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Recent advances in the fabrication of nanostructures1-3 and nanoscale features in 

metasurfaces4-6 offer a new prospect for generating visible, light emission from low energy 

electrons. In this paper, we present the experimental observation of visible light emission 

from low-energy free electrons interacting with nanoscale periodic surfaces through the 

Smith-Purcell (SP) effect7. SP radiation is emitted when electrons pass in close proximity 

over a periodic structure, inducing collective charge motion or dipole excitations near the 

surface7-9, thereby giving rise to electromagnetic radiation. We demonstrate a controlled 

emission of SP light from nanoscale gold gratings with periodicity as small as 50 nm, enabling 

the observation of visible SP radiation by low energy electrons (1.5 to 6 keV), an order of 

magnitude lower than previously reported4, 7, 10-14. We study the emission wavelength and 

intensity dependence on the grating pitch and electron energy, showing agreement between 

experiment and theory. Further reduction of structure periodicity15 should enable the 

production of SP-based devices that operate with even slower electrons that allow an even 

smaller footprint and facilitate the investigation of quantum effects for light generation in 
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nanoscale devices16. A tunable light source integrated in an electron microscope would enable 

the development of novel electron-optical correlated spectroscopic techniques, with 

additional applications ranging from biological imaging to solid-state lighting17. 

 

Tunable nanoscale light sources are of utmost importance for nanophotonics. Free-electron-driven 

light sources offer a promising avenue for achieving this goal1, 12, 18, 19. These devices benefit from 

flexible material choices as well as from the ability to focus electrons to nanoscale spots, which in 

turn enables the tailoring efficient of interactions with nanoscale structures. Thus far, most of the 

free-electron radiation sources have used relativistic electrons, from highly relativistic energies as 

in synchrotrons20 and free electron lasers21-24 to modestly relativistic energies as radiation sources 

in the microwave25, 26 and visible7, 8, 12. The requirement for large electron velocities in those 

conventional setups has kept free-electron light sources away from compact or on-chip 

applications. 

 

In this work, we leverage recent advances in nanoscale fabrication techniques that have enabled 

the study of new fundamental effects and their applications involving the interaction of free 

electrons with light and matter. For instance, new opportunities to explore the SP effect in 

nanoscale structures like plasmonic arrays14, 27 and metasurfaces28 have been recently investigated. 

Such systems can be used as sources of visible and IR light that are tunable by adjusting the 

electron velocity7. The possibility of observing shorter wavelength emissions from relatively low-

energy electrons (accessible with regular scanning or transmission electron microscopes, SEM or 

TEM) is a very promising field of research4, 18, 29-31, because of the exciting applications of short 
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wavelength radiation in beam diagnostics31, particle detection32, biological imagining in the water 

window33 and nanolithography34. 

 

SP radiation is emitted when an electron passes in close proximity over a periodic surface, inducing 

charges at the surface of the grating to rearrange themselves to screen the field of the moving 

electron, thereby inducing the emission of electromagnetic radiation7-9. In 19537 Smith and Purcell 

measured for the first time electromagnetic radiation produced by a free-electron beam passing 

over a metallic grating. They found that radiated wavelength depends on the properties of the 

structure and of the exciting electron beam and is given by the following well-known formula: 

𝜆 = 𝑎𝑚 (1𝛽 − cos 𝜃) (1) 

where 𝜆 is the radiation wavelength, 𝑎 is the grating pitch, 𝑚 is the diffraction order, 𝛽 = 𝑣/𝑐 is 

the normalized speed of electron passing over the structure, and 𝜃 is the angle of emission 

measured from the direction of beam propagation.  

 

Smith and Purcell used relatively high-energy electrons with 𝛽~0.8 for their original experiment. 

Further experimental demonstrations of the SP effect confirmed that it occurs over a wide spectral 

range. SP radiation has been demonstrated experimentally in the far infrared35 and in the THz and 

mm-wave regimes36, 37. However, only a limited effort has been devoted to studying the SP 

radiation in the visible region (e.g., references 4, 7, 8). Up until now, these experimental 

demonstrations of SP radiation relied on the use of electrons that are moderately or highly 

relativistic with the lowest electron energy to generate SP radiation was 12 keV27. 
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Relatively large-pitch periodic structures were used to record SP radiation, with the original 

experiment using metallic gratings of 1.67 μm pitch, to more recent literature scaling the structure 

periodicity down to 130 nm14. Reducing the periodicity to 50 nm enables us to observe optical SP 

radiation produced by nonrelativistic electron energies (about 5-10% the speed of light), and with 

an order of magnitude lower than the pervious record27. 

 

The key challenge to observing optical SP radiation from a nanograting is aligning the electron 

beam with a nanograting that is limited in size by nanofabrication constrains (typically about 200 

µm along each lateral dimension parallel to the surface). We overcome this challenge by using a 

proprietary setup that we have developed. The setup makes it possible to spatially resolve the light 

emission simultaneously with collecting the emission spectra27. This way we can image the 

location of electron interaction with the surface and thus align the electron beam path with the 

nanograting and maximize the interaction between the two. 

 

We have fabricated gold grating samples with 50 nm and 60 nm periods using electron beam 

lithography (EBL) and a lift-off technique. They consist of gold lines on a thick gold layer over a 

200 μm × 200 μm area. The samples were mounted inside the chamber of a modified SEM 

experimental setup (Figure 1) and the electron kinetic energy was tuned between 1.5 and 6 keV. 
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Figure 1 Illustration of our SEM-based experimental setup used to observe SP radiation.  (a) 

Inside the SEM vacuum chamber the sample is held so that its surface is almost parallel to the path 

of the electron beam. The emitted light is collected by an objective and  (b) directed to a beam 

splitter (BS) splitting the optical beam to an optical fiber collector that leads to a spectrometer 

(Lens 1) and to a CCD camera (Lens 2) that images the surface of the sample. 
 

 

Figure 2 shows the measured SP spectra from a 50 nm pitch gold grating sample, with the peaks 

compared to the theoretical predication (equation (1)) down to electron energy of 1.5 keV. In 

addition to the tunable SP peaks, the spectra show a strong cathodoluminescence (CL) background 

around 550 nm. 

 

a) b) 

 

Figure 2 SP radiation from low electron velocities and small pitch grating. (a) Measured 

spectra for different kinetic energies from a grating with 50 nm pitch. The dashed vertical lines are 

calculated according to the conventional SP theory at normal emission 7, with colors corresponding 

to different kinetic energies. (b) Peak wavelength comparison between experiment and theory. 

 

Figure 3b shows the measured SP spectra from 60 nm pitch gold nanogratings (shown in figure 

3a), with the peaks compared to the theoretical prediction (equation (1)) at electron energies of 2-

6 keV. 
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Using power calibration measurements (see methods section), we estimate power levels on the 

order of ~1 nW with a beam current of 100 nA (integrating the SP spectral power to obtain the 

total power) 

 

 
Figure 3 SP radiation from nonrelativistic electrons: measured vs simulated radiation. (a) 

SEM images of 60 nm pitch gratings (the red square shows a zoomed in display). (b) Upper plot: 

Measured spectra for different kinetic energies for a 60 nm pitch. Lower plot: Time-domain far-

field distribution computed with 𝑁=20 unit cells (estimated number of unit cells with which each 

electron in the beam interacts) and integration over an angle corresponding to the numerical 

aperture of the objective used in our experiment (NA=0.3). The dashed vertical lines are calculated 

according to the conventional SP theory at normal emission 7, with the color corresponding to the 
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same kinetic energies. (c) Simulation of the angular distribution for a kinetic energy of 3 keV and 

a grating of 𝑁=100 unit cells. The polar angle is measured from the direction normal to the beam 

propagation. At each angle, we verify the wavelength radiated with maximum intensity 

corresponds to the theoretical predication7. (d) Angular distribution of the SP emission of the same 

setup as in (c). The polar is angle is measured from the direction of propagation of the electron 

beam. We observe that the radiation for this grating pitch and energies is most efficient backward. 

The shaded grey area corresponds to the numerical aperture of the objective used in our 

experimental setup. 

 

 
 

In figure 2 and figure 3b, gold gratings of period 𝑎=50 and 60 nm were shown to produce SP 

emission over the 395-654 nm wavelength range with low energy-electrons (1.5-6 keV). To the 

best of our knowledge, these periodicities and electron kinetic energies used to generate SP 

radiation are the smallest reported so far (by a factor of 2.6 in the pitch and 8 in the kinetic energy). 

Our experimental observations are confirmed by simulations (figure 3c and figure 3d), which also 

predict the spectrum lineshape and take into account the structure geometry and the optical 

response of the material. The simulation computes the scattering spectrum of the evanescent field 

carried by the electron and verifies the typical cosine-like shape of the original formula (equation 

(1)) as shown in figure 3c. Interestingly, due to the optical response of the nanograting at the optical 

frequencies, the most efficient wavelengths of emission are usually emitted at some backward 

angle (θ > π2) (see figure 3d). This fact explains the slight red-shift between the theoretical 

prediction at normal emission (dashed lines) and the peak wavelength, as can be seen in both our 

experimental and simulation results (figure 3b). 

 

An advantage of using slow electrons is their higher photon extraction efficiency 𝜂 = 𝑑𝑁/𝑑𝜔Ek , where 𝑑𝑁/𝑑𝜔 is the radiation intensity (generated number of photons per frequency) and Ek is the kinetic 

energy of electrons. To exemplify this advantage, we compute these quantities for a fixed radiation 
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wavelength of 700 nm (figure 4a). The electron structure separation is taken to be the same as the 

pitch of the nanograting and the radiation is calculated for one unit cell, so that the geometry is 

invariant by scaling with 𝛽. The results of this calculation shows that the radiation intensity 

decreases with smaller electron velocities, so slow electrons radiate less than fast electrons (blue 

curve in figure 4a). On the other hand, the extraction efficiency increases with smaller electron 

velocities, so slow electrons radiate more efficiently than fast electrons (orange curve in figure 4a); 

for example, the extraction efficiency for 𝛽 = 0.1 is one order of magnitude higher than the 

extraction efficiency for 𝛽 = 0.6. 

 

Finally, we experimentally observe the SP spectral peak at each fixed emission wavelength gets 

narrower for smaller electron velocities. i.e., when fixing the emission wavelength, lower electron 

velocities give a narrower emission spectrum. Figure 4b shows this effect by showing the SP 

radiation at a fixed wavelength (700 nm) from three different nanograting pitches with three 

different electron velocities. This is consistent with the SP formula (equation (1)), as it implies that 

the spectral bandwidth of SP radiation is linear with the electron velocity. This can be seen by 

fixing the peak wavelength 𝜆peak = 𝑎𝑚 1𝛽 and the collection numerical aperture, and then noticing 

that equation (1) gives ∆𝜆 ∝ 𝑎𝑚 = 𝛽𝜆peak. The effect of SP bandwidth narrowing for slow electrons 

also bolsters the interest of observing SP radiation from even lower energy non-relativistic 

electrons, yielding an additional degree of freedom to shape the spectral response of SP radiation. 
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a) 

 

b) 

 

 

Figure 4 Characterization of SP radiation for slow electrons. a) Simulated efficiency as a 

function of 𝛽 with 𝜆 = 𝐿 𝛽⁄   fixed at 700 nm. The blue curve represents the power spectrum, i.e. 

the total number of photons/Hz/period/electron measured at a fixed wavelength of 700 nm. The 

red curve represents the relative efficiency of the SP emission defined as the ratio of the emitted 

photon energy to the kinetic energy of the incident electron. b) Increase of spectral coherence 

(bandwidth reduction): the normalized radiated spectrum for different 𝛽. 
 

 

In conclusion, while most of the literature has focused on moderately or highly relativistic 

electrons, the prospect of achieving a low-electron-energy nanoscale light source paves the way 

for new regimes of light-matter interaction. Utilizing a modified SEM that enables resolving the 

spatial and spectral information of the light emission simultaneously, we observe SP from 

nanoscale gratings, which enabled us to drastically reduce the electron beam energies, pushing 

towards the development of efficient on-chip tunable light sources. With the ability to fabricate 

ever-reducing feature sizes, our work provides a platform to bring SP radiation from accelerator 

physics and high-energy electron physics to integrated devices. A similar motivation has recently 

led to reducing the velocity threshold of Cherenkov radiation29. The unique prospect opened up by 

E
x

tr
a

c
ti

o
n

 e
ff

ic
ie

n
c

y
 𝒅𝑵𝒅

𝝎⁄ 𝑬 𝒌 (
W

-1
) 

R
a

d
ia

ti
o

n
 i

n
te

n
s

it
y
 𝒅𝑵 𝒅𝝎 (

H
z

-1
) 

𝜷 

Wavelength (nm) 



10 

 

compact new SP sources of light lie in their tunability since their emission wavelength can be 

controlled by the electron velocity, and can reach spectral ranges that conventional light sources 

cannot commonly achieve. These include the EUV and soft X-ray radiation ranges, with numerous 

exciting applications23. So far, SP radiation has yet to be experimentally demonstrated in these 

regimes, even though there are promising predictions towards the realization of an efficient SP 

source in the UV regime 38, 39. 

 

Methods 

Fabrication. SP gratings were fabricated on Au coated Si substrates. An Au coating layer was 

deposited by electron-beam evaporation of 5 nm of Ti and then 200 nm of Au onto a Si chip. A ~70 nm film of PMMA was spin-coated onto the Au coated Si chip and then soft-baked at 180 °C. 

Grating patterns were produced by an Elionix F-125 electron beam lithography system using an 

accelerating voltage of 125 keV beam current of 500 pA. Exposed PMMA was developed in 3:1 

IPA:MIBK at 0 °C for 30 s (See reference 40) and then dried with flowing 𝑁2 gas. 20 nm of Au 

was then deposited via electron-beam evaporation. Metal lift-off was performed in NMP at 50 °C 

for approximately 60 min during which the sample was gently rinsed with flowing NMP. After 

lift-off, the sample was rinsed with acetone and IPA. Finally, gentle O2 plasma ashing (50 W, 60 

s) was applied to remove residual resist and solvents. 

 

Experimental setup. The experimental setup used for this experiment is shown in Figure 1. We 

used a JEOL JSM-6010LA scanning electron microscope (SEM) that we modified to enable the 

alignment of free electrons to pass in close proximity to the surface of periodic structures and the 

emitted light was collected with a Nikon TU Plan Fluor 10x microscope objective with a numerical 
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aperture (NA) of 0.30. The emitted SP photons exited the SEM chamber via a leaded glass window 

and were detected with a spectrometer (Acton SP-2360) equipped with a low noise 

thermoelectrically cooled CCD (Princeton Instrument PIXIS-400B). The spectra were collected 

using a grating with a line density of 150 g/mm and a blaze angle of 500 nm while using a low 

noise ADC at the rate of 100 kHz. The exposure time was 600 ms and the signals were averaged 

over 20 repetitions. The beam currents were measured using Keithley 6485 picoammeter 

connected to a Faraday Cup mounted on a SEM mount.  

 

Calibration. In order to estimate the absolute emitted optical power of the SP radiation we 

performed a power calibration measurement. Using the same experimental configuration of the SP 

measurements, a calibrated source (AvaLight-HAL-CAL) for the visible range (350-1095 nm) was 

placed at the same location as the sample. The signal measure for the calibrated light source was 

obtained at the spectrometer in units of signal counts. The power calibration profile was obtained 

by measuring the calibrated source using optical spectrum analyzer (AQ-6315A). The 

experimental setup response function was obtained by dividing the measured profile of the 

calibration source by its calibration profile. The SP spectral power from a sample was then 

obtained by dividing the measured signal from the sample by the setup response function. 

 

Time and frequency domain representation of the electron beam. The electron beam can be 

represented as a time-dependent propagating point-electron: 𝐽(𝑟, 𝑡) =  −𝑒 𝑣 𝛿(𝑥 − 𝑣𝑡)𝛿(𝑦 −𝑦0)𝛿(𝑧 − 𝑧0) �⃗�. Taking the Fourier transform of this time-dependent distribution, we get the 

following frequency-domain representation and the associated polarization distribution: 𝐽(𝑟, 𝜔) = −𝑒 exp(−𝑖 𝜔𝑥𝑣 )  𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑧0) �⃗� and (𝑟, 𝜔) = 𝑖 𝑒𝜔 exp(−𝑖 𝜔𝑥𝑣 )  𝛿(𝑦 − 𝑦0)𝛿(𝑧 − 𝑧0) �⃗� . In 
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time-domain simulations, we can use a set of closely spaced dipole sources in order to mimic the 

propagation of the electron beam, and compare these results with frequency-domain simulations 

where we can directly implement a line current. 

 

Time-domain simulations. This correspondence allows us to represent an electron beam as a set 

of closely spaced dipoles shifted in time. Time-domain simulations are run using the commercial 

FDTD software Lumerical, where a dipole in frequency domain is defined by its source norm 𝑠(𝜔) and base amplitude 𝑝𝑏𝑎𝑠𝑒 as 𝑝𝑘(𝜔, 𝑟) = 𝑝𝑏𝑎𝑠𝑒𝑠(𝜔) exp(− 𝑖𝜔𝑥𝑘𝑣 ), where 𝑥𝑘 is the position of 

the 𝑘 −th dipole and the exponential term in frequency-domain corresponds to a time-delay in 

time-domain. The induced polarization by the set of dipoles will be ∑ 𝑝𝑘(𝜔, 𝑟)𝑁𝑑𝑖𝑝𝑖=1𝑁𝑑𝑖𝑝→ +∞→        𝑃(𝑟,𝜔). To ensure the field recorded is generated by the emission of one electron of 

charge 𝑒, we normalize the recorded electric field by 𝛼 and power by 𝛼2 where 𝛼 =  𝑒 𝛥𝑥𝑝𝑏𝑎𝑠𝑒 𝑠(𝜔) 𝜔.  

We usually measure the power on a plane and get a result 𝑃(𝜔) in units of 
𝑊𝐻𝑧2 /𝑚2 . Integrating 

this result on a surface already simplifies the units to 𝑊/𝐻𝑧2.  This result can be converted in 

number of photons (per electron): 𝑁𝑆𝑃 = ∫ 𝑃(𝜔)ℏ𝜔 𝑑𝜔. 

 

In Figure 3b, simulation parameters are designed to match the experimental setup. For a mean tilt 

angle of the electron beam of 1°, a pitch of 60 nm, and assuming the electron beam effectively 

interacts with the grating at a distance H < 5 nm (since the interaction efficiency drops 

exponentially with the pitch as 𝑒−4𝜋𝐻 𝑎⁄ ), we get an effective amount of unit cells of 𝑁=20. The 

field is recorded 1 μm above the grating and projected in the farfield. Only radiation emitted at an 

angle less than the numerical aperture of the objective used in the experiment contributes to the 
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spectrum plotted in figure 3b. In Figure 3d, a simulation setup similar to figure 3b is used to 

measure the angular pattern of the radiation. 

 

Frequency domain simulations. Figure 4b is calculated using finite-element method (COMSOL 

Multiphysics). Electrons are treated as a line current (see the Fourier transform in the time-domain 

simulation) with periodic boundary condition imposed. 
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