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ABSTRACT

Data lineage describes the relationship between individual
input and output data items of a workflow and is an integral
ingredient for both traditional (e.g., debugging or auditing)
and emergent (e.g., explanations or cleaning) applications.
The core, long-standing problem that lineage systems need
to address—and the main focus of this paper—is to quickly
capture lineage across a workflow in order to speed up future
queries over lineage. Current lineage systems, however, ei-
ther incur high lineage capture overheads, high lineage query
processing costs, or both. In response, developers resort to
manual implementations of applications that, in principal,
can be expressed and optimized in lineage terms. This paper
describes SMOKE, an in-memory database engine that pro-
vides both fast lineage capture and lineage query processing.
To do so, SMOKE tightly integrates the lineage capture logic
into physical database operators; stores lineage in efficient
lineage representations; and employs optimizations if future
lineage queries are known up-front. Our experiments on
microbenchmarks and realistic workloads show that SMOKE
reduces the lineage capture overhead and lineage query costs
by multiple orders of magnitude as compared to state-of-
the-art alternatives. On real-world applications, we show
that SMOKE meets the latency requirements of interactive
visualizations (e.g., < 150ms) and outperforms hand-written
implementations of data profiling primitives.

PVLDB Reference Format:

Fotis Psallidas and Eugene Wu. SMOKE: Fine-grained Lineage at
Interactive Speed. PVLDB, 11(6): 719 - 732, 2018.

DOI: https://doi.org/10.14778/3184470.3184475

1. INTRODUCTION

Data lineage describes the relationship between individual
input and output data items of a computation. For instance,
given an erroneous result record of a workflow, it is helpful to
retrieve the intermediate or base records to investigate for er-
rors. Similarly, identifying output records that were affected
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Figure 1: Two workflows generate visualizations Vi and Va. A
linked brushing interaction highlights in red bars in Vo that share
the same input records with selected circles of V. Logically, it
is expressed as a backward query from selected circles in Vi to
input tuples followed by a forward query to Vg to highlight bars.

by corrupted input records can help prevent erroneous con-
clusions. These operations are expressed as lineage queries
over the workflow: backward queries return the subset of
input records that contributed to a given subset of output
records while forward queries return the subset of output
records that depend on a given subset of input records.
Any workflow-based application that relies on logic over the
input-output relationships can be expressed in lineage terms.
As such, lineage is (or can be) integral across many domains,
including debugging [12,31, 34, 40,59]; data integration [15];
auditing [19]; security [10,34]; explaining query results [16,
53,57,58]; cleaning [8,25]; and interactive visualizations [60].
This ubiquity highlights the importance of lineage-enabled
systems for both traditional as well as emergent domains. To
illustrate, consider the interactive visualization in Figure 1:
EXAMPLE 1. Figure 1 shows two views Vi and Vo gen-
erated from queries over a database. Linked brushing is an
interaction technique where users select a set of marks in
one view and marks derived from the same records are high-
lighted in the other views. This functionality is typically
implemented imperatively in ad-hoc ways [60]. However, it
can be expressed declaratively as lineage queries (i.e., as a
backward query from selected circles in V1 to input records,
followed by a forward query to highlight corresponding bars
in Vo) and optimized as such by lineage-enabled systems.
Lineage-enabled systems answer lineage queries by auto-
matically capturing record-level relationships throughout a
workflow. A naive approach materializes pointers between
input and output records for each operator during work-
flow execution and follows these pointers to answer lineage
queries. Existing systems primarily differ based on when the
relationships are materialized (e.g., eagerly during workflow
execution or lazily reconstructed when executing a lineage
query), and how they are represented (e.g., tuple annota-
tions [2,5,22,29] or explicit pointers [40,59]). Each design
trades off between the time and storage overhead to capture



lineage, and lineage query performance. For instance, an
engine may augment each operator to materialize a hash
index that maps output to input records in order to speed
up backward lineage queries. However, the index construc-
tion costs can dwarf the operator execution cost by 100X or
more [59]—particularly if the operator is highly performant.
As data processing becomes faster, a crucial question—
and the main focus of this paper—is whether it is possible
to have both negligible lineage capture overhead and fast
lineage query execution. Unfortunately, current lineage sys-
tems incur either high lineage capture overhead, or high
lineage query processing costs, or both. Not satisfying these
requirements, however, leads developers to abandon declara-
tivity and manually implement lineage-related logic for many
data-intensive applications, such as the one in our example.
To this end, SMOKE is a fast lineage-enabled in-memory
query engine designed to address the major performance
overheads in current lineage systems. We designed SMOKE
based on the careful combination of four design principles
that we believe are helpful when incorporating lineage into
fast, data-intensive workflow systems:
P1. Tight integration. In high throughput query pro-
cessing systems, per-tuple overheads incurred within a tight
loop—even a single virtual function to store lineage on a
separate lineage subsystem [31,40, 59]—can slow down op-
erator execution by more than an order of magnitude. In
response, SMOKE introduces a new physical algebra that
tightly integrates the lineage capture logic into query execu-
tion. In addition, SMOKE stores lineage in write-efficient data
structures to further reduce the lineage capture overheads.
P2. Apriori knowledge. Lineage applications such as
debugging need to capture lineage to answer ad-hoc lineage
queries that can trace back or forth to any input, interme-
diate, or output table. For applications such as interactive
visualizations or profiling, however, lineage queries may be
known up-front. SMOKE uses this apriori knowledge to avoid
materializing lineage that will not be queried in the future.
P3. Lineage consumption. Lineage applications rarely
require all results of a lineage query (e.g., all records that con-
tributed to an aggregation result) unless the results have low
cardinality. Instead, the results are filtered, transformed, and
aggregated by additional SQL queries. We term these queries
lineage consuming queries. If such queries are known up-front,
as is typically the case for applications with templated anal-
ysis capabilities (e.g., Tableau or Power BI), SMOKE pushes
physical design optimizations into the lineage capture phase.
These optimizations are used to speed up future lineage con-
suming queries, and can include lineage index partitioning,
materializing aggregates, or collecting statistics.
P4. Reuse. Lineage capture introduces significant over-
head during query execution due to generating and storing
unnecessary amounts of lineage data (e.g., expensive annota-
tions, denormalized forms of lineage). Following the concept
of reusing data structures [18], SMOKE augments and reuses
data structures (i.e., hash tables) constructed during normal
query execution to overlap capture and execution costs.
Our contributions are as follows:

e To reduce capture lineage overhead, we introduce a physi-
cal algebra that tightly integrates the lineage capture logic
within the processing of single and multi-operator plans,
and stores lineage in write-efficient indexes. Operators
serve the dual purpose of executing the query logic and
generating lineage. (Section 3)
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e To account for applications with known future lineage
query logic, we develop simple yet effective optimizations
that use knowledge of future lineage consuming queries to
augment, partition, or prune the captured lineage in order
to streamline future lineage consuming queries. (Section 4)
We find that Smoke reduces lineage capture overheads and
lineage query processing costs by up to multiple orders
of magnitude compared to state-of-the-art approaches.
Our real-world experiments suggest that SMOKE can both
express recent interactive visualization and data profiling
applications declaratively using lineage constructs, and
optimize their performance to be on par with, or faster
than hand-written implementations. (Sections 5 and 6)

2. BACKGROUND

We now provide background on lineage capture, an
overview of SMOKE, and a discussion on lineage applications.

2.1 Fine-Grained Lineage Capture

Our lineage semantics adhere to the transformation prove-
nance semantics of [13,22, 28] over relational queries.
Base queries. Formally, let the base query Q.(D) = O
be a relational query over a database of relations D
{R1, - ,Rn} that generates an output relation O. An ap-
plication can initially execute multiple base queries QL =
{Qx1, "+ ,QLy}. For instance, Qi in Figure 1 consists of
two base queries that generate the two visualization views.
Lineage and lineage consuming queries. After a base
query runs, the user may issue a backward lineage query
L, (O’,R;) that traces from a subset of an output relation
O’ C O to a base table R;, or a forward lineage query
L¢(R{,0) that traces from a subset of an input relation
R’ C R; to the query’s output relation O. A lineage query
L(e) results in a relation that can be used in another query
C(D U {L(e)}) which we term a lineage consuming query; a
lineage query is a special case of lineage consuming queries:
C=SELECT * FROM L(e). Finally, C itself can be used as a
base query, meaning that another lineage consuming query
C’ can use C as a base query.t We illustrate these definitions
with the interactive linked brushing example of Figure 1:

EXAMPLE 2. Let Qi ({X,Y}) = V1 and Qua({X,Z}) =
Vo be the base queries in Figure 1. The linked brushing
interaction is expressed as a backward query Ly(VY,X) from
the selected circles V'l C V1 back to the input records in
X that generated them. The forward lineage query F =
Le(Ly,(V],X), Vo) retrieves the linked bars in Va. A lineage
consuming query C(DUF) can then be used to change the
color of the bars to red, similar to [60]. Since interactions
are expressed in lineage terms, optimizing lineage constructs
essentially corresponds to optimizing such applications.
Lazy and eager lineage query evaluation. How can
we answer lineage queries quickly? Lazy approaches rewrite
lineage queries as relational queries over the input relations—
the base queries do not incur capture overhead at the cost
of potentially slower lineage query processing [11,15,28]. In
contrast, we might Fagerly materialize data structures during
base query execution to speed up future lineage queries [11,
28]. We refer to this problem as lineage capture, and we seek
to reduce the capture overhead on the base query execution.

I The query model of SMOKE includes multi-backward and
multi-forward queries as well as refresh and forward propagation
queries [28]. We limit the discussion to Ly, L¢, and C in that they
form the basis to express more general query constructs.



Lineage capture overview. The eager approach incurs
overhead to capture the base query’s lineage graph. Logically,

each edge a L maps an operator op’s input record a
to op’s output record b that is derived from a. Backward
lineage connects tuples in the query output o € O with tuples
in each input base relation r € R; by identifying all end-to-
end edges o ~ r for which a path exists between the two
records. Forward lineage reverses these arrows. Materializing
such end-to-end forward and backward lineage indexes can
essentially help us streamline lineage consuming queries.
We will present techniques that efficiently capture lineage
in a workload-agnostic setting by carefully instrumenting
operator implementations and in a workload-aware setting by
tailoring the indexes for future lineage consuming queries if
they are known up-front. Next, we review alternative lineage
capture techniques that we classify as logical and physical.
Logical lineage capture. This class of approaches stays
within the relational model by rewriting the base query into
QL({R1, - ,Rn}) = O, so that its output is annotated with
additional attributes of input tuples. Some systems [2,12]
generate a normalized representation of the lineage graph
such that a join query between O’ and each base relation R;
can create the lineage edges between O’ and R;. The correct
output relation O can be retrieved by projecting away the an-
notation attributes from O’. Alternative approaches [12,22]
output a single denormalized representation that extends O’
with attributes of the input relations. Recent work has shown
that the latter rewrite rules (PERM [22]) and optimizations
leveraging the database optimizer (GPROM [44]) incurs lower
capture overheads than the former normalized approach.
Although these approaches can run on any relational
database and benefit from the database optimizer, they suf-
fer from several performance drawbacks. The normalized
representation requires expensive independent joins when
running lineage queries. The denormalized representation
can incur significant data duplication (e.g., an aggregation
output o computed over k input records will be duplicated
kx) and require further projections to derive O from O’.
Furthermore, indexes are needed to speed up lineage queries.
Physical lineage capture. This class of approaches instru-
ments physical operators to write lineage edges to a lineage
subsystem through an API provided by the subsystem; the
subsystem stores and indexes the edges, and answers lin-
eage queries [29, 30, 31,40,59]. This approach can support
black-box operators and decouples lineage capture from its
physical representation. However, we found that virtual func-
tion calls alone (ignoring cross-process overheads) can slow
down data-intensive operators by up to 2x. Furthermore,
lineage capture with lineage subsystems is not amenable to
co-optimization opportunities with the base query execution.

2.2 Approach of SMOKE

To this end, we introduce SMOKE, an in-memory database
engine that avoids the drawbacks of logical and physical
approaches. SMOKE improves upon logical approaches by
physically representing the lineage edges as read- and write-
efficient indexes instead of relationally-encoded annotations.
We improve upon physical approaches by introducing a phys-
ical algebra that tightly integrates lineage capture and rela-
tional operator logic to avoid API calls and in a way amenable
to co-optimization. Finally, SMOKE leverages knowledge of
future lineage consuming queries to prune or partition lineage
indexes and materialize views to benefit such queries.
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The primary focus of this work is to explore mechanisms
to instrument physical operator plans with lineage capture
logic. To do so, we have built SMOKE as a query compilation
execution engine using the produce-consumer model [43]. It
takes as input the base query Q. and an optional workload
of lineage consuming queries W; parses and optimizes QL
to generate a physical query plan; instruments the plan to
directly generate lineage indexes; and compiles the instru-
mented plan into machine code that generates Q. (D) and lin-
eage. Internally, SMOKE uses a single-threaded, row-oriented
execution model, and leverages hash-based operator imple-
mentations that are widely used in fast query engines and are
amenable to low-overhead lineage capture. Lineage-aware
query optimization and incorporating advanced features (e.g.,
compression or vectorization) are interesting future steps.

2.3 Lineage Applications

Many applications logically rely on lineage, including but
not limited to: debugging [12,31, 34,40, 59|, diagnostics [56],
data integration [15], security [10, 34|, auditing [19] (the
recent EU GDP regulation [19] mandates tracking lineage),
data cleaning [8, 25|, explaining query results [16, 53, 57,
58], debugging machine learning pipelines [36,61], iterative
analytics [13], and interactive visualizations [60].

Unfortunately, there is a disconnect between modeling ap-
plications in terms of lineage and the performance of existing
lineage capture mechanisms. The overheads are enough that
application developers resort to manual implementations.
For this reason, we center the paper around interactive vi-
sualizations. It is a domain that can directly translate to
lineage [27,60]. Yet, it is dominated by hand-written imple-
mentations. Furthermore, it imposes strict latency require-
ments on lineage capture (to show the initial visualizations)
and lineage consuming queries (to respond to user interac-
tions). Finally, our experiments on interactive visualizations
and data profiling (Section 6.5) seek to argue that lineage
does not only provide an elegant logical description of many
applications, but it can optimize applications to be on a par
with or even faster than hand-tuned implementations.

3. FAST LINEAGE CAPTURE

This section describes lineage capture without knowledge
of a future workload. First, we present write- and read-
efficient lineage index representations (Section 3.1) to map
output-to-input or input-to-output record ids (rids). Then,
we introduce our physical algebra that tightly integrates the
lineage capture logic within the base query execution. To do
so, we will describe how to instrument single-(Section 3.2) and
multi-(Section 3.3) operator plans for fast lineage capture.

3.1 Lineage Representations

SMOKE uses two main rid-based lineage representations.
Figure 2 below illustrates input and output relations R and
O, respectively, and the two rid-based lineage representations
for 1-to-N and 1-to-1 relationships between output and input
records. We index rids because the indexes are cheap to write
(for fast lineage capture) and lookups, that simply index into
relations, are fast (for fast lineage query processing). In
contrast, indexing full tuples incurs high write costs while
indexing primary keys is not beneficial if keys are wide.
Furthermore, in-memory engines [1,20] already create rid
lists, as part of query processing, that resemble our indexes
and could be reused for the optimization of lineage capture.
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Rid Index. 1-to-N relationships are represented as inverted
indexes. Consider the backward lineage of GROUPBY. The
index’s it" entry corresponds to the ith output group, and
points to an rid array containing rids of the input records
that belong to the group. The rid index can also be used
for 1-to-N forward lineage relationships, such as for the JOIN
operator. Following high-performance libraries [21], the index
and rid arrays are initialized to 10 elements and grow by a
factor of 1.5x on overflow. Our experiments show that array
resizing dominates lineage capture costs. Available statistics,
however, that allow SMOKE to allocate appropriately sized
arrays can reduce lineage capture overheads by up to 60%.
Rid Array. 1-to-1 relationships between output and input
records are represented as a single array. Each entry is an
rid rather than a pointer to an rid array as in rid indexes.

3.2 Single Operator Instrumentation

Having presented the main lineage index representations,
in this section we introduce instrumentation techniques to
generate lineage indexes when executing individual relational
operators. (Section 3.3 extends support to multi-operator
plans.) Our techniques are based on two paradigms: DEFER
defers portions of the lineage capture until after operator
execution while INJECT incurs the full cost during the base
query execution. DEFER is preferable when the overhead
on the base query execution must be minimized or when
it is possible to collect cardinality statistics during base
query execution to avoid resizing costs. In contrast, INJECT
typically incurs lower overall overhead, but the client needs
to wait longer to retrieve the base query results.

Next, we describe both paradigms for core relational op-
erators. Our discussion also illustrates how both paradigms
embody the tight integration and reuse principles (P1 and
P4 from the Introduction). Our focus is on the mechanisms
while Section 7 discusses future work to choose between the
two paradigms. Full details, code snippets, and additional
operators (U, N, —, /, X, Ilg) are in our technical report [50].

3.2.1 Projection

Projection under bag semantics does not need lineage
capture because the input and output orders and cardinalities
are identical. More specifically, the rid of an output (input)
record is its backward (forward) lineage. Projection with set
semantics is implemented using grouping and we use the same
mechanism as that for group-by aggregation (Section 3.2.3).

3.2.2 Selection

Selection is an if condition in a for loop over the input
relation, and emits a record if the predicate evaluates to
true [42]. Both forward and backward lineage use rid arrays;
the forward rid array can be preallocated based on the cardi-
nality of the input relation. INJECT adds two counters, ctr;
and ctro, to track the rids of the current input and output

records, respectively. If a record is emitted, we set the ctrith
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Figure 3: INJECT and DEFER plans for group-by aggregation and
join. Dotted arrows are only necessary for lineage capture.

(b) INJECT (c) DEFER (d) INJECT

element of the forward rid array to ctro, and append ctr; to
the backward rid array. Selectivity estimates can be used
to preallocate the backward rid array and avoid realloca-
tions during the append operation. DEFER is equivalent to
scheduling INJECT later and requires re-scanning the input.

3.2.3 Group-By Aggregation

Query compilers decompose group-by aggregations into
two physical operators: vy builds the hash table that maps
group-by values to their group’s intermediate aggregation
state; Yagg scans the hash table, finalizes aggregation results
for each group, and emits output records. Figure 3 shows the
plans for both instrumentation paradigms; lineage indexes
consist of a forward rid array and a backward rid index.
DEFER. Consider the DEFER plan in Figure 3.a. vj, for
DEFER extends vyt to store an oid number to each group’s
intermediate aggregation state. When Yégg scans the hash
table to construct the output records, it uses a counter to
track the output record’s rid and assign it to the group’s
oid value (i.e., oid tracks the output rid of the group in the
result). SMOKE then pins the hash table in memory. At a
later time, X can scan each record in A, reuse the hash
table to probe and retrieve the associated group’s oid, and
populate the backward rid index and forward rid array.

Although DEFER must scan A twice, the operator’s input
and output cardinalities can avoid resizing costs during M.
Also, My can be freely scheduled (e.g., immediately after Yflt
or during user think time when system resources are free).
INJECT. Consider the INJECT plan in Figure 3.b. v}, this
time augments each group’s intermediate state with an rid
array, say, iriqs, which contains the rids of the group’s input
records (i.e., its backward lineage). Y/agg tracks the current
output record id oid to set the pointer in the backward index
to the bucket’s rid array and the values in the forward rid
array. Since Yggg knows the input and output cardinalities,
it can correctly allocate arrays for the backward and forward
indexes. The primary overhead is due to reallocations of
irigs during the build phase Yilt' As an optimization, our
experiments will show that knowing group cardinalities can
decrease the lineage capture overhead by up to 60%.

3.2.4 Join

SMOKE instruments hash joins in a similar way to hash
aggregations. A hash join is split into two physical operators:
My,¢ builds the hash table on the left relation A and My ope
uses each record of the right relation B to probe the hash
table. Next, we introduce INJECT and DEFER techniques
for lineage capture on M:N joins and further optimizations
mainly targeting primary key-foreign key joins. For M:N
joins, each input record can contribute to multiple output
records while each output record is generated from one record
of each relation. Hence, SMOKE generates one backward rid
array and one forward rid index per input relation.



INJECT. Consider the INJECT plan for joins in Figure 3.d.
The build phase X}, augments each hash table entry with an
rid array i.qs that contains the input rids from A for that
entry’s join key. The probe phase N;)robe tracks the rid for
each output record and populates the forward and backward
indexes as expected. Note that output cardinalities are not
yet known within the N;robe phase and we cannot preallocate
our lineage indexes. As a result, although the backward rid
arrays are cheap to resize, forward rid indexes can potentially
trigger multiple reallocations (i.e., if an input record has
many matches) which penalize the capture performance.

DEFER. Our main observation is that exact cardinalities
needed to preallocate the forward rid indexes are known
after the probe phase and can be used by DEFER. To this
end, DEFER partially defers index construction for the left
input relation A (see Figure 3.c). The build phase adds
a second rid array, say, Oyigs, to the hash table entry, in
addition to ijqs from INJECT. When B is scanned during
the probe phase, its output records are emitted contiguously,
thus o,iqs need only store the rid of the first output record
for each match with a B record. After the N;robe phase, the
forward and backward indexes for the left relation A can
then be preallocated and populated in a final scan of the
hash table (scany; in Figure 3.c). Deferring for B is also
possible. However, the benefits are minimal because we need
to partition the output records for each hash table entry by
the B records that it matches, which we found to be costly.
Further optimizations. If the hash table is constructed
on a unique key, then the i35 do not need to be arrays and
can be replaced with a single integer. Also, if the join is a
primary-key foreign-key join, the forward index of the foreign-
key table is an rid array. This is because each record of the
foreign-key table contributes to exactly one output record.
Furthermore, the output cardinality is the same with the
foreign-key table cardinality and we preallocate the backward
rid array. Finally, join selectivities can help preallocate
forward rid indexes, similarly to how group cardinalities help
preallocate backward rid indexes for group-by aggregations.

3.3 Multi-Operator Instrumentation

The naive way to support multi-operator plans is to in-
dividually instrument each operator to generate its lineage
indexes. Lineage queries can then use the indexes to trace
backward or forward through the plan. This approach is
correct and can support any DAG workflow composed of our
physical operators. However, it unnecessarily materializes
all intermediate lineage indexes even though only the lineage
between output and input records are strictly required.

We address this issue with a technique that 1) propagates
lineage information throughout plan execution so that only
a single set of lineage indexes connecting input and final
output relations are emitted and 2) reduces the number of
lineage index materialization points in the query plan.

To propagate lineage throughout plan execution, consider
a two-operator plan op,(op;(R)) = O with input relation
R. When opj, runs, it will use op.’s backward lineage index
to populate its own lineage index with rids that point to R
rather than the intermediate relation op.(R); op,’s lineage
indexes can be garbage collected when not further needed.

To reduce lineage index materialization points, recall that
database engines pipeline operators to reduce intermediate re-
sults by merging multiple operators into a single pipeline [42].
Operators such as building hash tables are pipeline breakers
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because the input needs to be fully read before the parent
operator can run. Within a pipeline, there is no need for lin-
eage capture, but pipeline breakers need to generate lineage
along with the intermediate result. In Section 3.2, we showed
how pipeline breakers (e.g., hash table construction for the
left-side of joins and group-by aggregations) can augment
the hash tables with lineage. Parent pipelines that use the
same hash-tables for query evaluation (e.g., cascading joins)
can also use the lineage indexes embedded in the hash tables
to implement the lineage propagation technique above.
Implementation Details. Our engine supports naive in-
strumentation for arbitrary relational DAG workflows, and
we focused our optimizations for SPJA query blocks com-
posed of pk-fk joins. This was to simplify our engineering
and because fast capture for SPJA blocks can be extended
to nested blocks by using the propagation technique above.
Optimizations for lineage capture across SPJA blocks is in-
teresting future work. We focus on pk-fk joins due to their
prevalence in benchmarks and real-world applications and
because INJECT and DEFER for pk-fk joins are identical due to
our optimizations (Section 3.2). Thus, the main distinction
between INJECT and DEFER for SPJA blocks is how the final
aggregation operator in the block is instrumented—the joins
are instrumented identically, while select and project are
pipelined. Further details are in our technical report [50].

4. WORKLOAD-AWARE OPTIMIZATIONS

Lineage applications, such as interactive visualizations,
often support a pre-defined set of interactions (e.g., filter,
pan, tooltip, or cross-filter [14]) that amount to a pre-declared
lineage consuming query workload W. This section describes
simple but effective optimizations that exploit knowledge of
W to avoid capturing lineage (P2 principle) and generating
lineage representations that directly speed up queries in W
(P3 principle). To simplify the discussion, we present each
optimization with lineage consuming queries over the base
query Qi = Oy orderdate>2017-08-01’ (0rders > lineitem).

4.1 Instrumentation Pruning

Instrumentation pruning disables lineage capture for lin-
eage indexes that will not be used in W. We present two
types of pruning that disable lineage capture for specific input
relations and lineage directions (i.e., backward or forward).
Pruning input relations. A simple visualization of Q.
shows a tooltip of 1ineitem information when a user hovers
over a bar. This is expressed as a backward query from an
output of Q. to lineitem. Thus, we can avoid capturing lin-
eage for orders in Q.. In general, SMOKE does not capture
lineage for relations not referenced in the workload W.
Pruning lineage directions. Extending the previous ex-
ample, it is clear that W will only execute a backward lineage
query to lineitem and not vice versa. Thus, SMOKE can also
avoid generating the forward lineage index from lineitem
to the base query output. The lineage indexes that can be
pruned are evident from the lineage consuming queries in W.

4.2 Push-Down Optimizations

User-facing applications rarely present a large set of query
results to a user. Instead, they reduce the result cardinality
with further filter, transformation, and aggregation opera-
tions. These reductions are expressed as lineage consuming
queries and can be pushed into the lineage capture logic. We
present three simple push-down optimizations for fixed and



parameterized predicates as well as group-by aggregations.
We also provide a brief discussion on the relationship between
our optimizations and common provenance semantics.
Selection push-down. Visualizations often update metrics
that summarize data based on user selections. For instance,
the following query retrieves Christmas shipment order infor-
mation for parts of the visualization that the user interacts
with: C = Gshipdatc*‘xmas’(LB(O/ C Q. (D), orders)). Our
selection push-down optimization pushes down the predicate
shipdate=‘xmas’ into lineage capture, so that SMOKE will
first check whether the input tuple satisfies the predicate
before adding it to the lineage indexes. If the predicate is on
a group-by key, SMOKE does not capture lineage for all other
groups. This reduces lineage space overheads and usually
reduces capture overheads. If the predicate is expensive to
evaluate (e.g., slow UDF), it can increase capture overheads.
Data skipping using lineage. Pushing down selections
requires fixed predicates. However, interactive visualizations
also use parameterized predicates. For instance, a user may
use a slider to dynamically change the shipping date (:p1):
C = Sshipdate—p1 (LB(O’ C Q. (D), orders)). This pattern is
ubiquitous in interactive visualizations and applies to faceted
search, cross-filtering, zooming, and panning. SMOKE pushes
this down by partitioning the rid arrays (standalone, or part
of rid indexes) by the predicate attribute. For the example
above, SMOKE would partition the rid arrays in the backward
index for orders by shipdate, so that C only reads the rid
partition matching the parameter :p1. This technique applies
to categorical as well as discretized continuous attributes.
This makes it attractive for interactive visualizations since
outputs are ultimately discretized at pixel granularity [33].
Group-by push-down. Interactions, such as cross-filtering,
let users select marks in one view, trace those marks to the
input records that generated them, and recompute the aggre-
gation queries in other views based on the selected subset of
input records. This pattern is precisely an aggregation query
over the backward lineage of the user’s selection. SMOKE
pushes the group-by aggregation into lineage capture by
partitioning the rid arrays on the group-by attributes, and
incrementally computing the intermediate aggregation state.
This works if the base and lineage consuming query primarily
differ in terms of added grouping attributes, and effectively
generates data cubes to answer the linage consuming aggrega-
tion queries. In contrast to building data cubes offline, which
requires separate scans of the database, this optimization
piggy-backs on top of the base query’s table scans. As with
prior work [23,26,39], this optimization supports algebraic
and distributive functions (e.g., SUM, COUNT, and AVG). To
illustrate its importance, we evaluate it extensively in syn-
thetic (Section 6.4) and real-world settings (Section 6.5.1).
Relationships with Provenance Semantics. Popular
provenance semantics (e.g., which- [15,24] and why- [6] prove-
nance) can be expressed in SMOKE using lineage consuming
queries and pushed down through our optimizations. In other
words, SMOKE can operate under alternative provenance se-
mantics depending on the given W. We refer interested
readers to further discussion in our technical report [50].
Choosing Optimizations. SMOKE provides applications
with different ways to optimize their lineage logic. This poses
interesting questions for future work. What SQL extensions
(e.g., CREATE BACKWARD INDEX ON SELECT...) can provide users
with control over the lineage capture? What cost models are
needed to choose among capture and optimization options?
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Table 1: Lineage capture techniques used in our evaluation.

[ Abbreviation ]| Description |
Smoke
BASELINE SMOKE without lineage capture
SMOKE-D SMOKE with defer lineage capture
SMOKE-I SMOKE with inject lineage capture
Logical

LoGIC-RID Rid-based annotation

Logic-Tup Tuple-based annotation

LocGic-Ipx Indexing input-output relations

Physical
PHYS-MEM Virtual emit function calls and no reuse
PHYS-BDB Lineage capture using BerkeleyDB
5. EXPERIMENTAL SETTINGS

Our experiments seek to show that SMOKE (1) incurs sig-
nificantly lower lineage capture overhead than logical and
physical lineage capture approaches, (2) can execute lin-
eage queries faster than lazy, logical, and physical lineage
query approaches, and (3) can leverage lineage indexes and
workload-aware optimizations to speed up real-world appli-
cations as compared to current manual implementations.

To this end, we compare SMOKE to state-of-the-art logical
and physical lineage capture and query approaches using
microbenchmarks on single operator plans, as well as end-
to-end evaluations over a subset of TPC-H queries. Using
TPC-H, we further show that our workload-aware optimiza-
tions can provide further lineage query speedups on the
“Overview first, zoom and filter, and details on demand” in-
teraction paradigm and respond within interactive latencies
of < 150ms [7,38,41]. Finally, we express two real-world
applications (cross-filter [14] and data profiling [56]) in lin-
eage terms and show that SMOKE can match or outperform
hand-optimized implementations of the same applications.
Data. The microbenchmarks use a synthetic dataset of
tables zipfy , o (id,z,v) containing zipfian distributions of
varying skew. z is an integer that follows a zipfian distribu-
tion and v is a double that follows a uniform distribution in
[0,100]. ¥ controls the zipfian skew, n is the table size, and g
specifies the number of distinct z values (i.e., groups). Tuple
sizes are small to emphasize worst-case lineage overheads.
End-to-end and workload-aware experiments use the TPC-H
data generator and vary the scale factor. OQur experiments on
real-world applications use the Ontime [45,46] (123.5m tuples,
12GB) and Physician [49] (2.2m tuples, 0.6GB) datasets.

To ensure a fair comparison, we implement and optimize
alternative, state-of-the-art techniques in our query engine.
Our implementation reduces the capture overheads (by sev-
eral orders of magnitude) as compared to their original im-
plementations, and is detailed in our technical report [50].

First, we describe the compared lineage capture techniques
(see also Table 1 for a brief description of the techniques):
SMOKE-based techniques. SMOKE-I and SMOKE-D in-
strument the plan using INJECT and DEFER instrumentation
(Section 3). Unless otherwise noted, SMOKE-I and SMOKE-D
don’t use optimizations from Section 3. BASELINE evaluates
base queries on SMOKE without capturing lineage.
Baseline logical techniques. State-of-the-art logical ap-
proaches (PERM [22], GPROM [44]) use query rewrites to
annotate the base query output with lineage. However, they
are built on production databases that incur overheads from
transaction and buffer managers, lack of hash-table reuse,
and lack of query compilation. These factors could confound
results on a system-to-system comparison on the lineage
capture problem and would not lead to meaningful results.
For this reason, we implemented PERM’s rewrite rules (and



GPROM’s optimizations, whenever applicable) in SMOKE to
generate physical plans that annotate output records with
either rids (LOGIC-RID) or full input tuples (LOGIC-TUP).
As we noted in Section 2, the output annotated relations
need to be indexed to support fast lineage lookups. To this
end, LOGIC-IDX scans the annotated output relation to con-
struct the same end-to-end lineage indexes as those created
by SMOKE. For completeness, we also note that our imple-
mentation of logical approaches in SMOKE are two orders of
magnitude faster than with PERM and GPROM. (Details on
how we optimized logical techniques in SMOKE are in [50].)
Baseline physical techniques. To highlight the impor-
tance of tightly integrating lineage capture and operator
logic, we use two baseline physical techniques. PHYS-MEM
instruments each operator to make virtual function calls
to store input-output rid pairs in SMOKE lineage indexes
from Section 3, which highlights the overhead of making a
virtual function call for each lineage edge. PHYS-BDB in-
stead indexes lineage data in BerkeleyDB to showcase the
drawbacks of using a separate storage subsystem [59].

Moreover, we compare lineage querying techniques based
on data models and indexes induced during lineage capture:
Lineage consuming queries. SMOKE-I, SMOKE-D, LOGIC-
IDX, and PHYS-MEM all capture the same lineage indexes
from Section 3.1, thus their lineage consuming query per-
formance will be identical. We call this group SMOKE-L.
We compare with a baseline lazy approach, LAZY, which
uses standard rules [15, 28] to rewrite lineage consuming
queries into relational queries that scan the input relations.
We also compare with the data model that LOGIC-RID and
LogGIc-Tup produce and the indexes that PHYS-BDB generate.
Finally, we consider LAZY and SMOKE without optimizations
as baselines to our workload-aware optimizations.

Settings for the real-world applications are provided inline.
Measures. For lineage capture, we report the absolute
base query latency and relative overhead compared to not
capturing lineage. For lineage and lineage consuming queries,
we report absolute latency and speedup over baselines. All
numbers are averaged over 15 runs, after 3 warm-up runs.
Platforms. We ran experiments on a MacBook Pro (macOS
Sierra 10.12.3, 8GiB 1600MHz DDR3, 2.9GHz Intel Core i7),
and a server-class machine (Ubuntu 14.04, 64GiB 2133MHz
DDR4, 3.1GHz Intel Xeon E5-1607 v4). Both architectures
have caches sizes 32KiB L1d, 32KiB L1i, and 256KiB L2—
the MacBook has 4MiB L3 and the server-class has 10MiB
L3. Our overall findings are consistent across the two archi-
tectures. Since lineage capture is write-intensive, we report
results on the lower memory bandwidth setting (MacBook).
Only for crossfilter, we report server-class results because
the Ontime dataset exceeds the memory of MacBook.

6. EXPERIMENTAL RESULTS

In this section, we first compare lineage capture techniques
on microbenchmarks (Section 6.1) and TPC-H queries (Sec-
tion 6.2). Then, we compare techniques on lineage query
evaluation (Section 6.3) and showcase the impact of our
workload-aware optimizations (Section 6.4). We conclude
with experiments on real-world applications (Section 6.5).

6.1 Single Operator Lineage Capture

We first evaluate lineage capture with a set of single op-
erator microbenchmarks for group-by (Section 6.1.1), pk-fk
joins (Section 6.1.2), and m:n joins (Section 6.1.3).

725

0.1M Tuples 1M Tuples 10M Tuples

Phys-BDB-
Phys-MEM -
Logic-TUP-
Logic-RID-
Smoke-D-

Smoke-| -

Baseline-

Phys-BDB-
Phys-MEM -
Logic-TUP-
Logic-RID-
Smoke-D-

Smoke-| -

Baseline-

| NI
| |
| |
‘ I
I
sdnoio o1

sdnoi9 0000T

10 100 1K 10K 10 100 1K 10K 10 100 1K 10K
Lineage Capture Latency (ms, log)

Figure 4: Comparison of lineage capture costs for the group-by
aggregation operator for different relation cardinalities (columns)
and number of distinct groups (rows). SMOKE-I and SMOKE-D
slow down the non-instrumented Baseline the least as compared
to alternative logical and physical capture methods.

6.1.1 Group-by Aggregation

We use the following base query, which groups by z drawn
from a zipfian distribution so that cardinalities are skewed:

Qu= SELECT z, COUNT (%), SUM(v), SUM(v*v),

SUM(sqrt(v)), MIN(v), MAX(v)
FROM zipfy—1ng
GROUP BY =z -- #groups follow a zipfian

Q.+ computes multiple statistics following visualization sys-
tems that group multiple statistics in a single query [55].

Figure 4 reports the lineage capture latency (base query
latency + capture overhead) for each technique while varying
the input size (columns) and number of groups (rows).
Smoke. SMOKE-I incurs the lowest overhead among tech-
niques (0.7X on average). SMOKE-D is slightly slower (1.2x
on average) due to the cost of its join >ty for lineage capture.
Comparison with logical techniques. LOGIC-RID and
LogGic-Tup use PERM’s aggregation rewrite rule, which com-
putes Q. M, zipf to derive the denormalized lineage graph
as a single relation. The cost of computing and writing
the denormalized lineage graph is costly, slows the base
query by multiple orders of magnitude, and is one of the
main reasons why SMOKE outperforms alternative logical
techniques. Furthermore, since zipf is narrow, LOGIC-TUP
performs similarly to LOGIC-RID. However, we expect LOGIC-
TuP to perform worse for wider input relations. LOGIC-IDX
has extra indexing costs over LOGIC-RID and is not plotted.
Comparison with physical techniques. The primary
overhead for PHYS-MEM is the cost of a virtual function call
for each written lineage edge. The cost of building index data
structures is comparable to SMOKE’s write costs, however
SMOKE can reuse the hash table built by v}, and incur lower
costs for building the backward lineage rid index. PHYS-BDB
incurs by far the highest overhead (up to 250x slowdown),
due to the overhead of communicating with BerkeleyDB. The
same trends hold for the other operators and we have not
found physical approaches to be competitive. As such, we do
not report physical approaches in the rest of the experiments.
Varying dataset size, skew, and groups. In general,
the lineage capture techniques all incur a constant per input
tuple overhead, and differ on the constant value. This is why
increasing the input relation size increases costs linearly for
all techniques. Increasing the number of groups increases the
costs of building and scanning the group-by hash table as well
as the output cardinality, and affects all techniques including
the baseline. We find that the overhead is independent of
the zipfian skew because it does not change the number of
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Figure 5: SMOKE-I reduces the instrumented pk-fk join latency
from 1.4x (LOGIC-IDX) to 0.41x. Knowing the join cardinalities
further reduces the overhead to 0.23x (SMOKE-I-TC). SMOKE-D
is equivalent to SMOKE-I for pk-fk joins.

lineage edges that need to be written. The skew does affect
querying lineage, however, as we will see in Section 6.3.

Complexity of group-by keys and aggregate func-
tions. We find that the techniques differ in their sensitivity
to the size of the group-by keys and the number of aggrega-
tion functions in the project clause of the query. SMOKE-I
simply generates rid indexes and rid arrays, and is not af-
fected by these characteristics of the base query. In contrast,
SMOKE-D and both logical approaches are sensitive to the
size of the group-by keys, since they are used to join the
output and input relations. Finally, the logical approaches
are also affected by the number of aggregation functions
because they affect the cost of the final projection. In short,
we believe our setup is favorable to alternatives and conclude
that SMOKE still shows substantial lineage capture benefits.
Cardinality Statistics. SMOKE can also leverage group
cardinalities (e.g., through histograms) to allocate correctly
sized lineage indexes (Section 3). This further reduces the
capture overhead by 52% on average and leads to overhead
reduction from 0.7x to 0.3%x for SMOKE-I (not plotted).

6.1.2 Primary-Foreign Key (Pk-Fk) Joins

We evaluate lineage capture on pk-fk joins with the query
Q. = SELECT * FROM gids,zipf WHERE gids.id=zipf.z.
zipf.z is a foreign key that references gids.id and is
drawn from a zipfian distribution (9 = 1) so that some keys
contribute to more join outputs than others. We vary the
number of join matches by varying the unique values for
gids.id. In addition to BASELINE and SMOKE-I, we evaluate
SMOKE-I-TC which assumes that we know the number of
matches for each gids.id and highlights the costs of array
resizing. Note that SMOKE-D is equivalent to SMOKE-I due
to the pk-fk optimizations in Section 3.2.4. We compare
against LOGIC-IDX because LOGIC-RID and LoGICc-TuP do
not support forward queries without additional indexes.
Comparison with logical techniques. LOGIC-IDX incurs
1.4x capture overhead on average due to the costs of com-
puting and materializing the denormalized lineage graph in
the form of the annotated output relation, and scanning
the annotated table to build backward and forward lineage
indexes for both input relations. In contrast, SMOKE-I in-
curs on average 0.41x overhead; knowing join cardinalities
reduces the overhead to 0.23x on average. Finally, note that
SMOKE-I already knows the cardinalities for the backward
indexes and the forward index of the right table for pkfk joins
(Section 3.2.4). Thus, the lower overhead of SMOKE-I-TC is
due to lower reallocation costs for the forward index of the
left table—which is the most expensive index to build due to
the 1-to-N relation between primary keys and join outputs.
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Figure 6: M:N join latency when all indexes are populated with
SMOKE-I, only forward indexes for the left table are deferred
(SMOKE-D-DEFERFORW), and when both lineage indexes are de-
ferred for the left table (SMOKE-D).

6.1.3 Many-to-Many (M:N) Joins

We evaluate lineage capture on M:N joins with the query
QL=SELECT * FROM zipfl,zipf2 WHERE zipfl.z=zipf2.z
that performs a join over the two z attributes drawn from
zipfian distributions (9 = 1). zipfl.z is within [1,10] or
[1,100] while zipf2.z€ [1,100]. This means that tuples with
z = 1 have a disproportionately large number of matches
compared to larger z values that have fewer matches. For
this experiment, we also fix the size of the left table zipf1
to 10% records and vary the right zip£2 from 10 to 10°.

Section 3.2.4 described the INJECT approach for M:N joins,
which populates the lineage indexes within the probe phase
(Mprobe), and the DEFER approach, which computes cardinal-
ity statistics during the probe phase to correctly allocate and
populate the lineage indexes for the left table after the probe
phase to avoid array resizing costs. Finally, to show the bene-
fits of DEFER, we also evaluate SMOKE-D-DEFERFORW which
still defers the forward index construction for the left table
but populates the backward index within the probe phase.
To simplify the presentation, we only report SMOKE-based
techniques since our comparisons with alternatives yields
findings consistent with the ones presented so far.
Comparison of SMOKE techniques. M:N joins over the
skewed inputs of our setup are similar to cross-products
and yield very large output relations. As a result, the join
output materialization dominates the base query execution
and renders the lineage capture overheads non-informative.
For this reason, here we present results without accounting
for the materialization of the output. In this way, the M:N
execution is ~ Oms and Figure 6 primarily reports lineage
capture overhead for the three techniques that we compare.
The overheads for SMOKE-I and SMOKE-D-DEFERFORW is
predominantly due to resizing. SMOKE-D avoids resizing
and reduces the capture overhead the most (up to 2.65x).
Finally, increasing the number of groups for zipf1.z reduces
the costs of all techniques because the output cardinality is
smaller but the relative capture overheads are the same.
Other Operators. Our technical report [50] describes ad-
ditional results and operators. The main additional finding
is that it is preferable to overestimate selection cardinality
estimates to avoid array resizings for the selection operator.

6.2 Multi-Operator Lineage Capture

To evaluate lineage capture on multi-operator plans, we
used four queries from TPC-H (i.e., Q1, Q3, Q10, and Q12).
Their physical query plans contain group by aggregation as
the root operator, selections that vary in predicate complexity
and selectivity, and up to three pk-fk joins. (Our hash-based
execution precludes sort operations.) Figure 7 summarizes
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Figure 7: Relative overhead of SMOKE and logical lineage capture
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1%

the overhead of the best performing SMOKE (i.e., SMOKE-I)
and logical (i.e., LOGIC-IDX) techniques for the four queries.
Overall Results. SMOKE-I reduces the capture overhead as
compared to LOGIC-IDX by up to 22x. In addition, SMOKE-I
incurs at most 22% overhead across the four queries. To
ensure that the reported overhead results are meaningful, we
made sure that the query engine of SMOKE has reasonable
performance. Despite its row-oriented execution, SMOKE is
comparable to MonetDB (single-threaded, data cached in OS
buffers): Q1 runs in 176ms while the slowest query Q12 runs
in 306ms.? SMOKE-D (not shown) is slower than SMOKE-I
due to the cost of >y for lineage capture on the aggrega-
tion operator. However, it is still faster than the logical
approaches. (We refer interested readers to our technical
report [50] for a more detailed discussion.) Finally, although
QL1 is simple (e.g., it has no joins), its results are arguably
the most informative because its selections have the highest
selectivity, which most stresses overheads as we discuss next.
Impact of selections in lineage capture. We found that
the selectivity of the query predicate has a large impact on
the overhead of logical approaches. Q1 introduces a setting
where the predicate has a high selectivity. Thus, the input
to the final aggregation operator has a high cardinality. This
leads output groups to depend on a large set of input records
which, in turn, results in a large amount of duplication in the
denormalized representation of the lineage graph. The other
queries have low predicate selectivity which leads to lower
(albeit significant) data redundancy. Overall, SMOKE is not
sensitive to this effect because the lineage indexes represent
the normalized lineage graph to avoid data duplication.

Lineage Capture Takeaways (Sections 6.1 and 6.2).
SMOKE-based lineage capture techniques outperform both logi-
cal and physical alternatives by up to two orders of magnitude.
Logical approaches that adhere to the relational model are
affected by the denormalized lineage graph representation, ex-
tra indexing steps, and expensive joins. Physical approaches
are affected by virtual function calls and write-inefficient lin-
eage indexes. Array resizing contributes to a large portion
of SMOKE overheads. However, accurate or overestimated
statistics can further reduce resizing costs (up to 60%).

6.3 Lineage Query Performance

We now evaluate the performance of different lineage query
techniques. Recall that lineage queries are a special case of
lineage consuming queries. We evaluate the query: SELECT *
FROM Lyp(o€ Qi (zipf), zipf), where Q. (zipf) is the query
used in the group-by microbenchmark (Section 6.1.1) and
o denotes an output group. For this experiment, Q. (zipf)
contains 5000 groups while zipf contains 10M records and we
vary its skew 9. Varying O highlights the query performance

2The purpose is not to compare SMOKE with MonetDB, but to
ensure that the reported overheads are over a reasonable baseline.
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Figure 8: Lineage query latency for varying data skew (9). LAzZY
has a fixed cost to scan the input relation and evaluates a selection
on the group-by key o.z=7. LOGIC-RID and LOGIC-TUP perform
the same selection but on annotated output relations. SMOKE-L is
mainly around 1ms and outperforms LAZY, LOGIC-RID, and LOGIC-
TuP by up to five orders of magnitude for low selectivity lineage
queries. The crossover points at high selectivities are due to the
costs of SMOKE-L index scans. SMOKE-L is a lower bound for PHYS-
BDB that incurs extra costs for reading from inefficient lineage
indexes and communicating with external lineage subsystems.

LB

with respect to the cardinality of the backward lineage query.
Figure 8 reports the lineage query latency for all 5000 o
assignments and different 9 values (i.e., & € {0,0.4,0.8,1.6}).
Recall that when we capture lineage with SMOKE-I; SMOKE-
D; Logic-IDX; or PHYS-MEM, we evaluate lineage queries
with SMOKE-L. SMOKE-L evaluates the lineage queries of our
setup above using secondary index scans (i.e., it uses the
contributing input rids of an output o from the backward
index of QL to perform lookups into zipf). Next, we compare
SMOKE-L with lazy, logical, and physical alternatives.
Comparison with LAZY. In contrast to SMOKE-L, LAZY
performs a table scan of the input relation and evaluates an
equality predicate on the integer group key. This is arguably
the cheapest predicate to evaluate and constitutes a strong
comparison baseline. We find that SMOKE-L outperforms
LAZY up to five orders of magnitude, particularly when the
cardinality of the output group is small. We expect the per-
formance differences to grow when the base query uses more
complex group-by keys, which increases the predicate evalua-
tion cost, or when the input relation is wide, which increases
scan costs [9,32,35|. Finally, there is a cross over point
when the input relation is highly skewed (¥ € {0.8,1.6}) and
the backward lineage of some groups have high cardinality.
This increases the secondary index scan cost of SMOKE-L in
comparison to the serial scans of LAZY.
Comparison with logical techniques. We also report
the cost of scanning the annotated relations generated by
LogGIc-RID and LoGIC-TUP (highest two lines). Scanning
these relations to answer lineage queries is worse than LAZY
because the annotated relation is wider than the input rela-
tion, yet they have the same cardinality. This is the main
reason why we introduced extra indexing steps for the anno-
tated output relations of logical approaches with LOoGIC-IDX.
(Recall that LOGIC-IDX is represented here by SMOKE-L.)
Comparison with physical techniques. PHYS-MEM is
included as part of SMOKE-L, so we report PHYS-BDB. Using
an external lineage subsystem to perform a lineage query,
we need to perform function calls to the external system to
fetch the input rids for an output group o. As long as we
have the input rids, we can perform a secondary index scan
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because it only scans the relevant partition of the lineage index.

to evaluate the lineage query similarly to SMOKE-L. In our
experiments, we compared both fetching all input rids in a
single function call as well as with consecutive function calls
in a cursor-like fashion. The cursor-like approach outper-
formed the bulk approach since it avoids allocation costs for
input rids. SMOKE-L provides a lower bound for PHYS-BDB:
both perform the same secondary index scan but PHYS-BDB
pays the cost of function calls to the external subsystem and
it depends on indexes with worse read performance.

Lineage Query Takeaways: SMOKE outperforms logical
and lazy lineage query evaluation strategies by multiple orders
of magnitude, especially for low-selectivity lineage queries.
We believe SMOKE is a lower bound for physical approaches
by avoiding functions calls and using read-efficient indexes.

6.4 Workload-Aware Optimizations

We explore the effectiveness of the data skipping and group-
by push-down optimizations by incrementally building up an
example motivated by the “Overview first, zoom and filter,
details on demand” [54] interaction paradigm. We focus
only on zoom and filter because the base query generates
the initial overview, while details on demand is the simple
backward lineage query evaluated in Section 6.3. We report
selection push-down and pruning in our technical report [50].

We use TPC-H Q1 as the initial “Overview” base query

(SF=2), and we render its output groups as a bar chart.
There are four bars generated from 48%, 24%, 24%, and
0.06% of the Lineitem relation. Subsequent interactions (e.g.,
zoom in by drilling down and filter by adding predicates) will
be expressed as lineage consuming queries that incrementally
modify their preceding lineage consuming queries.
No optimization. Before considering optimizations, we
first assess the effectiveness of lineage indexes on the evalua-
tion of lineage consuming queries as compared to the lazy
approach. Suppose users are interested in drilling into a
particular bar to see its statistics grouped further by the
month and year of the shipping date. This is expressed as a
lineage consuming query Ql, that changes Q1 in two ways:
(1) replaces the input relation with the backward lineage of
the bar (i.e., L (0a € Ql(Lineitem),Lineitem)) and (2) adds
Month,Year of the shipping date to the GROUP BY clause.

We evaluate Q1, for every value of o, (not plotted). Lazy
runs Ql, as a table scan followed by filtering on Q1’s group-
by keys, grouping on year and month, and computing the
same aggregates as Q1. SMOKE-I executes the same steps
but evaluates Qla with secondary index scans as opposed
to table scans. SMOKE-I performs best when the group
cardinality is low (0.06% selectivity) and outperforms LAZY
by 6.2x. For higher cardinality groups, SMOKE-I incurs
the overheads of secondary index scans, as we also noted
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by 72.9x on average as compared to LAzY. With aggregation
push-down, the latency is &~ Oms and we do not plot it.

in Section 6.3. However, the performance of the two methods
is similar because processing the high lineage cardinality (to
compute the group-by aggregations in this case) dominates
the execution of Q1a. A principal approach to avoid such high
processing costs is using our workload-aware optimizations.
Data skipping. Suppose we know that the users want to
filter the result of Q1 (e.g., based on interactive filter widgets).
Then we can push this logic into lineage capture using the
data skipping optimization. We evaluate Q1},, which extends
Q1. with two parameterized predicates: 1_shipmode = :pi
AND 1_shipinstruct = :p2. Q1 is the base query for Q1. To
exercise push-down overheads, both are text attributes and
thus more expensive to evaluate than numeric attributes. The
lineage capture overhead was 0.22x for SMOKE-I and 1.65x
with the data skipping optimization due to the additional
cost of partitioning the rid arrays on the text attributes, but
still lower than logical approaches (Figure 7).

Figure 9 plots the lineage consuming query latency for the
selectivities of every possible combination of the predicate pa-
rameters. The LAZY baseline executes the lineage consuming
query as a filter-groupby query over a table scan of Lineitem.
Although lineage indexes substantially reduce query latency
(No Data Skipping in Figure 9)—particularly for low predi-
cate selectivities—it is bottlenecked by the secondary scan
costs of backward lineage for high cardinality groups. In
contrast, Data Skipping reduces even high selectivity queries
by at least 2x compared to LAZY, and is consistently below
the interactive 150ms threshold [38]. This is because rid ar-
rays are partitioned by 1_shipmode, 1l_shipinstruct and
the lineage consuming query is evaluated using indexed scans
with only the rids needed to correctly answer the query.
Group-by aggregation push-down. After users filter
and identify interesting statistics from the filter interactions
in Q1lp, they may want to drill down further. If we know this
upfront, SMOKE can pre-compute aggregates for new dimen-
sions with the group-by aggregation push-down optimization.
To evaluate this optimization, we compare LAZY against
SMOKE-I (with and without the optimization) on Qlc. Qlc
changes Q1}, by adding 1_tax to the GROUP BY clause and
setting the input relation to Ly (oc € Q1 (...),Lineitem). For
this experiment, we consider Q1y, as the base query of Qlc.

Figure 10 compares the lineage query latency under LAZY
(red dots) against SMOKE-I without the optimization (blue tri-
angles). The push-down optimization is not plotted because
it takes & Oms (i.e., just fetches the materialized aggregates).
For completeness we vary the parameters of the backward
lineage statement Ly () for Qle (Lp(oc € Qla,...)) as well as
for the base query Qla (Lp(0a € Q1,...)) of Q1 and report
the lineage consuming query’s latency for all combinations.
Overall, LAZY takes > 4 seconds per Ql. instance while
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Figure 11: The average relative instrumentation overhead increases
from 2.9% without to 9.15% with aggregation push-down.

SMOKE-I takes from 7ms to 100ms without the optimization
and =~ Oms with the optimization for all Q1. instances.

Pre-computing aggregation statistics is not free, however.
Figure 11 plots the lineage capture overhead for both SMOKE
variants over to the non-instrumented lazy approach. We
report the result for all 4 parameters to the base query Qla’s
backward lineage statement (L (0a € Q1,...)). The overhead
of SMOKE-I is low compared to the overall cost of partitioning
the rid arrays on 1_tax and computing aggregates.

Push-down Takeaways: Our experiments highlight that
lineage indexes are sufficient whenever the lineage cardinality
s low for the complexity of future lineage consuming queries.
For higher lineage cardinalities, our workload-aware optimiza-
tions provide a principled way to push-down computation into
lineage capture and optimize future lineage consuming queries.
They also highlight trade-offs that future optimizers would
need to consider (see also open questions in Section 4.2).

6.5 SMOKE-Enabled Applications

We now present evidence that SMOKE can optimize real-
world applications to the extent that it can perform on par
with or even improve on hand-tuned, application-specific
implementations. More specifically, we show how SMOKE
optimizes cross-filter visualizations (Section 6.5.1) and data
profiling (Section 6.5.2) primitives. We highlight the main
results here and defer details to our technical report [50].

6.5.1 Crossfilter

Crossfilter is an important interaction technique to help
explore correlated statistics across multiple visualization
views [14]. In the common setup, multiple group-by queries
along different attributes of a dataset are each rendered as,
say, bar charts. (Each bar chart corresponds to a visualization
view.) When a user highlights a bar (or set of bars) in one
view, the other views update to show the group-by results
over only the subset that contributed to the highlighted bar
(or bars). This is naturally expressed as backward lineage
from the highlighted bar, followed by refreshing the other
views by executing the group-by queries on the lineage subset.

Since the views are fundamentally aggregation queries,
recent research proposals construct variations of data cubes
to accelerate the crossfilter interactions [37,39,47]. However,
it can take minutes or hours to construct these data cubes.
Such offline time is not available if a user has loaded a new
dataset (e.g., into Tableau) and wants to explore using cross-
filter as soon as possible. This has recently been referred to
as the cold-start problem for interactive visualizations [4].
Setup. Following previous studies [37,39,47], we used the
Ontime dataset and four group-by COUNT aggregations on
<lat, lon> (65,536 bins), <date> (7,762 bins), <departure
delay> (8 bins), and <carrier> (29 bins); only 8,100 bins have
non-zero counts because <lat, lon> is sparse. Each group-by
query corresponds to one output view. This setup favors cube
construction because it involves only four views and coarse-
grain binning on spatiotemporal dimensions (which decreases
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Figure 12: Cumulative latency of different crossfiltering techniques.
BT+FT outperforms all approaches with the total time to perform
the initial group-by aggregates, track lineage, and evaluate all
interactions being thirty seconds.

the size of cubes and increases group cardinalities). We report
the individual (Figure 12) and cumulative (Figure 13) latency
to highlight each and every bar, respectively.

Techniques. We compare the following: LAZY uses lazy
lineage capture and re-executes the group-by queries on the
lineage subset. BT uses SMOKE to capture backward lineage
indexes but re-runs the group-by queries (which requires
re-building group-by hash tables). BT+FT also captures
forward lineage indices that map input records to the output
bars that they contribute to, which can be used to incre-
mentally update the visualization bars without re-building
group-by hash tables. Finally, we compare with DATA CUBE
construction. We first ran IMMENS [39], NANOCUBES [37],
and HASHEDCUBES [47] to construct the data cubes. However,
IMMENS and NANOCUBES did not finish within 30 minutes,
while HASHEDCUBES required 4 minutes. For this reason, we
implemented a custom partial cube construction based on
our group-by aggregation push-down optimization that took
1.6 minutes to construct. This construction resembles the
low dimensional cube decomposition described by IMMENS
but using the sparse encoding recommended by NANOCUBES.
Main Results. We make four main observations. First,
we observe that BT outperforms LAZY by leveraging the
backward index to avoid table scans; BT+FT outperforms
BT because the forward index lets SMOKE directly update
the associated visualization bars without the need to re-build
group-by hash tables; and, although the DATA CUBE response
time is near-instantaneous, the cube construction cost is con-
siderable and BT+FT is able to complete the benchmark
before the cube is constructed (Figure 12). Second, BT+FT
performs best (< 10ms) when group-by queries output many
groups (e.g., lat/lon and date) because then each group’s
backward lineage is substantially small. This suggests that
lineage can complement cases when data cubes are expen-
sive (e.g., when a cube dimension contains many bins) by
computing the results online. Third, Figure 13 shows that
BT+FT responds within < 150ms (dotted line) for all but
five bars, whose lineage depends on a large subset of the
input tuples (>10% selectivity; >13M tuples). Fourth, the
capture overhead for BT+FT and BT on the initial group-by
queries are relatively low (< 2x using SMOKE-I). We expect
optimizations that use parallelization, sampling, and deferred
lineage capture to reduce crossfilter latencies even further.

6.5.2 Data Profiling Applications

Data profiling studies the statistics and quality of datasets,
including constraint checking; data type extraction; or key
identification. Recent work, such as UGUIDE [56], proposes
human-in-the-loop approaches towards mining and verify-
ing functional dependencies (FD), by presenting users with
examples of potential constraint violations to double-check.
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This experiment compares UGUIDE with SMOKE on a lineage-
oriented specification of an interactive data profiling problem.
Setup. We evaluate the following task: given a functional
dependency (FD) A — B over a table T and an FD evalua-
tion algorithm that outputs the distinct values a € A that
violate the FD, our goal is to construct a bipartite graph that
connects the violations a with the tuples {t € T | t.A = a}.
Collectively, for a set of given FDs, this construction leads
to a two-level bipartite graph connecting FDs and violations
to tuples responsible for the violations. We compare SMOKE-
based approaches with UGUIDE’s implementation?" Based on
correspondence with the authors, it turns out that UGUIDE
internally creates data structures akin to the lineage indexes
that SMOKE captures. This makes sense because it mirrors
a lineage-based technique for the problem, as we show next.
Techniques. FD violations for A — B can be identified
by transforming the FD into one or more SQL queries. We
consider two rewrite approaches. The simple approach (CD)
runs the query Q.q=SELECT A FROM T GROUP BY A HAVING
COUNT(DISTINCT B) > 1; backward and forward lineage in-
dexes for Q.q correspond to the desired bipartite graph above.
Now, UGUIDE implements an optimization which, although
not modeled as lineage, effectively simulates lineage indexes.
We thus describe the second approach (UG) in lineage terms.
We first evaluate the query Qug,attr=SELECT DISTINCT attr
FROM T for attre{A, B} and capture lineage. We backward
trace each a€Qg A to the input T and forward trace each
lineage record to ¢ p- If there are more than one distinct B
values in the forward traced output, then the FD is violated.
The lineage indexes also correspond to the desired bipartite
graph. The UG approach is typically faster than the CD one
for FD mining because UG builds lineage indexes once per
attribute and reuses them across FD checks. Our experiments
report the costs for individual FD checks and the bipartite
graph construction. However, we note that the relative
findings are expected to grow wider for multi-FD checks.
Next, we compare SMOKE that implements both ap-
proaches (SMOKE-CD,SMOKE-UG) with UGUIDE that imple-
ments the UG approach in METANOME (METANOME-UG).
Main Results. Figure 14 evaluates the techniques using
four functional dependencies over the Physician dataset used

3UGuUIDE proposed novel algorithms for mining and verifying
functional dependencies. Although latency was not the focus of
UGUIDE, its METANOME [48|-based implementation is optimized
for latency. So, we believe it is a reasonable comparison baseline.
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Figure 14: Latency of different approaches for FD violation evalu-
ation and bipartite graph construction. SMOKE-CD is the minimal
overall. METANOME-UG is affected by virtual function calls for
lineage capture, the overheads of JVM, and its data model.

in the Holoclean [51] paper. Overall, SMOKE-UG outperforms
METANOME-UG by 2 — 6x while the simpler SMOKE-CD ap-
proach outperforms both approaches. Both SMOKE capture
overheads are consistent with our microbenchmarks (< 1.2x
overhead). There are several reasons why SMOKE-UG outper-
forms METANOME-UG. METANOME-UG incurs virtual func-
tion call costs when constructing its version of lineage indexes
(> 2x overhead on Qug,attr that we implemented in UGUIDE),
as well as general JVM overhead even after a warm-up phase
to enable JIT optimizations. Furthermore, METANOME-UG
models all attribute types as strings, which slows uniqueness
checks for integer data types such as NPI. For fairness, the
other three FDs are over string attributes (zip is a string).

Application Takeaways: Lineage can erpress many real-
world tasks, such as those in visualization and data profiling,
that are currently hand-implemented in ad-hoc ways. We have
shown evidence that lineage capture can be fast enough to free
developers from implementing lineage-tracing logic without
sacrificing, and in many cases, improving performance.

7. CONCLUSIONS AND FUTURE WORK

SMOKE shows that it is possible to quickly capture lin-
eage and quickly answer lineage queries. SMOKE reduces the
overhead of fine-grained lineage capture by avoiding short-
comings of logical and physical approaches in a principled
manner, and is competitive or outperforms hand-optimized
visualization and data profiling applications. SMOKE also
contributes to the space of physical database design by being
the first system to use lineage for physical design decisions.
Our capture techniques and workload-aware optimizations
may be used for online, adaptive, and offline physical designs.
Finally, we believe the design principles P1-P4 are broadly
applicable beyond the design of our engine.

There are many areas for future work to explore: 1) lever-
age modern features such as vectorized and compressed execu-
tion, columnar formats, and UDFs [52], 2) develop cost-based
techniques to instrument plans in an application-aware man-
ner (e.g., DEFER is best-suited for speculation in-between
interactions), 3) model database optimization policies (e.g.,
statistics computation, cube construction, key indexes) as
lineage queries, and 4) extend support to data cleaning, visu-
alization, machine learning, and what-if [3,17] applications.
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