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Abstract

Smith College participated in the TREC News Background Linking
task in 2019. We constructed a linear learning to rank model trained on
the 2018 data and submitted runs that included features derived from
ongoing research into automatic poetry understanding.

In this notebook paper we detail the contents of our submissions and
our lessons learned from this year’s participation.

1 Introduction

The TREC News Task is composed of two core tasks: Background Linking and Entity Linking. We only
participated in Background Linking this year. Given a single news document, the goal is to rank other documents
from the rest of the collection with respect to how useful they would be for background reading, in suggestion to
a user.

In addition to devising a learning-to-rank approach based upon more traditional features, we leveraged some
concurrent research we have been doing on poetry data on this news corpora. Recently, Foley’s dissertation
introduced a large public collection of poetry extracted from internet archive books [13]. We had two projects
working with this dataset over this summer and we converted each of these to features in our approach.

We submitted four runs to the background-linking task, as described in the next section. We describe our
indexing and scoring process in Section 2, the new learning to rank tool we used (FastRank) and our baseline
features in Section 3, and our poetry research features that made it into our submission in Section 4. Finally we
have a brief discussion of our 2019 results in Section 5

1.1 Runs Submitted

smith base This contains the baseline LTR features, described in Table 1.

smith poetry This contains our baseline model with similarity based on detected poetry categories in the
news articles. This model is described in Section 4.1.

smith keywords This contains the baseline model with additional features based on our keyword importance
model. This model is described in Section 4.2.

smith full This contains a learning-to-rank model over all the features we studied. This combines the
previous three models into one.
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2 News-Specific Processing

We first create an index using the irene software1 that is a combination of the inquery programming language [8,
28, 9, 18] with the Lucene document indexing system [23].

2.1 Indexing WAPO Articles

We indexed the Washington Post corpus provided for both news and core tasks with the following fields (when
available): published.date, url, kind, title, author, kicker, and we constructed a body from the text of
(HTML tags were removed with JSoup2) the JSON paragraph “blobs”.

2.2 Result Filtering

Duplicate detection was part of the challenge of working with Washington Post data this year, so we de-duplicated
documents by title (choosing the most recent publication date for any conflicts) and rejected all documents
without a title from ranking – feeling that documents are not useful for background research if they cannot be
summarized concisely.

We also enforced that documents retrieved were published before the query document, using a streaming model
for our evaluation. Following the track guidelines, we also excluded documents whose kickers were: “Opinion(s)”,
“Letters to the Editor”, or “The Post’s View”.

3 Learning to Rank Baseline

Since this is the second year of TREC News, this year there was training data available for a supervised approach.
All of our runs fall into this category, using the 50 queries from News 2018 in five-fold cross-validation for learning.

3.1 FastRank: An Enhanced Coordinate Ascent

One of the most effective and simplest learning to rank models for small datasets is the Coordinate Ascent
model [21] because of its ability to directly optimize IR evaluation measures. This model is stochastic and searches
parameter space one feature at a time (with acceleration) to construct a linear weighting of features. It proceeds
until no improvements are available with a given tolerance.

For our learning to rank experiments we rewrote the implementation available in Ranklib [11] in Rust (to
improve efficiency), to simplify the code, and to add a few small enhancements:

1. Random initialization: Ranklib initializes its starting weight vectors to be 1/D where D is the number of
features; thus assuming each feature is equally important and in the positive sense. Since the algorithm uses
random restarts, to avoid local minima, it also makes sense to randomly initialize each weight vector.

2. Feature selection: in addition to moving features from their current values based on an accelerating step-size,
we also consider removing each feature at every point during the search: that is, setting the feature value to
zero. This prevents model performance from dropping precipitously when a poor feature is introduced if it
can observe an improvement from eliding it.

An early release of our new learning to rank tool is available3 and was announced recently via blog post [14].
In addition to these algorithmic improvements of Ranklib, this tool also has deterministic seeding, support for
better error messages while loading improperly formatted input files, and support for compressed files.

3.2 Learning to Rank Features

Our learning to rank features fall into three categories, and are presented in Table 1.

Retrieval Models The first category of features are standard retrieval models. We turn the original article
into a query and execute the given retrieval model against all pooled results.

1https://github.com/jjfiv/irene
2https://jsoup.org/
3https://github.com/jjfiv/fastrank
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Reverse Models Rather than treating the original article as a query, we can go in reverse. That is, we
consider the candidate article as a query and the original article as the document to be scored. Most
modern retrieval models are non-symmetric so this provides additional information about how similar
the query document and the candidate documents are.

Quality Features The last category of features we describe are quality & metadata features. They are
query-independent and are meant to be a kind of filter on the types of documents that are valuable
to recommend to a user. In addition to some traditional quality features [3], and two date features to
allow the model to prioritize past articles over future articles (or vice versa) we also generated a clickbait
feature for WaPo articles based on their title (See Section 3.2.1 for more).

Group Feature Description
Retrieval Models title-sdm The title of the query article as a SDM query [20]

title-ql The title of the query article as a Query Likelihood query [24, 32]
rm-n10 A relevance model (RM) [17] built with 10 expansion terms.
rm-n50 RM with 50 terms.
rm-n100 RM with 100 terms.
bm25-rm-n10 A relevance model (RM) [17] built with 10 expansion terms weighted

with BM25 [27].
bm25-rm-n50 RM with 50 terms weighted with BM25.
bm25-rm-n100 RM with 100 terms weighted with BM25.
body-ql Body of query document as an unweighted unigram query.
first-para-ql First paragraph of query document as an unweighted unigram query.
first-para-sdm First paragraph of query document as an SDM query.

Reverse Models title-ql-rev Title(candidate document) as a query against the query document.
bm25-rm-n10-rev RM with 50 terms weighted with BM25 (cand to query).
bm25-rm-n50-rev RM with 50 terms weighted with BM25 (cand to query).
bm25-rm-n100-rev RM with 100 terms weighted with BM25 (cand to query).

Quality Features entropy Entropy of candidate document.
body-len Length of candidate document.
date-cmp Three values: candidate published (<,=, >) the query document.
date-sub The difference in publication times.
clickbait-proba Clickbait-probability of candidate title. (§3.2.1)

Table 1: List of Learning to Rank Features

3.2.1 Clickbait Classification

In news, clickbait refers to headlines that are intentionally vague, sensational, or otherwise provocative in order to
gather clicks. While there has been a variety of work on clickbait detection [26, 1, 10] and even a challenge [25],
one of the easiset datasets to obtain is that of Chakraborty et al.,[10], which is available in plain text on Github4.

Although most works define and extract features manually, (Chakraborty et al. use a SVM to get 93%
accuracy) instead we used a simple neural network approach via the fastText tool5 for supervised learning of
word embeddings for the classification task [15]. This tool obtained a P@1 (Accuracy) of 0.959 which was as
good or better than the reported SVM accuracy without the need for explicit feature extraction.

We applied this learned fastText clickbait model to the tiles of all of our candidate documents with the
intuition that better background articles would have less clickbait-y titles.

Results over an early version of the base LTR model on 2018 data suggested a reasonably-sized improvement
in NDCG@5 (0.386 to 0.403) using our enhanced Coordinate Ascent model (§3.1).

4https://github.com/bhargaviparanjape/clickbait
5fasttext supervised -input clickbait.train -output model -dim 32 -lr 0.1 -wordNgrams 4 -minCount 1 -bucket

10000 -epoch 20
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4 Poetry Research for News

In this section, we discuss how we took ongoing research into poetry categorization and keyphrase extraction and
applied it to our TREC News background-linking runs.

4.1 Poetry Categorization

Recently, more interest has been given toward extracting datasets of poetry from within other datasets [30, 29,
16, 13]. With Foley’s dissertation work releasing 600,000 pages6 of poetry [13], we were looking into how to
categorize this poetry into the categories provided by the https://poetryfoundation.org that were previously
studied [19]. There are 9 first-level categories and 127 subcategories available in that labeled dataset.

Using some tools from the scikit-learn package we trained linear classifiers over TF-IDF representations for
the 9 top-level categories, each of which had thousands of poetry labels. Since the top-level categories had enough
labels, and TF-IDF is a powerful baseline, these classifiers achieve high performance in both cross-validation and
generalization (to Foley’s Poetry50K dataset) settings. Results for cross-validation are presented in Table 2 –
generalization experiments and labels are not complete.

Category Number of Labels AUC
Social Comm. 3050 0.753
Relationships 3050 0.722
Nature 2644 0.797
Arts/Sciences 2270 0.723
Living 3946 0.668
Religion 1049 0.804
Love 1608 0.826
Activities 1461 0.678
Mythology 468 0.716

Table 2: Cross-Validation AUC for Poetry Classification

The top-labels were: “Relationships”, “Nature”, “Arts/Sciences”, “Living”, “Religion”, “Social Commentaries”,
“Love”, “Activities”, and “Mythology”. We turned our nine classifiers into a nine-dimensional vector for every
Washington Post article. We then added a feature that was the cosine similarity between the query article and a
particular background article, as well as query-independent features for each topic.

Article Title Top-3 Labels
Dave Chappelle accepts the Twain Prize: ‘I love
my art form. It saved my life.’

Social Comment. (1.6), Arts/Sci. (1.3), Rela-
tionships (0.49)

Apples keep you healthy, carrots help your eyes:
What science says about such folk remedies

Activities (1.5), Arts/Sci. (0.41), Social Com-
ment. (0.37)

Table 3: Qualitative inspection of labels assigned to articles seem yields fairly positive results, especially for
Top-1 labels. (Used non-corpora Washington Post stories; 27 October and 16 October 2019, respectively.)

Some results are presented on both 2018 and 2019 data in Table 5. Because results were competitive using
NDCG and this had not been part of last year’s pool, we decided to submit the smith poetry run.

4.2 Keyword and Keyphrase Extraction

In poetry, often entities or other important concepts are mentioned without context; this is sometimes used as
allusion, to add color, emotion or context to a poem with very few tokens. One of the the open research questions
we have is how to identify such allusions and other interesting words. One obvious baseline for such a task is
“keyphrase extraction”.

TextRank is the classical keyword or keyphrase extraction approach: it is a version of PageRank where nodes
are words or phrases and links between them are crafted from co-occurrence data. The SummaNLP library [2] is
one such implementation of this approach in Python. Another library is PKE, which contains a wider variety of
keyphrase extraction methods [5], which was used in last year’s TREC News Track [4].

6https://ciir.cs.umass.edu/downloads/poetry
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The models available in SummaNLP and PKE that we found helpful and usable on both our poetry and news
data are as follows:

TextRank is the classic algorithm: pagerank applied to words with links based on co-occurrence [22].

SingleRank is a model that uses text-rank over candidates that are adjacent nouns and adjectives [31].

PositionRank is a model that extends TextRank by biasing keywords to those occurring earlier in the
article or document [12].

MultiRank is a model that only allows edges between phrases of different topics [6].

TopicRank is a model that executes SingleRank and then limits selections to the best keyphrase in each
“topic” [7].

Extraction Method Libary NDCG@5
TextRank Summa 0.306
TextRank PKE 0.254
SingleRank PKE 0.310
PositionRank PKE 0.300
MultiRank PKE 0.336
TopicRank PKE 0.340
BM25-RM-50 Retrieval Model 0.344

Table 4: NDCG@5 of queries generated by keyphrase extraction. Each phrase extracted is executed as a weighted
SDM query [20] based on its extraction confidence.

In Table 4 we present the performance of these off-the-shelf approaches to the TREC News Background-Linking
task: we extracted keyphrases from each of the query documents and constructed a query that was a weighted
combination of SDM [20] models around each extracted keyphrase. These were competitive with a simpler
relevance-modeling feature already present in our ensemble, and provided a small gain in cross-validation over the
2018 data when used together.

5 Discussion

Preliminary analysis of our model results on the 2019 challenge suggest that keywords were of more value in the
2019 data than in the 2018 data. See Table 5, below.

Submitted Run NDCG@5 2019 NDCG@5 2018 NDCG 2019 NDCG 2018
smith poetry 0.555 0.518 0.603 0.557
smith base 0.564 0.526 0.605 0.555
smith keywords 0.570 0.502 0.610 0.553
smith full 0.560 0.518 0.614 0.555

Table 5: Evaluation of submitted models on qrel-files. Official Evaluation metric: NDCG@5

We expected our poetry and keyword features to be helpful as we looked at NDCG while training and evaluating
our learning-to-rank model. Because of the exponential discounting in NDCG we disregarded the impact of using
NDCG@5 vs. NDCG@100 or larger depths, but the numbers in our Table 5 suggest that this was potentially a
mistake. When we visualize the data as bar-plots, we can see that these runs are a little more interchangeable
and that the rankings are very sensitive to the depth examined. Rankings are also different for the NDCG@100
case for mean and median NDCG (Figure 1, below).

The poetry features appeared to be valuable in the 2018 data (or at least not significantly harmful but they
appear to be more of a problem in the 2019 data). That being said, the differences discovered in including poetry
features in our news articles are probably not significant. This means that – our results are probably essentially
the same across our four runs. It remains to be seen how runs with totally different features are ranked against
these, since absolute measures can be misleading and ranking across systems is what is most robust in TREC
evaluations.
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Figure 1: Exploration of Depth on NDCG on system ranking. The ranking of systems changes between a depth
of 5, 10 and 100. Clearly unjudged documents will have more of an effect at deeper depths, but recall will be
more emphasized in deeper runs.

6 Conclusions

We explored some non-traditional features atop a traditional learning to rank model. Since we tuned our models
based on NDCG and not NDCG@5, we did not necessarily emphasize precision as much as we should have
during model selection, however, the performance of all our models is highly-overlapping (Figure 1). Surprisingly,
keyword extraction methods seem to be more competitive on the 2019 data than on the 2018 data and our
poetry features seem to be more helpful for recall than precision; thus not being reflected as clearly in the official
measure.

The 2019 dataset is larger than the 2018 dataset and so we plan to experiment with these ideas on the full set
of 110 queries which should lead to more statistically significant conclusions.
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