarantees a rigorous return to the fracture surface as well as to the yield surface for
linear yield and fracture surfaces. Assume for this matter that some trial stress o* has been
computed according to (63) and (67). If o* appears to lie outside the yield surface, a
correction must be applied so that the final stress will be on the yield surface. The plastic part
of the strain increment follows from

Ae’ =Ae— Ae® — Ae™, (69)

but we must also require the incremental form of (55) to hold. By virtue of (55), (63), (67),
and (69) and the identity

Ae® +Ae” =[D" o' —- 0], (70)

we obtain for the final stress state o':

0
1 _ * ef g
o =o*—AD -a . (71)

The multiplier A is determined implicitly by the condition that the final stress be on the yield
surface:

flo', k") =0, ' (72)

and must generally be determined by an iterative procedure. Alternatively, A may be
determined by expanding f(o, ) in a Taylor series around o = o*, k = k°. Omitting second-
and higher-order terms, this yields:

Uy = aln s L per _%:} -
flo, k") A[h+ao_D e =0, (73)
so that the following stress-strain relation is obtained:

0
0'1=0'*-— f(O'*,K ) Ddig'.
dor

T (74)
h oL per 98
o oo
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Comparing (68) and (74), we observe that this approach results in the same integration
scheme as derived in (62)-(68). Hence, the present procedure offers a rigorous return to the
yield surface for all yield functions which are linear in the principal stress space (such as the
Mohr—Coulomb and Tresca criteria) if the aforementioned conditions are fulfilled. No drifting
error is committed as may be the case with some other integration schemes. Especially when
the stresses rotate strongly, these drifting errors may be considerable. Then, a correction
procedure should be applied to bring the stresses back to the yield locus [31]. With the present
approach, there is less need for such a correction procedure.

Several restrictions have been imposed in proving the rigorous return to the yield surface.
When these restrictions are violated, the rigorous return is not obtained, although in these
cases the algorithm is still competitive. The restriction which entails the most serious errors is
the assumption that no physical changes may occur during the loading step. If the errors
caused by this assumption cannot be tolerated, an inner iteration loop must be applied, or we
must divide the strain path in several parts which are bounded by physical changes (e.g., crack
formation).

Algorithms for the combination of cracking and plasticity in smeared models are not often
described in literature, but an example thereof has been discussed by Owen et al. [32] for the
combination of cracking and viscoplasticity. Their algorithm bears some resemblance to the
treatment given here, as they employ a decomposition of the concrete strain rate into several
components, but a rigorous decomposition of the total strain rate into several crack strain rate
components and into several concrete strain rate components in the sense of (1) is not
utilized. Such a decomposition would, however, have been implied in their equations if they
had adopted a compliance formulation as given by Bazant and Oh for their elastic-fracture
matrix instead of a stiffness formulation [14,17]. Then, the explicit formulation of their
algorithm would have been the only difference from the algorithm presented here, at least for
only one active crack.

6. Cracking and visco-elasticity

Another constitutive relation which can be captured within (3) is visco-elasticity with
degenerated kernels, i.e. visco-elastic models for which the kernel of the hereditary integral
has been developed in a series so that the strain history can be described with a finite number
of internal variables. An example of such a model is the Maxwell chain. This model arises if a
relaxation-type hereditary integral is developed in a Dirichlet series [16, 33] and can mechani-
cally be interpreted as a parallel arrangement of Maxwell chains. In the present conception,
the Maxwell chain model is thought to apply only to the concrete and not to the cracks, so that
the Maxwell elements all have the same concrete strain increment to which the crack strain
increment must be added to obtain the total strain increment (Fig. 4). Here again we profit
from the rigorous decomposition of the total strain increment into a concrete and into a crack
strain increment, as we can independently specify the constitutive laws for the concrete and
for the smeared-out cracks., With regard to the concrete, we have the following constitutive
equation:

E° v 3
. 1 . co a
1= oy 725 e+ MO 080 [é5 + 2 o (73)
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Fig. 4. Maxwell chain model for creep of concrete linked in series with a crack model.

E° is Young’s modulus of the spring element in the chain (Fig. 4), v is Poisson’s ratio, and oy
are the internal stresses which follow from the evolution equation,

. E“ v . o 1
= 1¥ o [1 —5 9% T 3 (8 By + 6il8jk)]8kl BVCALE (76)
with E* and A® the Young’s moduli and relaxation times of the Maxwell elements. For the
smeared-out cracks, a tension-softening type model may be adopted.

Creep is a process which is highly stress-dependent and a single-point numerical integration
scheme as adopted in the preceding section often leads to erroneous results. A possible
solution is to employ a higher-order integration scheme [34], but such a solution is not
attractive because the rate equations for fracture of concrete can be integrated accurately with
a single-point integration rule. We therefore prefer the approach advocated by Taylor et al.
[35] and by Bazant and Wu [33], who integrate (75) and (76) analytically over a time step,
yielding

Ao, = 1 [E°+§
Gij~1+v o

At E“ 14 . co
[1-exo(- )] e [ 7255 v+ 0wt + 280 e
N At
- [l—exp(— X—Q)}a?j(t—At), (77)
a="1

We can now identify D, as

w 1 0. ﬁ At\] E*° v .
Dijkl 1+ E"+ “~ 1—exp| - Y ameE Ll 1T=20 aij6k1 + i(az’kaﬂ + 8i15jk) )
(78)
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and 3,; as

5, = ﬁl [1 - exp(- —fé)}a?}(f— vy (79)

With a single-point integration for the stress-strain law in the cracks, (17) can subsequently be
integrated to yield

Ao =A[D® Ae + 3], (80)

The accuracy of the above integration scheme hinges on the assumption that &,; and E* are
nearly constant during the time step. Indeed, (77) constitutes an exact integration of (75) and
(76) if &, and E® are really constant during the time step. For a nonaging solid the
assumption that E“ remains constant during a time step is satisfied rigorously, but even for an
aging solid E* usually varies so slowly with time that it mostly entails no serious integration
errors. In the absence of cracks, the assumption that £;; also remains constant, is usually also
justified, since then &,; = £, and &, varies slowly during a time step. When we have crack
formation or propagation, the assumption is more questionable. Since £;; may vary much
more abruptly over a time step than ¢,, usually does, £;; may also show more pronounced
changes. The above observations imply that time steps must be chosen much smaller when
cracks are present than when they are absent,

As an example, we will consider the unreinforced axisymmetric slab of Fig. 5. The slab is
loaded uniformly with ¢ = 0.25 N/mm?® which is approximately 65% of the failure load. The
creep behavior is modeled by 4 Maxwell elements with relaxation times and spring moduli as
given in Fig. 5, whereby it is noted that although the algorithm described in the preceding
section in principle allows for assigning the springs an age-dependent stiffness, this possibility
has not been pursued in the present example. The results are given in the form of a
time-deflection curve of the center of the slab (Fig. 6) and of crack patterns for ¢t =0 and
t=1000 days (Figs. 7-10). It is interesting to note that owing to the fact that a criterion for
crack initiation has been employed which is a combination of principal stresses and strains
[17], cracking gradually progresses in the course of time, both with regard to the radial and
with regard to the circumferential cracks.

In the past, other analyses of concrete structures subjected to long-term loading have been
presented, although most analysts employ Kelvin-type visco-elastic models [38—40]. It seems
that neither of them has used a softening model for the cracks, but that all previous analyses

v
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Fig. 5. Finite element mesh of axisymmetric slab used in creep analysis.
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Fig. 6. Center deflection as a function of time.
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Fig. 7. Tangential crack pattern for ¢=0.
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Fig. 9. Area in which radial cracks have developed for ¢ =0 (shaded).
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b

Fig. 10 Area in which radial cracks have developed for ¢ = 1000 (shaded).

have been carried out under the assumption that all stiffness normal to a crack is lost upon
crack formation. However, a comprehensive stress-strain relation for the smeared-out cracks
including tension-softening and effects like aggregate interlock or crack dilatancy can only be
incorporated if'a decomposition of the strain increment is employed as starting point of the
algorithm. If such a decomposition is not assumed, fracture and creep of the concrete between
the cracks can not be distinguished properly. A similar algorithm has recently been proposed
by Bazant and Chern [19], and indeed, if we restrict cracking to one crack in an integration
point, their algorithm coincides with the present approach.

7. Temperature-dependent material properties

A third phenomenon which can be captured within the proposed concept is dependence of
the material properties on the temperature. We will here only demonstrate that this
phenomenon can be included in a natural fashion and we will therefore limit the treatment to
the case that only the elastic properties depend on the temperature 6 and that we have a
thermal dilatation &},. Then, the constitutive law for the (uncracked) concrete becomes:

0y = D;'kl(ékl - si,) + D?jkl(skl - 321) . (81)

Identlfymg D, as the elastmty tensor D7, at temperature # and the autogeneous strain rate
é, as the thermal strain rate 5, we observe that a constitutive law in the sense of (3) is again
obtained when

0
2 Dt]kl(gkl Er) - ‘ (82)
The resulting equation for the cracked concrete can be integrated using a numerical integra-

tion scheme, for instance an Euler forward integration rule. Whether such a simple scheme is
sufficiently accurate for this particular constitutive law will be reported in a future publication.

8. Conclusions

A smeared crack model which has the potential of properly describing nonorthogonal
smeared cracks has been discussed. In this article, emphasis has been placed on the possibility
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to combine the proposed crack model with other nonlinear phenomena. In particular,
algorithms have been described which are capable of simultaneously handling crack formation
and plasticity, and crack formation and creep, while it has also been indicated how autoge-
neous strains due to shrinkage or thermal dilatation, and temperature-dependent material
properties can be accommodated within the present concept. An example in the paper as well
as several examples in other papers [9, 10, 14-16 ] have shown that the proposed algorithms
can be implemented successfully in finite element codes.

It has furthermore been proved that the proposed crack model obeys the principle of
material frame-indifference. This is by no means trivial as crack models have been proposed
which do not meet this from a theoretical point of view desirable property [11].
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