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Abstract: Several software tools for the simulation and analysis of biochemical reaction networks1

have been developed in the last decades; however, assessing and comparing their computational2

performance in executing the typical tasks of Computational Systems Biology can be limited by the3

lack of a standardized benchmarking approach. To overcome these limitations, we propose here a4

novel tool, named SMGen, designed to automatically generate synthetic models of biochemical5

reaction networks that, by construction, are characterized by both features (e.g. system connectivity,6

reaction discreteness) and emergent dynamics resembling real biological networks. The generation7

of synthetic models in SMGen is based on the definition of an undirected graph consisting in a8

single connected component, which generally results in a computationally demanding task. To9

avoid any burden in the execution time, SMGen exploits a Main-Worker paradigm to speed up the10

overall process. SMGen is also provided with a user-friendly Graphical User Interface that allows11

the user to easily set up all the parameters required to generate a set of synthetic models with any12

used-defined number of reactions and species. We analysed the computational performance of13

SMGen by generating batches of symmetric and asymmetric RBMs of increasing size, showing14

how a different number of reactions and/or species affects the generation time. Our results show15

that when the number of reactions is higher than the number of species, SMGen has to identify16

and correct high numbers of errors during the creation process of the RBMs, a circumstance that17

increases the overall running time. Though, SMGen can create synthetic models with 512 species18

and reactions in less than 7 seconds. The open-source code of SMGen is available on GitLab:19

https://gitlab.com/sgr34/smgen.20

Keywords: Synthetic Models; Reaction-based Models; Biochemical Networks; Systems Biology21

1. Introduction22

Systems Biology is a multidisciplinary research field that combines mathematical,23

computational, and experimental expertise to understand and predict the behavior of24

complex biological systems [1,2]. Among the different formalisms that can be used25

to describe intracellular processes, Reaction-Based Models (RBMs) [3–6] are the most26

suitable for obtaining a detailed comprehension of the mechanisms that control the27

emergent behavior of the system under analysis [5]. The analysis of RBMs can be used28
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to drive the design of focused lab experiments; to this aim, computational tasks such as29

parameter estimation, sensitivity analysis, and parameter sweep analysis are generally30

applied [1,6–8]. Unfortunately, these computational tasks require the execution of huge31

amounts of simulations, so that the capabilities of biochemical simulators running on32

Central Processing Units (CPUs) (see, e.g., [9–11]) can be easily overtaken. Thus, several33

simulators exploiting Graphics Processing Units (GPUs) have been lately introduced to34

reduce the running times (see, e.g., [12–20]).35

A crucial point, whenever new simulators are designed and implemented, regards36

the evaluation of their computational performance and their efficiency in executing37

the aforementioned demanding tasks. In this context, RBMs represent a key means as38

they can be exploited to run both stochastic simulation algorithms and (deterministic)39

numerical integration methods. Though, only a limited number of RBMs is present in40

the literature (e.g., signal transduction pathways [21–24] or metabolic pathways [25]).41

The lack of detailed RBMs, especially those characterized by hundreds or thousands of42

reactions and molecular species, thus hampers the possibility of performing a thorough43

analysis of the performance of these simulators.44

The computational performance of several GPU-powered tools were assessed using45

randomly generated synthetic RBMs [14,19,20]. However, only a few generators of46

biochemical models have been proposed so far, hindering the possibility of having47

a common and well-defined benchmarking approach. For instance, Komarov et al.48

[14,15] developed a tool to generate synthetic networks, which was then used to test49

the performance of their GPU-based simulators. Given the number of reactants, the50

type of reactions to be included in the RBM, and the total number of reactions, they51

generated synthetic RBM by exploiting a hash table to avoid duplicates. The tool52

was then modified by randomly sampling the values of the initial concentrations of53

the species from a uniform distribution and the kinetic constants from a logarithmic54

distribution [19]. Another known and established model generator is the Reaction55

Mechanism Generator (RMG) [26], which was specifically developed to create synthetic56

chemical processes. RMG exploits an extensible set of 45 reaction families to generate57

elementary reactions from chemical species, while the reaction rates are estimated using58

a database of known rate rules and reaction templates. RMG relies on graphs to represent59

the chemical structures, and trees to represent thermodynamic and kinetic data. Due60

to its peculiarities, RMG was used to, e.g., automatically create kinetic models for the61

conversion of bio-oil to syngas through gasification [27]. Finally, other tools, such as62

Moleculizer [28], were introduced for the generation of reaction systems to obtain a63

deeper understanding of transduction networks.64

Despite the efforts done to automatically define synthetic models, all these genera-65

tors share a common drawback, that is, they have a limited flexibility and can generate66

only a restricted set of biochemical networks and processes. Considering the impelling67

necessity of defining a common benchmarking approach that allows for fairly evalu-68

ating and comparing different simulation approaches [29], we propose here a novel69

tool, named SMGen, designed to automatically generate synthetic yet realistic biological70

networks codified as RBMs, whose dynamics resemble those of real biological networks.71

SMGen adheres to well-defined structural characteristics based on graph theory and72

linear algebra properties, in particular, it exploits the definition of an undirected graph73

with a single connected component, which makes the whole generation process a com-74

putationally demanding task. To overcome this limitation, on the one hand, SMGen75

internally codifies all data structures by means of sparse matrices as well as ad-hoc struc-76

tures specifically designed to avoid worthless values, which would increase the running77

time required to generate RBMs. On the other hand, SMGen is able to drastically reduce78

the computational time by exploiting a Main-Worker paradigm used to distribute the79

overall generation process of RBMs onto multi-core CPUs. We show that SMGen can80

create, in less than 7 seconds, synthetic RBMs with hundreds of chemical species and81

molecular reactions that resemble the behavior of real biochemical networks.82
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Among the different features provided by SMGen, it allows for easily generating83

both symmetric and asymmetric RBMs: symmetric RBMs are composed of a number84

of species equal to the number of reactions, while in asymmetric RBMs the number of85

species can be lower than the number of reactions or vice-versa. From a computational86

point of view, the concept of symmetry is crucial in the analysis of complex networks87

to measure their information and entropy [30]. Studying the symmetries of mechanis-88

tic models, which aim at formalizing the structures and behavior of the underlying89

dynamics of biological systems, can allow for revealing the intrinsic properties of the90

system of interest [31]. Moreover, the possibility of evaluating GPU-powered simulators91

using symmetric and asymmetric RBMs is fundamental to understand their performance92

under different conditions. Indeed, a fair comparison would allow the user to select the93

best simulator based on characteristics of the RBM that has to be analysed.94

SMGen allows also for exporting the generated RBMs into the Systems Biology95

Markup Language (SBML) [32], Version 4 Level 2, and into the BioSimWare standard96

[33], which is used by different GPU-powered simulators. Thus, we designed and97

developed SMGen to be a unifying, user-friendly, and standalone tool freely accessible98

to the Systems Biology community. The RBMs can be easily generated by using the99

provided user-friendly Graphical User Interface (GUI), which is designed to help the100

users in setting all the parameters required to generate the desired RBMs.101

The manuscript is structured as follows. Section 2 describes the mathematical102

formalism of the RBMs, as well as the structural characteristics that must be complied to103

generate realistic biological networks. In addition, we provide all the algorithms and104

details at the basis of SMGen. Section 3 shows the experimental results achieved by105

SMGen. Finally, a discussion and conclusive remarks are provided in Section 4.106

2. Materials and Methods107

2.1. Reaction-Based Models108

An RBM is defined by specifying the set S = {S1, . . . , SN} of N molecular species,
and the setR = {R1, . . . , RM} of M biochemical reactions that describe the interactions
among the species appearing in S . Each reaction Ri, with i = 1, . . . , M, is defined as:

Ri :
N

∑
j=1

aijSj
ki−→

N

∑
j=1

bijSj, (1)

where aij and bij ∈ N are the stoichiometric coefficients, and ki ∈ R+ is the kinetic109

constant associated with Ri. The stoichiometric coefficients specify how many molecules110

of species Sj, with j = 1, . . . , N, appear either as reactants or products in reaction Ri. Note111

that some species might not appear in a reaction, so that the corresponding stoichiometric112

coefficient will be equal to 0. The order of a reaction is equal to the total number of113

molecules (of the same or different species) that appear as reactants in that reaction.114

Each RBM can be written in the compact matrix-vector form AS
K
−→ BS, where115

S = [S1 · · · SN ]
⊤ is the N-dimensional column vector of the molecular species, K =116

[k1 · · · kM]⊤ is the M-dimensional column vector of the kinetic constants, while A, B ∈117

NM×N are the stoichiometric matrices, whose non-negative elements [A]i,j and [B]i,j118

correspond to the stoichiometric coefficients aij and bij of the reactants and products of119

the reactions, respectively.120

Starting from an RBM and assuming the law of mass-action [34–36], the system of
coupled ODEs corresponding to the RBM can be derived as follows:

dX

dt
= (B−A)T [K ◦ XA], (2)

where each ODE describes the variation in time of a species’ concentration. In Equation 2121

the N-dimensional vector X = [X1 · · ·XN ] represents the concentration values of species122
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S1, . . . , SN , while XA is the vector-matrix exponentiation form [34]; the symbol ◦ denotes123

the entry-by-entry matrix multiplication (Hadamard product).124

2.2. SMGen125

In order to generate synthetic and yet realistic models of biochemical networks,126

SMGen complies with specific structural characteristics that the RBMs have to satisfy,127

that is:128

• System connectivity: a biochemical network can be represented as an undirected129

graph with a single connected component, where the nodes represent the molecular130

species and the edges correspond to the species interactions (i.e., reactions). In order131

to satisfy this constraint, each species Sj ∈ S , with j = 1, . . . , N, must be involved132

in at least one reaction Ri ∈ R, with i = 1, . . . , M.133

• Maximum number of reactants and products: for each reaction Ri ∈ R, with i =134

1, . . . , M, the number of reactants and the number of products cannot be arbitrarily135

large, but has to be lower than or equal to a user-defined values. Stated otherwise,136

the maximum order of the generated reactions should be fixed, and mass balance137

constraints should be implicitly considered.138

• Linear independence: to ensure that each reaction Ri, with i = 1, . . . , M, resembles a139

plausible biochemical reaction, the vectors of the stoichiometric coefficients of the140

reactants and products involved in Ri must be linearly independent.141

• Reaction discreteness: each reaction Ri, with i = 1, . . . , M, must appear only once in142

the network, that is, duplicated reactions are not allowed.143

SMGen is provided with a user-friendly GUI (see Figure 1) that allows the user to easily144

set up all the parameters required to generate the desired synthetic RBMs:145

• the number of species N and the number of reactions M;146

• the maximum number of reactants and products maxnumr and maxnump that might147

appear in any reaction;148

• the probability distribution Ds that is used to initialize the species amounts (to be149

chosen among uniform, normal, logarithmic or log-normal distributions);150

• the minimum and maximum values mins and maxs for the initial species amounts151

(to be specified either as number of molecules or concentrations);152

• the probability distribution Dr that is used to set the values of the kinetic constants153

(to be chosen among uniform, normal, logarithmic or log-normal distributions);154

• the minimum and maximum values minr and maxr for the kinetic constants;155

• the total number of RBMs that the user wants to generate;156

• the output format file to export the generated RBMs (i.e., BioSimWare [33] and157

SBML [32]);158

• the mean and standard deviation values µs and σs for the initial amounts—as well159

as the mean and standard deviation values µr and σr for the kinetic constants—must160

also be provided if the normal or log-normal distributions are selected.161

Figure 2 shows a high-level scheme of the proposed implementation of SMGen, which162

exploits the Main-Worker paradigm to speed up the generation of the RBMs [37]. The163

user can specify the number of processes P—otherwise automatically set to the minimum164

value 3—which are used as follows:165

• Proc1 manages the GUI;166

• Proc2 is the Main process that orchestrates the computation;167

• Procp, with p = 3, . . . , P, are the Worker processes.168

The whole functioning of SMGen can be summarized as follows:169

• the user interacts with the GUI, managed by Proc1, to fill in all the required values170

for the parameters necessary to create the RBMs;171

• Proc1 sends the values of all parameters to the Main process (Proc2), which allocates172

the resources and distributes the work to the Workers (Procp, with p = 3, . . . , P);173
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Figure 1. Graphical User Interface of SMGen. The user can set all the parameters to generate the

desired RBMs, i.e., number of species and reactions, maximum number of reactants and products,

probability distribution for the initial amounts and kinetic constants, and the output format file

(i.e., BioSimWare, SBML).

GUI

Main

WorkerWorkerWorkerWorker

Proc1

Proc2

ProcPProc3 Proc4 Procp-1

... ...

Figure 2. Scheme of the Main-Worker implementation of SMGen. The Main process (Proc2)

orchestrates all the available Workers (Procp, with p = 3, . . . , P), which generate the RBMs in a

distributed computing fashion.

• each Worker (Procp, with p = 3, . . . , P) generates a RBM. As soon as a Worker174

terminates its execution, it communicates to the Main process that the RBM has175

been created. If necessary, the Main process assigns the generation of other RBMs to176

idle Workers. When all required RBMs are obtained, the Workers enter in the death177

state, while the Main process waits for further instructions from Proc1.178

The workflow of each Worker consists in 9 different phases, in which a specific algorithm179

is executed (see Figure 3).180

The pseudo-code reported in Algorithm 1 briefly summarizes all the steps required181

to generate a single RBM; the pseudo-code of the procedures invoked within Algorithm182

1 are reported in Appendix A. For the sake of clarity, Table 1 lists the symbols used in183

the following description and in the pseudo-codes.184
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Reaction graph
initialization

Yes

No

Have errors 
occurred?

Start

End

Initialization of data
structures containing

reactants and products

Random generation of
stoichiometric coefficients

Check if A and B are
linearly independent

Check if the reactions are
unique

Correction of the reactions

Random generation of
reactions' kinetic

parameters

Random generation of
species' initial amounts

Algorithm 2 Algorithm 3

Algorithm 5 Algorithm 4

Algorithm 6

Algorithm 9 Algorithm 10

Algorithm 1

Check if A and B are
linearly independent

Algorithm 8

Algorithm 7

Figure 3. Workflow of a single Worker execution. First, the graph of the reactions is randomly

initialized, and then converted into the data structures used to store the reactants and products.

Second, the stoichiometric coefficients are randomly generated and the consistency of the reactants

and products is verified. Third, the initial amounts of the species and the kinetic parameters of the

reactions are randomly generated using the probability distributions specified by the user.

The steps performed by each Worker to generate a RBM are the following:185

1. Given the parameters provided by the user, the graph representing the species and186

their interactions is randomly initialized (line 3 of Algorithm 1, see Algorithm 2).187

2. The adjacency matrix of the graph generated in Step 1 is converted into the stoi-188

chiometric matrices A and B (line 5 of Algorithm 1, see Algorithm 3). Note that the189

instructions in lines 6–17 of Algorithm 1 are required to build the data structure of190

the initial graph, which is then modified).191

3. The stoichiometric coefficients are randomly generated (line 19 of Algorithm 1, see192

Algorithm 4).193

4. For each reaction Ri, with i = 1, . . . , M, the linear independence between the194

reactants and products is verified (line 21 of Algorithm 1, see Algorithm 5).195

5. The uniqueness of each reaction in the RBM is verified (line 23 of Algorithm 1, see196

Algorithm 6).197

6. Any error in the RBM identified in the previous steps is corrected (line 27 of198

Algorithm 1, see Algorithm 7); the linear independence and the uniqueness of the199

reactions in the modified RBM are iteratively verified (lines 29 and 31 of Algorithm200

1, see Algorithms 8 and 6, respectively).201

7. The initial amounts of the species are generated according to the chosen probability202

distribution (line 33 of Algorithm 1, see Algorithm 9). If a species appears only as203

a reactant in the whole RBM, its amount is set to remain unaltered. The rationale204

behind this is double: on the one hand, we avoid the possibility of creating reactions205

that could be applied at most once, which is a highly improbable situation in206

biological systems; on the other hand, we mimic the non-limiting availability207

of some biochemical resources, for instance, it might be used to reproduce the208
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Algorithm 1 SMGen: workflow of a single Worker execution.

1: function GENERATOR(M, N, maxnump , maxnumr ,Ds,Dr, mins, maxs, minr, maxr, µs, σs, µr, σr)
2: ## Algorithm 2
3: G← GRAPH_GEN(N)
4: ## Algorithm 3
5: A, B← STOICH_MATRICES_GEN(M, N, G)
6: AI J[·], BI J[·]← [ ] ⊲

7: for i = 1 to M do ⊲

8: for j = 1 to N do ⊲

9: if A[i, j] == 1 then ⊲

10: AI J ← AI J ⊙ 〈i, j〉 ⊲

11: if B[i, j] == 1 then ⊲

12: BI J ← BI J ⊙ 〈i, j〉 ⊲

13: ## Algorithm 4
14: A, B← STOICH_COEFFICIENTS_GEN(A, B, M, N, maxnumr , maxnump , AI J, BI J)
15: ## Algorithm 5
16: errLinDep ←LINEAR_INDEPENDENCE1(A, B, M)
17: ## Algorithm 6
18: errRepeat ←UNIQUE_REACTIONS(A, B, M)
19: while errLinDep ∧ errRepeat are not empty do
20: rowsErr ← unique(errLinDep ⊙ errRepeat)
21: ## Algorithm 7
22: A, B←CORRECTION_REACTIONS(A, B, rowsErr, AI J, BI J, maxnumr , maxnump )
23: ## Algorithm 8
24: errLinDep ← LINEAR_INDEPENDENCE2(A, B, rowsErr)
25: ## Algorithm 6
26: errRepeat ←UNIQUE_REACTIONS(A, B, M)

27: ## Algorithm 9
28: M0 ← AMOUNTS_GEN(N,Ds, mins, maxs, µs, σs)
29: ## Algorithm 10
30: K← KINETIC_CONSTANTS_GEN(M,Dr, minr, maxr, µr, σr)

⊲→ the instructions shown in lines 6–12 are required to build the structure of the initial
graph of the reactions.

execution of in vitro experiments where some species are continually introduced in209

the systems to keep their amount constant [38].210

8. The kinetic constants of the reactions are generated according to the chosen proba-211

bility distribution (line 35 of Algorithm 1, see Algorithm 10).212

SMGen was developed using the Python programming language and exploiting213

mpi4py [39], which provides bindings of the Message Passing Interface (MPI) specifica-214

tions for Python to leverage multi-core CPUs [40]. The open-source code of SMGen is215

available on GitLab (https://gitlab.com/sgr34/smgen) under the GPL-3 license.216

3. Results217

We analysed the performance of SMGen regarding both its capability of creating218

RBMs resembling the dynamics of real biochemical networks, and the computational219

time required to generate sets of RBMs of increasing size. All tests were executed on a220

workstation equipped with an Intel Core i7-8750H CPU (clock 4.1 GHz), 16 GB of RAM221

and a Samsung 970 EVO solid-state drive NVMe PCIe (up to 3400 MB/s and 1500 MB/s222

read and write speed, respectively), running Ubuntu 20.04 LTS.223

As a first batch of tests, we generated 100 synthetic RBMs characterized by a224

limited number of reactions and species (4 and 5, respectively), and we analysed their225

characteristics and dynamics. We set to 3 both the maximum number of reactants226
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Symbol Description

M Number of reactions composing the RBM
N Number of species involved in the RBM
maxnumr Maximum number of the reactants
maxnump Maximum number of the products

M0 Array of the initial amounts
K Array of the kinetic constants
A Stoichiometric matrix of the reagents
B Stoichiometric matrix of the products
G Adjacency matrix of the graph of the reactions
Ds Probability distribution for the initial amounts
mins Minimum value of the initial amounts
maxs Maximum value of the initial amounts

µs

Mean of the normal and log-normal distributions

for the initial amounts

σs

Standard deviation of the normal and log-normal distributions

for the initial amounts
Dr Probability distribution for the kinetic constants
minr Minimum value of the kinetic constants
maxr Maximum value of the kinetic constants

µr

Mean of the normal and log-normal distributions

for the initial amounts

σr

Standard deviation of the normal and log-normal distributions

for the kinetic constants amounts
⊙ The concatenation operator

Table 1: List of symbols used in the pseudo-code of algorithms at the basis of SMGen.

maxnumr and products maxnump . We sampled the initial amounts of species from a227

normal distribution with mean µs = 5 and standard deviation σs = 5, considering a228

minimum value mins = 0 and maximum value maxs = 10. The kinetic constants were229

instead sampled from a logarithm distribution with minimum value minr = 10−16 and230

maximum value maxr = 10.231

Table 2 shows the list of reactions along with the kinetic constants of one of these 100232

synthetic RBMs. Since the species X0 appears only as a reactant, its amount will be kept233

constant during the simulation. The initial molecular amounts of all species—given as234

number of molecules—are listed in Table 3. This small RMB includes the basic “cascade235

of reactions” structure typically observed in signaling pathways, starting from the source236

represented by species X0 and X4, toward species X2 and X3.237

We simulated the dynamics of this RBM for 50 time steps (arbitrary unit), and238

the achieved dynamics are shown in Figure 4. These plots evidence that, although the239

RBM was randomly generated by SMGen, it produces a realistic behavior. It is worth240

mentioning that obtaining realistic RBMs exhibiting non trivial dynamics is fundamental241

to perform in-depth computational analyses and comparisons among the existing and242

the novel simulators. Indeed, in the case of stable or flat dynamics, or when the overall243

behavior of the network is extremely fast and instantly exhausts all the reactants, the244

most advanced integration algorithms are able to simulate the emergent dynamics in245

just one computation step [20]. In such a case, the computational performance of the246

simulation tools is only partially assessed, thus hindering a fair comparison among the247

tools.248

As a second batch of tests, we evaluated the computational performance of SMGen249

exploiting the Main-Worker paradigm running on 4 distinct cores of the CPU. First, we250

considered the generation of symmetric RBMs with an increasing number of species251

and reactions (i.e., M = N = 2x, with x = 2, . . . , 9). The initial amounts and kinetic252
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No. Reagents Products Constant

R1 X0 + X4 X3 4.295 · 10−5

R2 X4 X1 + 2X2 2.207 · 10−2

R3 X4 X2 + X4 7.070 · 10−4

R4 X1 + X4 X2 + X3 4.613 · 10−2

Table 2: List of the reactions of a RBM with by 4 reactions and 5 species generated by
SMGen.

Species Initial amount

X0 4
X1 8
X2 7
X3 8
X4 1

Table 3: Initial molecular amounts of the RBM generated by SMGen shown in Table 2.

constants were randomly sampled from a uniform distribution with minimum values253

mins = minr = 0 and maximum values maxs = maxr = 10. We also varied the maximum254

numbers of reactants and products considering the set of values {2, 3, 4} and setting255

maxnumr = maxnump . For each of the resulting 24 parameters combinations, we created256

100 RBMs to collect statistically sound results about the performance of SMGen. As257

described in Section 2, two kinds of error can occur during the generation of a RBM:258

a linear dependence between reactants and products, and duplicated reactions. Since259

the correction of these errors is one of the most time-consuming phases of SMGen, we260

separately measured the generation time, which indicates the running time spent by261

SMGen to generate a RBM, and the saving time, which refers to the writing operations262

on the solid-state drive. Figure 5 shows the average running time required by SMGen to263

generate and save a RBM. As expected, both the generation and saving time increase264

along with the number of species and reactions of the RBM. Moreover, we observe265

that the maximum number of reactants and products have a slight impact on both the266

generation and the saving time; in most of the cases, increasing these values results in a267

higher running time.268

Finally, we exploited SMGen for the creation of asymmetric RBMs, to evaluate how269

a different number of species and reactions affects the running time. As in the case270

of symmetric RBMs, we measured both the generation time and the saving time. The271

asymmetric RBMs were created as follows:272

• we set the number of species N ∈ {4, 8, 16, 32, 64}, and then we varied the number273

of reactions M ∈ {2N, 4N, 8N};274

• we set the number of reactions M ∈ {4, 8, 16, 32, 64}, and then we varied the number275

of species N ∈ {2M, 4M, 8M};276

• we varied both the maximum numbers of reactants maxnumr and products maxnump277

in {2, 3, 4}.278

In such a way, we obtained a total of 90 different combinations of the parameters279

(i.e., number of species, number of reactions, and maximum number of reactants and280

products) to be tested; as in the previous tests, for each combination we generated 100281

RBMs to collect statistically sound results. Figure 6 shows the average running time282

required to create RBMs with dimensions N ×M, highlighting once again that both the283

generation time and the saving time increase along with the size of the RBMs. As in284

the case of symmetric RBMs, we observed the same effect due to the maximum number285

of reactants and products allowed in the reactions. As expected, when there are more286

reactions than species (bottom panel in Figure 6) the generation times are higher than287
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Figure 4. Dynamics of the species of the synthetic RBM generated by SMGen shown in Table 2.
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Figure 5. Stacked bar plot showing the average generation time (yellow bars) and the average

saving time (green bars) required by SMGen to generate a symmetric RBM. Note that the y-axis is

in logarithmic scale.

the opposite situation (top panel in Figure 6). This circumstance is due to the potential288

higher number of errors that SMGen has to identify and correct. Indeed, when M≫ N,289

the probability that repeated reactions are randomly generated is higher than the case290

when N ≫ M, because the number of admissible reactions strictly depends on the291

number of species.292

4. Conclusions293

In this work we presented SMGen, a generator of synthetic reaction-based models294

displaying the characteristics of real biochemical networks, which can be exploited295

to create benchmarks for the evaluation of novel and existing simulators. SMGen is296

particularly suitable to create the RBMs necessary to assess the performance of GPU-297

based simulators. As a matter of fact, the performance of GPU-powered simulators298

can drastically change with the number of chemical species and reactions composing299

an RBM. Considering that each RBM can be converted into the corresponding system300

of coupled Ordinary Differential Equations (ODEs), the resolution of this system of301

ODEs can be performed in a parallel fashion, where each ODE is resolved by a thread.302

Since each ODE corresponds to a specific chemical species, a higher number of species303
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Figure 6. Stacked bar plots showing the average generation time (yellow bars) and the average

saving time (green bars) required by SMGen to generate an asymmetric RBM with more species

than reactions (top) and with more reactions than species (bottom). Note that the y-axes are in

logarithmic scale.

generally lead to a higher parallelization, increasing the computational performance of304

the simulator. On the contrary, considering that the number of the reactions composing305

the biological system is roughly related to the length of each ODE, in terms of the306

mathematical complexity, the higher the number of reactions the higher the number of307

operations that must be performed by each thread, leading to a higher running time308

[19,20].309

SMGen was developed in Python and was designed to be a unifying, user-friendly,310

and standalone tool. In addition, SMGen exploits the Main-Worker paradigm to speed311

up the generation of RBMs; this was implemented using the mpi4py [39] library, where312

the first process manages the GUI, the second one is the Main process, and all the other313

processes are the Workers that generate the RBMs in a distributed computing fashion.314

Thanks to the GUI of SMGen, the user can easily set up all the parameters characterizing315

the required RBMs, e.g., the number of species and reactions, the maximum number316

of reactants and products per reaction, the probability distributions (uniform, normal,317

logarithmic, log-normal) to generate the initial amounts of the species and the values318

of the kinetic constants associated with the reactions, the output file format to save the319

RBMs.320
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We assessed the capabilities of SMGen for the creation of RBMs characterized by a321

non trivial behavior, and we presented an example of a synthetic and yet realistic RBM,322

together with the simulated dynamics. We also tested the computational performance323

of SMGen by generating batches of symmetric and asymmetric RBMs of increasing324

size, showing the impact of the number of reactions and species, and of the number of325

reactants and products per reaction, on the generation times. We observed that when the326

number of reactions is higher than the number of species, SMGen generally identifies and327

corrects high numbers of errors during the creation process of the RBMs, a circumstance328

that inevitably increases the overall running time.329

As a future extension of this work, we plan to develop an Application Program-330

ming Interface (API), so that SMGen can be seamlessly integrated into other processing331

pipelines, tools and simulators. We will also introduce a new feature specifically devel-332

oped to generate feedback loops in synthetic RBMs, exploiting the theory of Petri nets333

[41,42]. Feedback loops are fundamental elements of biological processes that lead to the334

establishment of oscillatory regimes and non-linear dynamics [22]. Finally, we plan to335

include an initial check of the parameter values set by the user, based on some heuristics,336

to verify whether the RBMs can be actually generated as requested. This initial step337

will allow for avoiding worthless calculations and to suggest useful modifications of338

parameters to the user.339
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Appendix A. Algorithms347

We report here all the algorithms referring to the functions called by Algorithm 1,348

which represents the workflow of each Worker process.349
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Algorithm 2 Random initialization of the graph of reactions

1: function GRAPH_GEN(N)
2: G[·, ·], v[·]← 0
3: for j = 1 to N do
4: v[j]← j

5: ind1 ← random(1, len(v))
6: ind2 ← random(1, len(v))
7: n1, n2 ← v[ind1], v[ind2]
8: v← delete(v[ind1])
9: v← delete(v[ind2])

10: G[n1, n2]← 1
11: while v is not empty do
12: if random ∈ {0, 1} == 0 then
13: ind← random(1, len(v))
14: k← v[ind]
15: v← delete(v[ind])
16: G[n1, k]← 1
17: n2 ← k
18: else
19: ind← random(1, len(v))
20: k← v[ind]
21: v← delete(v[ind])
22: G[k, n2]← 1
23: n1 ← k

24: return G

Algorithm 3 Conversion of the adjacency matrix G into the stoichiometric matrices A
and B

1: function STOICH_MATRICES_GEN(M, N, G)
2: i← 1
3: for n1 = 1 to N do
4: for n2 = 1 to N do
5: if G[n1, n2] == 1 then
6: A[i, n1]← 1
7: B[i, n2]← 1
8: if i == M then
9: i← 1

10: else
11: i← i + 1

12: return A, B
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Algorithm 4 Generation of the random stoichiometric coefficients

1: function STOICH_COEFFICIENTS_GEN(A, B, M, N, maxnumr , maxnump , AI J, BI J)
2: for i = 1 to M do
3: for k = 0 to maxnumr do
4: coef← random(0, maxnumr )
5: j← random(1, N)
6: if coef 6= 0 & A[i, ·] + coef− A[i, j] ≤ maxnumr then
7: A[i, j]← coef
8: else if coef == 0 & 〈i, j〉 /∈ AI J then
9: A[i, j]← coef

10: for i = 1 to M do
11: for k = 0 to maxnump do

12: coef← random(0, maxnump)

13: j← random(1, N)
14: if coef 6= 0 & B[i, ·] + coef− B[i, j] ≤ maxnump then

15: B[i, j]← coef
16: else if coef == 0 & 〈i, j〉 /∈ BI J then
17: B[i, j]← coef

18: return A, B

Algorithm 5 Checking the linear independence between A[i, ·] and B[i, ·]

1: function LINEAR_INDEPENDENCE1(A, B, M)
2: errLinDep ← [ ]
3: for i = 1 to M do
4: if A[i, ·] ∧ B[i, ·] are linearly dependent then
5: errLinDep ← errLinDep ⊙ i

6: return errLinDep

Algorithm 6 Checking if the generated reactions are unique

1: function UNIQUE_REACTIONS(A, B, M)
2: AB, ABs← [ ]
3: errRepeat ← [ ]
4: for i = 1 to M do
5: AB[i]← A[i, ·]⊙ B[i, ·]

6: for i = 1 to M do
7: if AB[i] is in ABs then
8: errRepeat ← errRepeat ⊙ i
9: else

10: ABs← ABs⊙AB[i]

11: return errRepeat
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Algorithm 7 Random correction of the repeated reactions

1: function CORRECTION_REACTIONS(A, B, rowsErr, AI J, BI J, maxnumr , maxnump )

2: for i = 1 to len(rowsErr) do
3: A[rowsErr[i], ·]← 0
4: B[rowsErr[i], ·]← 0
5: if rowsErr[i] ∈ AI J[·, 1] then
6: for k = 1 to len(AI J) do
7: if AI J[k, 1] == rowsErr[i] then
8: A[AI J[k, 1], AI J[k, 2]]← 1

9: for c = 0 to maxnumr do
10: coef← random(0, maxnumr )
11: col← random(1, N)
12: if coef 6= 0 & A[rowsErr[i], ·] + coef− A[rowsErr[i], col] ≤ maxnumr then
13: A[rowsErr[i], col]← coef
14: else if coef == 0 & 〈rowsErr[i], col〉 /∈ AI J then
15: A[rowsErr[i], col]← coef

16: if rowsErr[i] ∈ BI J[·, 1] then
17: for k = 1 to len(BI J) do
18: if BI J[k, 1] == rowsErr[i] then
19: B[BI J[k, 1], BI J[k, 2]]← 1

20: for c = 0 to maxnump do

21: coef← random(0, maxnump)

22: col← random(1, N)
23: if coef 6= 0 & B[rowsErr[i], ·] + coef− B[rowsErr[i], col] ≤ maxnump then

24: B[rowsErr[i], col]← coef
25: else if coef == 0 & 〈rowsErr[i], col〉 /∈ BI J then
26: B[rowsErr[i], col]← coef

27: return A, B

Algorithm 8 Checking of the linear independence between A[i, ·] and B[i, ·]

1: function LINEAR_INDEPENDENCE2(A, B, rowsErr)
2: errLinDep ← [ ]
3: for i = 1 to len(rowsErr) do
4: if A[rowsErr[i], ·] ∧ B[rowsErr[i], ·] are linearly dependent then
5: errLinDep ← errLinDep ⊙ rowsErr[i]

6: return errLinDep

Algorithm 9 Random initialization of the amounts/concentrations of the species

1: function AMOUNTS_GEN(N,Ds, mins, maxs, µs, σs)
2: M0[·]← 0
3: if dist is Uniform or Logarithmic then
4: for j = 1 to N do
5: M0[j]← random(Ds, mins, maxs)

6: else
7: for j = 1 to N do
8: M0[j]← random(Ds, mins, maxs, µs, σs)

9: return M0
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Algorithm 10 Random generation of kinetic constants of the reactions

1: function KINETIC_CONSTANTS_GEN(M,Dr, minr, maxr, µr, σr)
2: K[·]← 0
3: if dist is Uniform or Logarithmic then
4: for i = 1 to M do
5: K[i]← random(Dr, minr, maxr)

6: else
7: for i = 1 to M do
8: K[i]← random(Dr, minr, maxr, µr, σr)

9: return K
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