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Abstract

Background: Tobacco smoking is a risk factor for multiple diseases, including cardiovascular disease and diabetes.

Many smoking-associated signals have been detected in the blood methylome, but the extent to which these

changes are widespread to metabolically relevant tissues, and impact gene expression or metabolic health,

remains unclear.

Methods: We investigated smoking-associated DNA methylation and gene expression variation in adipose

tissue biopsies from 542 healthy female twins. Replication, tissue specificity, and longitudinal stability of the

smoking-associated effects were explored in additional adipose, blood, skin, and lung samples. We

characterized the impact of adipose tissue smoking methylation and expression signals on metabolic disease

risk phenotypes, including visceral fat.

Results: We identified 42 smoking-methylation and 42 smoking-expression signals, where five genes (AHRR,

CYP1A1, CYP1B1, CYTL1, F2RL3) were both hypo-methylated and upregulated in current smokers. CYP1A1 gene

expression achieved 95% prediction performance of current smoking status. We validated and replicated a

proportion of the signals in additional primary tissue samples, identifying tissue-shared effects. Smoking leaves

systemic imprints on DNA methylation after smoking cessation, with stronger but shorter-lived effects on

gene expression. Metabolic disease risk traits such as visceral fat and android-to-gynoid ratio showed

association with methylation at smoking markers with functional impacts on expression, such as CYP1A1, and

at tissue-shared smoking signals, such as NOTCH1. At smoking-signals, BHLHE40 and AHRR DNA methylation

and gene expression levels in current smokers were predictive of future gain in visceral fat upon smoking

cessation.

Conclusions: Our results provide the first comprehensive characterization of coordinated DNA methylation

and gene expression markers of smoking in adipose tissue. The findings relate to human metabolic health

and give insights into understanding the widespread health consequence of smoking outside of the lung.
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Background
Tobacco smoking is a major environmental risk factor

that predisposes an individual to chronic disease, cancer,

and premature death [1, 2]. Smoking directly affects ex-

posed regions of the lung [3], causes damage in organs

throughout the body, and results in DNA mutations that

have been linked to cancer [4]. The risk effects of smok-

ing extend to multiple diseases, including cardiovascular

and metabolic disease. Smoking cessation has also been

linked to metabolic health complications and is associated

with an increase in weight gain and in metabolic disease

risk factors such as accumulation of visceral fat [5].

Persistent smoking has lasting effects on DNA methy-

lation, and many epigenome-wide association studies

(EWAS) have identified and replicated smoking-related

differentially methylated signals across populations with

the majority found in whole blood samples [6–20], buccal

cells [21], and lung tissue [22, 23]. Most smoking methyla-

tion signals show lower levels of DNA methylation in

current smokers compared to non-smokers, and variable

dynamics upon cessation. Although some alterations per-

sist over decades, smoking cessation can result in methyla-

tion levels reverting to those observed in non-smokers

[13, 16, 18, 24]. However, most ex-smokers exhibit inter-

mediate methylation levels between non-smokers and

current smokers [13, 16, 18, 24]. Methylation levels correl-

ate with the cumulative dose of smoking and are associ-

ated with time since smoking cessation [13, 16, 24, 25].

Smoking can also affect gene expression, as reported in

the human airway epithelium [26, 27], lung tissue [28], al-

veolar macrophages [29], and lung cancer tissue [30].

However, few studies have examined DNA methylation and

gene expression changes concurrently, and these studies

were either conducted with low coverage genome assays

(such as pyrosequencing [30] and HELP assay [8]) or tar-

geted single genes of interest in small sample sizes [8, 30].

Here, we performed the first combined genome-wide

analysis of smoking-related methylation and gene expres-

sion changes across tissues, focusing on adipose tissue. Ex-

ploring the molecular changes induced by smoking in a

metabolically relevant tissue such as adipose tissue is of

value to metabolic health research, because smoking is a

risk factor for metabolic complications and smoking cessa-

tion has been linked to the accumulation of visceral fat.

Here, we identify multiple genes that exhibit both methyla-

tion and expression changes within adipose tissue and

across tissues, showing that smoking leaves a systemic im-

print on DNA methylation and expression variation in the

human body. Our data suggest that smoking leaves a stron-

ger impact on gene expression, while DNA methylation

smoking changes are more stable over time. By linking our

findings to key human phenotypes related to metabolic

health, we identify signals that could add understanding to

some of the wide-ranging risk effects of smoking on meta-

bolic diseases.

Results

Integrated DNA methylation and gene expression

analyses in adipose tissue

Our study design is summarized in Fig. 1. Both DNA

methylation and gene expression profiles were explored in

adipose tissue biopsies from 542 subjects, comprising 54

Fig. 1 Study design. Epigenome-wide and transcriptome-wide association studies were performed in 345 adipose tissue samples, identifying 42

smoking-DMS and 42 smoking-DES where five genes (14 CpG sites) overlapped. The 42 smoking-DMS were replicated in 104 independent subjects

from the LEAP cohort, and the 14 smoking-DMS were further explored in blood, skin, and lung tissue for tissue-shared effects. DNA methylation and

gene expression profiles at the 42 smoking-DMS and 42 smoking-DES were tested for smoking cessation reversibility in 197 ex-smokers. Heritability

and QTL analyses testing genetic and environmental influences on methylation in the 542 adipose samples were also carried out. The final set of

analyses focused on exploring the link between the 42 smoking-DMS and 42 smoking-DES with metabolic phenotypes. Phenotype associations with

smoking-DMS were replicated in 69 Finnish twins. The last set of analyses explored the potential of methylation and gene expression levels at

smoking-DMS and smoking-DES to predict future long-term changes in adiposity phenotypes in individuals who go on to quit smoking
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current smokers, 197 ex-smokers, and 291 non-smokers.

The 197 ex-smokers in our sample were excluded from

analyses investigating methylation differences between

current smokers and non-smokers, but were the focus of

subsequent smoking cessation analyses. DNA methylation

levels at 467,889 CpG sites from the Illumina Infinium

HumanMethylation450 BeadChip were first compared be-

tween current smokers (mean BMI = 26.11 ± 4.66, mean

age = 54.17 ± 8.31) and non-smokers (mean BMI = 26.95

± 4.83, mean age = 59.18 ± 9.58). At a false discovery rate

of 1% (P < 8.37 × 10−7), there were 42 smoking differentially

methylated signals (smoking-DMS) or CpG sites, and

these were located in 29 unique genomic regions compris-

ing of 28 genes and 1 intergenic region (Fig. 2a).

Smoking-DMS are located predominantly in the gene

body (47.6%), extended promoter region (38.1%), 3′UTR

(4.7%), and intergenic region (9.5%), representing an en-

richment of signals in the gene body relative to array com-

position. Using Roadmap annotations (adipose nuclei)

[31], we observed that 16 smoking-DMS (38%) were lo-

cated in enhancers and 9 (21%) were in or near active

transcription start sites (TSS). Of these 25 enhancer or

TSS signals, 9 were flanking bivalent enhancers (n = 3) or

TSS (n = 6). As expected, methylation levels of current

smokers were lower than those in non-smokers in the ma-

jority (90.5%) of the 42 signals (Table 1).

To assess the impact of potential confounders on these

results, we performed two follow-up analyses. First, we

considered the impact of adipose tissue cell-type compos-

ition heterogeneity by also analyzing these data within the

Fig. 2 Coordinated smoking-associated DNA methylation and gene expression changes in adipose tissue. a Manhattan plots of genome-wide

results for methylation (upper panel) and gene expression (lower panel) association with smoking in 345 adipose samples. Smoking-DMS and

smoking-DES are indicated above the 1% FDR line (green dashed line) and are classified by direction of effect for current smokers who have

higher (red dots) or lower (blue dots) methylation or expression levels compared to non-smokers. Genes highlighted by purple blocks represent five

smoking-induced differentially methylated and expressed genes. b Methylation–expression correlation at five genes with coordinated smoking-DMS

and smoking-DES. Pairwise Spearman’s correlation coefficients between methylation and gene expression levels for 54 current smokers (red bars) and

291 non-smokers (blue bars). Asterisk indicates significance at P < 0.05. c Discrimination of current and non-smokers using gene expression levels at

the five overlapping genes. Receiver operating characteristic (ROC) curves are shown for the following combinations of predictors: CYP1A1 gene

expression level (red) and five smoking-DES (black) in the full dataset as an illustrative example, including AUC values from the full dataset
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Table 1 Smoking differentially methylated sites in adipose tissue (42 smoking-DMS)

IlmnID CHR Location Gene name Non-smoker Current smoker Coef. S.E. P value cis-meQTL S*

β (mean ± SD) β (mean ± SD)

cg05951221 2 233284402 2q37.1 0.255 ± 0.054 0.172 ± 0.040 − 1.380 0.108 1.28 × 10−29 rs2853386; 3.87 × 10−8

cg21566642 2 233284661 2q37.1 0.225 ± 0.040 0.167 ± 0.029 − 1.347 0.122 1.87 × 10−23

cg23680900 15 75017924 CYP1A1 0.202 ± 0.036 0.155 ± 0.030 − 1.198 0.118 2.96 × 10−21 O

cg14120703 9 139416102 NOTCH1 0.748 ± 0.045 0.693 ± 0.044 − 1.172 0.118 1.44 × 10−20

cg26516004 15 75019376 CYP1A1 0.696 ± 0.047 0.628 ± 0.058 − 1.258 0.126 1.95 × 10−20 Y

cg10009577 15 75018150 CYP1A1 0.068 ± 0.021 0.050 ± 0.016 − 0.810 0.090 2.48 × 10−17 Y

cg01985595 6 136479501 PDE7B 0.961 ± 0.025 0.936 ± 0.032 − 1.015 0.119 1.09 × 10−15 Y

cg22418620 5 172072885 NEURL1B 0.832 ± 0.049 0.765 ± 0.057 − 1.077 0.127 1.63 × 10−15 rs57285944; 2.15 × 10−8 Y

cg23160522 15 75015787 CYP1A1 0.622 ± 0.033 0.583 ± 0.044 − 0.991 0.122 1.33 × 10−14 Y

cg03636183 19 17000585 F2RL3 0.506 ± 0.040 0.473 ± 0.038 − 0.826 0.103 1.80 × 10−14

cg07992500 2 37896583 CDC42EP3 0.771 ± 0.051 0.719 ± 0.052 − 1.087 0.141 1.88 × 10−13 rs7595854; 1.32 × 10−7

cg12531611 6 11212619 NEDD9 0.909 ± 0.021 0.892 ± 0.024 − 0.855 0.120 1.12 × 10−11 O

cg03646542 5 172076155 NEURL1B 0.689 ± 0.037 0.654 ± 0.035 − 0.880 0.133 1.87 × 10−10 rs7715699; 1.72 × 10−10 Y

cg00353139 15 75017914 CYP1A1 0.034 ± 0.013 0.022 ± 0.010 − 0.787 0.121 4.47 × 10−10 rs11072498; 2.47 × 10−6 Y

cg21124714 11 72983097 P2RY6 0.736 ± 0.037 0.707 ± 0.033 − 0.874 0.136 5.15 × 10−10 Y

cg01940273 2 233284934 2q37.1 0.334 ± 0.045 0.302 ± 0.044 − 0.679 0.105 8.93 × 10−10

cg25648203 5 395444 AHRR 0.503 ± 0.044 0.459 ± 0.040 − 0.825 0.132 1.30 × 10−9

cg20408276 2 38300586 CYP1B1 0.548 ± 0.060 0.499 ± 0.059 − 0.781 0.125 1.61 × 10−9 O

cg20131897 12 52305332 ACVRL1 0.694 ± 0.034 0.673 ± 0.028 −0.693 0.116 5.61 × 10−9 rs1700159; 2.97 × 10−7 Y

cg21611682 11 68138269 LRP5 0.370 ± 0.041 0.336 ± 0.035 −0.734 0.124 8.10 × 10−9

cg19405895 5 407315 AHRR 0.955 ± 0.014 0.942 ± 0.024 −0.768 0.128 8.38 × 10−9 Y

cg05575921 5 373378 AHRR 0.713 ± 0.044 0.682 ± 0.039 − 0.611 0.104 1.07 × 10−8 rs7731963; 3.97 × 10−8

cg13531977 9 112013420 EPB41L4B 0.807 ± 0.035 0.833 ± 0.029 0.831 0.140 1.14 × 10−8 Y

cg00512031 4 5021976 CYTL1 0.880 ± 0.026 0.855 ± 0.028 −0.760 0.129 1.23 × 10−8 chr4:5022470;1.42 × 10−9 Y

cg25189904 1 68299493 GNG12 0.100 ± 0.043 0.064 ± 0.030 − 0.771 0.131 1.48 × 10−8

cg00378510 19 2291020 LINGO3 0.217 ± 0.059 0.181 ± 0.053 −0.781 0.134 1.53 × 10−8 rs12609156; 6.83 × 10−18

cg11554391 5 321320 AHRR 0.065 ± 0.019 0.048 ± 0.014 −0.720 0.125 2.00 × 10−8

cg01802380 13 107865407 FAM155A 0.845 ± 0.030 0.825 ± 0.037 −0.737 0.133 5.69 × 10−8 rs9520326; 1.52 × 10−12 Y

cg14179389 1 92947961 GFI1 0.083 ± 0.030 0.063 ± 0.028 −0.665 0.122 1.07 × 10−7

cg06644428 2 233284112 2q37.1 0.036 ± 0.018 0.024 ± 0.010 − 0.704 0.130 1.61 × 10−7

cg12081267 2 98486185 TMEM131 0.878 ± 0.038 0.858 ± 0.035 − 0.650 0.122 1.97 × 10−7 Y

cg02162897 2 38300537 CYP1B1 0.567 ± 0.060 0.520 ± 0.061 −0.674 0.127 2.89 × 10−7 O

cg11555067 2 99081350 INPP4A 0.725 ± 0.047 0.700 ± 0.046 −0.717 0.138 3.18 × 10−7 rs3754893; 2.27 × 10−7

cg04134818 5 148998446 FLJ41603 0.153 ± 0.026 0.133 ± 0.025 −0.690 0.132 3.26 × 10−7 rs11950259; 7.83 × 10−6 Y

cg03976650 13 77456505 KCTD12 0.667 ± 0.061 0.612 ± 0.067 −0.754 0.143 3.56 × 10−7 Y

cg22851561 14 74214183 C14orf43 0.422 ± 0.041 0.390 ± 0.040 −0.634 0.121 3.92 × 10−7

cg10376100 1 236017278 LYST;MIR1537 0.923 ± 0.036 0.947 ± 0.030 0.615 0.117 4.03 × 10−7 Y

cg04063216 2 14772482 FAM84A 0.071 ± 0.016 0.075 ± 0.019 0.441 0.085 4.39 × 10−7 Y

cg16320419 3 5025570 BHLHE40 0.352 ± 0.052 0.315 ± 0.048 − 0.699 0.135 4.88 × 10−7

cg04135110 5 346695 AHRR 0.339 ± 0.061 0.384 ± 0.065 0.699 0.137 5.34 × 10−7 rs2672748; 3.42 × 10−17

cg20109054 6 31804109 C6orf48;SNORD52 0.091 ± 0.026 0.072 ± 0.023 − 0.659 0.130 7.85 × 10−7 rs3828922; 2.74 × 10−5

cg16721845 11 68518800 MTL5 0.018 ± 0.008 0.014 ± 0.007 − 0.530 0.106 8.37 × 10−7 Y

IlmnID, Illumina probe ID; CHR, chromosome; Location, location of the CpG site (bp); β (mean ± SD), mean and standard deviation of the Illumina beta
methylation levels in the non-smoker and current smoker group; Coef., regression coefficients from the linear mixed effect model, positive values denote
hypermethylation in current smokers and negative values denote hypo-methylation in current smokers; cis-meQTL, top significant cis-meQTL for the CpG site;
S*, adipose tissue-specific effect
Here, we compared our results to one of the biggest smoking-EWAS conducted in blood [20], probes not listed as their significant signals (on their Additional file 2:
Table S2, FDR≤ 0.05) were recorded as “Y” in this table; probes with significant effects in blood in the opposite direction are recorded as “O”
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reference-free EWAS framework [32]. We observed that

the 42 smoking-DMS remained significant at false discov-

ery rate (FDR) of 1%, suggesting that cell composition

within adipose tissue did not have a major impact on our

findings (Additional file 1: Figure S1). Second, habitual

smoking is strongly associated with alcohol consumption

[33], and in our data, current smokers and ex-smokers

have a higher alcohol intake compared to non-smokers

(average alcohol intake = 5.96 (non-smokers), 10.03

(ex-smokers), and 11.67 (current smokers) grams per

day, P = 1.06 × 10−5). Although our smoking analyses

take into account alcohol consumption as a covariate,

it is possible that the smoking-DMS still in part capture

alcohol consumption. To test for the co-occurrence of

differentially methylated signals for smoking and alco-

hol consumption, we performed an alcohol EWAS

adjusting for smoking to compare the results with the

42 smoking-DMS. We observed no significant associ-

ation between alcohol consumption and methylation at

genome-wide significance after adjusting for smoking

in adipose tissue, and only 7 smoking-DMS in AHRR

(cg01802380, cg04134818, cg19405895), CYP1B1 (cg19

405895, cg20408276), FAM84A (cg04063216), and C6or

f48 (cg20109054) surpassed nominal significance (P values

between 0.05 and 0.005).

We next compared RNA-sequencing profiles from the

same tissue biopsy between current smokers and

non-smokers at the gene-based level using RPKM values

across 17,399 genes. At an FDR of 1% (P < 2.86 × 10−5),

there were 42 differentially expressed signals (smo-

king-DES) or genes (Fig. 2a), and 14 of these were up-

regulated in current smokers (Table 2). The strongest

smoking-related expression signal was in the CYP1A1

gene—a lung cancer susceptibility gene, which was also

one of the differentially methylated signals. Gene expres-

sion levels in CYP1A1 were higher in current smokers

compared to non-smokers (Figs. 2a and 3).

Comparison of the FDR 1% genome-wide significant

smoking-DMS and smoking-DES showed overlapping

signals at five genes comprising 14 CpG sites, and these

included AHRR, CYP1A1, CYP1B1, CYTL1, and F2RL3

(Fig. 2a). CpG sites within AHRR, CYP1B1, and F2RL3

were located in the gene body, whereas CpG sites in or

near CYP1A1 and CYTL1 were located 200 kb to 1500 kb

away from the transcription start sites. All five genes were

upregulated in current smokers, and in the majority of

smoking-DMS (93%), current smokers showed lower

methylation levels compared to non-smokers. These pre-

dominantly negative correlations between methylation and

expression at these five genes suggested regulatory effects

(Table 3, Fig. 2b). The methylation-expression correlations

at some of these CpG sites were only observed in current

smokers, and overall correlations were stronger in smokers

compared to non-smokers.

Prediction of smoking status based on DNA methylation

and gene expression

To assess the impact of smoking on DNA methylation

and gene expression within the same analysis framework

and at a comparable scale, we used methylation and ex-

pression changes at these five overlapping genes (14

CpG sites) to predict a subject’s smoking status using a lo-

gistic regression model. We split the overall dataset into

training and validation sets of equal size and report here

the average area under curve (AUC) values from 1000 val-

idation sets. The combination of 14 smoking-DMS levels

and 5 smoking-DES levels resulted in reasonable discrim-

ination of smoking status (AUC: 0.865). Compared to the

prediction results based on 14 smoking-DMS levels alone

(AUC: 0.888), smoking-DES levels are better predictors

(all five genes, AUC: 0.951). This suggests that smoking

leaves a greater impact on gene expression levels, com-

pared to DNA methylation levels at these overlapping

genes. A similar high predictive value can be achieved by

using gene expression levels at just a single gene, CYP1A1

(AUC: 0.952) (Fig. 2c). CYP1A1 was the peak smoking dif-

ferentially expressed gene, with differentially methylated

signals in the promoter, and a negative correlation be-

tween methylation and expression (Fig. 3b).

Adipose-specific and tissue-shared smoking signals

To test if the effects of smoking are shared across tissues,

we first compared our adipose findings to results from

whole blood samples. To this end, we tested for association

between smoking and whole blood genome-wide DNA

methylation (in 569 individuals) and gene expression pro-

files (in 237 individuals), comparing current smokers with

non-smokers. In blood, genome-wide significant results at

FDR 1% for smoking DMS and DES overlapped at four

genes (Additional file 2: Table S1). Altogether, comparison

of FDR 1% significant smoking-DMS results across the adi-

pose and whole blood datasets identified 14 CpG sites that

were genome-wide differentially methylated in both

blood and adipose tissue (Fig. 4a). The 14 tissue-shared

CpG sites fell in eight genes, including GNG12, GFI1,

AHRR, NOTCH1, LRP5, C14orf43, LINGO3, F2RL3, and

in the 2q37.1 intergenic region (Table 4). All of these

sites were previously reported as smoking differentially

methylated sites in blood in previous studies [6–19]

and include AHRR—the most robustly replicated

smoking-methylation signal (Fig. 5a). DNA methylation

changes in two genes (AHRR and F2RL3) that exhibit

both expression and methylation smoking-associated

effects in adipose tissue were also present in the blood

(Figs. 4c and 5b).

We sought to explore the observed tissue-shared me-

thylation effects at the 14 putative tissue-shared CpG

sites in additional datasets including 195 skin tissue

samples from healthy subjects [34] and 168 lung tissue

Tsai et al. Clinical Epigenetics          (2018) 10:126 Page 5 of 21



Table 2 Smoking differentially expressed genes in adipose tissue (42 smoking-DES)

ID CHR Name Coef. S.E. P value cis eQTLs

ENSG00000140465.7 15 CYP1A1 1.899 0.103 5.37 × 10−51 rs35213055; 1.53 × 10−6

ENSG00000138061.7 2 CYP1B1 1.373 0.131 2.83 × 10−21

ENSG00000144331.14 2 ZNF385B − 1.257 0.134 1.53 × 10−18 rs9288034; 8.33 × 10−5

ENSG00000179151.6 15 EDC3 1.167 0.129 3.10 × 10−17

ENSG00000063438.12 5 AHRR 1.059 0.149 6.03 × 10−12

ENSG00000175267.8 16 VWA3A 0.932 0.139 2.18 × 10−10

ENSG00000170381.7 7 SEMA3E − 0.821 0.137 8.35 × 10−9 chr7:83264879;1.22 × 10−10

ENSG00000170891.6 4 CYTL1 0.807 0.142 2.82 × 10−8

ENSG00000187486.5 11 KCNJ11 − 0.859 0.148 3.27 × 10−8

ENSG00000168280.11 2 KIF5C − 0.813 0.145 4.74 × 10−8

ENSG00000006016.5 19 CRLF1 0.769 0.146 2.53 × 10−7 chr19:18717389; 2.63 × 10−6

ENSG00000127533.2 19 F2RL3 0.782 0.147 2.89 × 10−7

ENSG00000149294.11 11 NCAM1 − 0.715 0.135 3.03 × 10−7 rs17510563; 2.01 × 10−7

ENSG00000120693.9 13 SMAD9 − 0.733 0.140 4.76 × 10−7

ENSG00000169116.7 4 PARM1 − 0.686 0.133 6.76 × 10−7

ENSG00000154330.6 9 PGM5 − 0.716 0.147 1.72 × 10−6

ENSG00000162430.12 1 SEPN1 − 0.663 0.137 1.82 × 10−6

ENSG00000154721.9 21 JAM2 − 0.667 0.136 2.23 × 10−6

ENSG00000177303.4 17 CASKIN2 − 0.669 0.140 2.90 × 10−6

ENSG00000157404.10 4 KIT 0.708 0.150 3.31 × 10−6

ENSG00000161544.4 17 CYGB 0.621 0.131 3.42 × 10−6

ENSG00000154065.9 18 ANKRD29 − 0.684 0.144 3.49 × 10−6

ENSG00000176907.3 8 C8orf4 − 0.714 0.151 3.56 × 10−6

ENSG00000168032.4 3 ENTPD3 − 0.674 0.140 3.86 × 10−6 rs34158576; 7.60 × 10−6

ENSG00000162367.6 1 TAL1 − 0.665 0.142 4.17 × 10−6

ENSG00000180785.8 11 OR51E1 − 0.655 0.142 6.82 × 10−6 rs11033126; 3.78 × 10−10

ENSG00000164010.9 1 ERMAP − 0.690 0.154 9.50 × 10−6

ENSG00000068078.12 4 FGFR3 − 0.643 0.143 9.68 × 10−6 rs744658; 9.68 × 10−8

ENSG00000246223.4 14 C14orf64 − 0.633 0.142 1.44 × 10−5 rs75700090; 2.00 × 10−5

ENSG00000145506.9 5 NKD2 0.616 0.140 1.46 × 10−5

ENSG00000161649.7 17 CD300LG − 0.648 0.147 1.48 × 10−5

ENSG00000163873.5 1 GRIK3 − 0.643 0.146 1.50 × 10−5

ENSG00000053747.9 18 LAMA3 − 0.652 0.148 1.57 × 10−5

ENSG00000183733.6 2 FIGLA 0.406 0.093 1.57 × 10−5

ENSG00000164736.5 8 SOX17 − 0.629 0.144 1.64 × 10−5

ENSG00000106078.12 7 COBL − 0.680 0.155 1.65 × 10−5

ENSG00000120156.14 9 TEK − 0.610 0.140 1.67 × 10−5

ENSG00000178726.5 20 THBD − 0.612 0.141 2.00 × 10−5

ENSG00000177675.4 12 CD163L1 0.635 0.148 2.40 × 10−5

ENSG00000136828.13 9 RALPGS1 − 0.646 0.151 2.60 × 10−5

ENSG00000135914.4 2 HTR2B 0.613 0.144 2.82 × 10−5

ENSG00000090530.5 3 LEPREL1 − 0.617 0.145 2.86 × 10−5 rs6768989; 1.10 × 10−9

ID, Ensemble ID; CHR, chromosome; Coef., regression coefficients from the linear mixed effect model, positive values reflect higher expression in current smokers

and negative values represent lower expression in current smokers; eQTL, expression quantitative trait locus
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samples from subjects affected with lung cancer. Four of

the 14 CpG sites validated in the skin in the intergenic

region 2q37.1 (cg05951221, cg06644428, and cg2156

6642) and in AHRR (cg05575921). Furthermore, the ma-

jority (n = 13) of the 14 tissue-shared CpG sites had

lower methylation levels in current smokers compared

to non-smokers in both lung and skin methylation data-

sets, indicating a consistent direction of effect, which

was not nominally significant (Table 4, Additional file 2:

Table S2). In lung tissue from subjects affected with lung

cancer, we validated 3 of the 14 CpG sites in the intergenic

region 2q37.1 (cg21566642 and cg05951221) and in the

AHRR gene (cg05575921) at a Bonferroni-corrected P

value of 3.57 × 10−3 (Additional file 2: Table S2). The

smoking-DMS effects observed across tissues were similar

for CpG sites in the 2q37.1 region, while the smoking ef-

fect was much greater in blood at cg05575921 in AHRR

(see Table 4, Fig. 4b).

In contrast to the methylation results, gene expression

signals showed minimal evidence for tissue-shared im-

pacts. Comparing our FDR 1% genome-wide smoking-

DES across adipose and blood datasets showed that only

AHRR was significantly upregulated in current smokers

across both tissues (Fig. 5c). AHRR was the only signal

that showed both differential methylation and expression

changes across all of the datasets that we explored in this

study, including blood, adipose, skin, and lung tissue.

A proportion of our smoking-DMS and most of our

smoking-DES results appear to be adipose-specific.

However, the sample size of the datasets used to explore

tissue specificity in gene expression was much lower

compared to that used for methylation; therefore, power

to detect tissue-shared effects differs across the data

types. Furthermore, we are limited by access to available

multi-tissue datasets for follow-up, and further investiga-

tion of published findings reveals that some of our

smoking adipose-specific signals have previously been

detected in other tissues [20] For example, one of our

peak results at CYP1A1 showed methylation changes

only in adipose tissue and not in the blood (Fig. 4), but

has previously been reported as a smoking-methylation

signal in blood [20], lung tissue [30, 35], cord blood

[36], and placenta [37, 38]. Unlike the persistent

tissue-shared effects identified in other smoking-DMS

such as signals in AHRR and 2q37.1, we found that

current smokers have lower CYP1A1 methylation

levels in adipose, skin, and lung tissue, but not in

blood [20], placenta, and cord blood samples [36],

overall suggesting that smoking may have contrasting

effects, resulting in hyper- or hypo-methylation in dif-

ferent tissues (Fig. 4b). A similar contrast in direction

of smoking methylation effects is observed at smoking-

DMS in NEDD9 and CYP1B1 across adipose tissue and in

blood (Table 1).

Fig. 3 Smoking-associated DNA methylation and gene expression patterns at CYP1A1. a coMET plot [90] describing the genomic region of

epigenome-wide association between smoking and CYP1A1 methylation (top panel), along with functional annotation of the region (middle

panel), and pattern of co-methylation at the 34 CpG sites of CYP1A1 (bottom panel). b DNA methylation and gene expression changes with

respect to smoking cessation. Methylation (at cg23680900) and gene expression levels are shown for five smoking status categories: current

smokers (red); subjects who quit within 1 year, subjects who quit between 1 and 5 years, and subjects who quit over 5 years at the time of methylation

sampling (gray); and non-smokers (blue). X-axis labels include the proportion of subjects who reverted in each smoking quit year category. c CYP1A1

methylation associations with adiposity phenotypes, visceral fat mass (VFM), and android-to-gynoid fat ratio (AGR). DNA methylation levels at three CpG

sites (cg23160522, cg23680900, and cg10009577 in CYP1A1) are shown against adiposity phenotypes in current (red) and non-smokers (blue)
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Replication of adipose smoking methylation signals

We pursued replication of the adipose tissue smoking-

DMS in an independent dataset of 104 participants from

the LEAP cohort, within the New England Family Study

(mean BMI 30.9 ± 7.03, mean age 47 ± 1.7, 48% male),

described in detail elsewhere [39]. These individuals

were not affected with common diseases and had avail-

able adipose biopsy methylation profiles for 46 current

smokers and 58 non-smokers. We found that the

smoking-methylation direction of association was con-

sistent at all 42 adipose smoking-DMS (Additional file 2:

Table S3), and 25 of these also surpassed nominal sig-

nificance in the replication dataset (P = 0.05). At a more

stringent threshold, the replication signal was signifi-

cant at 13 sites, surpassing Bonferroni-adjusted P value

for the replication analysis (P = 1.19 × 10−3).

Signatures of smoking cessation

We next assessed the effect of smoking cessation on the

observed adipose DNA methylation and gene expression

signals in ex-smokers from the discovery cohort. We

considered reversal of smoking methylation or expres-

sion signals, that is, the longitudinal change in methyla-

tion to reach levels observed in non-smokers. We

quantified the number of subjects who reverted to 25%

of the change in methylation towards non-smokers, and

estimated the proportion of subjects who reverted over

time (in smoking-quit years), using the same approach

in gene expression (see the “Methods” section).

We explored reversal patterns in adipose tissue at both

the 42 smoking-DMS (Additional file 1: Figure S2) and

42 smoking-DES (Additional file 1: Figure S3) and fo-

cused on the five differentially methylated and expressed

genes (14 CpG sites), where the average number of

smoking-quit years was 24.8 (± 13.21) years among 197

ex-smokers. Overall, a rapid rate of reversal was ob-

served in the first 10 years after smoking cessation, after

which only subtle changes were detected in both methy-

lation and gene expression. In the expression adipose

data, ex-smokers showed a > 50% reversal rate 1 year

after smoking cessation and reached > 85% reversal after

10 years (Additional file 1: Figure S3). In comparison,

slower reversal was observed in the methylation dataset

(Additional file 1: Figure S2). Among the 14 CpG sites,

only three (two at AHRR and one at CYP1A1) showed

a 50% reversal rate 1 year after cessation, while the

remaining signals showed between 17 and 33% reversal

(Figs. 3b and 5c, Additional file 1: Figure S3). Even

after > 40 years of smoking cessation, a proportion of

smoking-DMS (n = 12; 29%) showed less than 40% re-

versal (Additional file 1: Figure S3). This suggests that

smoking leaves a longer lasting influence on DNA

methylation levels than on gene expression levels after

smoking cessation.

Controlling for genetic variation

Previous studies have shown heritable impacts on smok-

ing behavior and nicotine addiction [40–43]. We ex-

plored the impact of genetic variation on the identified

smoking methylation signals. Of the 42 smoking-DMS,

14 CpG sites had genome-wide significant meQTLs in

cis in adipose tissue (Table 1). Of the 14 tissue-shared

smoking-DMS, two signals in 2q37.1 and one in

LINGO3 had meQTLs in cis in adipose tissue, and three

signals in AHRR and one in F2RL3 had meQTLs in cis

in blood samples.

Table 3 Correlation between DNA methylation and gene expression

Gene name IlmnID CHR Location ID r P value

CYP1B1 cg20408276 2 38300586 ENSG00000138061.7 − 0.171 1.39 × 10−3

CYTL1 cg00512031 4 5021976 ENSG00000170891.6 − 0.176 1.03 × 10−3

AHRR cg25648203 5 395444 ENSG00000063438.12 − 0.167 1.80 × 10−3

AHRR cg19405895 5 407315 ENSG00000063438.12 − 0.134 1.29 × 10−2

AHRR cg05575921 5 373378 ENSG00000063438.12 − 0.060 0.2633

AHRR cg11554391 5 321320 ENSG00000063438.12 − 0.216 5.37 × 10−5

AHRR cg04135110 5 346695 ENSG00000063438.12 0.279 1.31 × 10−7

AHRR cg24980413 5 346987 ENSG00000063438.12 0.252 2.10 × 10−6

CYP1A1 cg23680900 15 75017924 ENSG00000140465.7 − 0.329 3.94 × 10−10

CYP1A1 cg26516004 15 75019376 ENSG00000140465.7 − 0.298 1.70 × 10−8

CYP1A1 cg10009577 15 75018150 ENSG00000140465.7 -0.266 5.22×10-7

CYP1A1 cg23160522 15 75015787 ENSG00000140465.7 − 0.299 1.48 × 10−8

CYP1A1 cg00353139 15 75017914 ENSG00000140465.7 − 0.222 3.22 × 10−5

F2RL3 cg03636183 19 17000585 ENSG00000127533.2 − 0.130 0.0159

IlmnID, Illumina probe ID; CHR, chromosome; Location, Illumina probe location (bp); ID, Ensemble ID; r, Spearman’s correlation coefficients between methylation

and gene expression data (n = 345)
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Given our observed genetic influences on smoking-

DMS, we asked if previously reported genetic variants

associated with smoking behavior [42] or nicotine me-

tabolism [43] could impact DNA methylation levels in

adipose tissue. We first focused on common genetic var-

iants that were previously associated with smoking

phenotypes in the largest smoking genetic association

study to date (n = 15,907) [42]. We observed that all gen-

etic variants previously strongly linked to smoking be-

havior (14 SNPs) [42] had an impact on adipose DNA

methylation levels in cis (Additional file 2: Table S4). We

then explored a recently reported association between

Fig. 4 Tissue-shared and adipose-specific smoking signals. a Tissue-shared DNA methylation effects across adipose tissue and whole blood. The

bar-plot shows the -log10 P value of the 42 smoking-DMS in adipose samples (blue), and the corresponding P value in the blood samples (red

bars). Gene names in bold denote significantly associated genes in both tissues. b Tissue-shared and tissue-specific DNA methylation effects for

adipose tissue, whole blood, skin, and lung cancer tissue at 2q37.1, AHRR, and CYP1A1. Each bar represents the coefficient estimate from smoking-

EWAS with standard error bars. Positive values indicate a hypermethylation in current smokers. Colors reflect tissues, with coefficients in adipose

(blue), blood (red), skin (gray), and lung tissue (yellow). N.S. indicates non-significance. c Examples of smoking effects that are tissue-shared and

tissue-specific across adipose (blue) and blood (red) samples in our datasets, including adipose-specific (CYP1A1 in our dataset) and tissue-shared

(2q37.1 and F2RL3) smoking-DMS
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a cluster of SNPs on chromosome 19 and nicotine

metabolism, where the same genetic variants were

also associated with blood DNA methylation levels in

the same region as meQTLs [43]. We replicate the

chromosome 19 meQTL findings in our adipose DNA

methylation data at CpGs in genes CYP2A7, ENGL2,

and LTBP4 (Additional file 2: Table S5), suggesting

that these are strong genetic impacts on DNA

methylation that are shared across tissues. Taken to-

gether, these genetic-methylation association results

provide additional support for the hypothesis that

some of the observed genetic impacts on smoking

behavior and nicotine metabolism may be mediated

by DNA methylation.

Table 4 Tissue-shared smoking-induced differentially methylated sites in cancer-free subjects

IlmnID CHR Location Gene name Adipose tissue (n = 345) Blood samples (n = 567) Skin tissue (n = 195)

Coef. P value Coef. P value Coef. P value

cg25189904 1 68299493 GNG12 − 0.771 1.48 × 10−8 − 0.974 6.92 × 10−18 − 0.434 1.58 × 10−2

cg14179389 1 92947961 GFI1 − 0.665 1.07 × 10−7 − 0.404 4.74 × 10−6 − 0.408 1.89 × 10−2

cg06644428 2 233284112 2q37.1 − 0.704 1.61 × 10−7 − 0.864 1.76 × 10−19 − 0.641 3.39 × 10−4

cg05951221 2 233284402 2q37.1 − 1.38 1.28 × 10−29 − 1.471 3.65 × 10−60 − 1.161 6.13 × 10−13

cg21566642 2 233284661 2q37.1 − 1.347 1.87 × 10−23 − 1.491 9.67 × 10−61 − 1.138 4.83 × 10−11

cg01940273 2 233284934 2q37.1 − 0.679 8.93 × 10−10 − 1.415 3.17 × 10−52 − 0.302 3.09 × 10−2

cg11554391 5 321320 AHRR − 0.72 2.00 × 10−8 − 0.694 8.10 × 10−12 − 0.494 4.91 × 10−3

cg05575921 5 373378 AHRR − 0.611 1.07 × 10−8 − 1.672 2.45 × 10− 80
− 0.982 7.24 × 10−8

cg25648203 5 395444 AHRR − 0.825 1.30 × 10−9 − 0.937 3.50 × 10−22 − 0.398 7.29 × 10−3

cg14120703 9 139416102 NOTCH1 − 1.172 1.44 × 10−20 − 0.352 1.84 × 10−6 − 0.423 8.69 × 10−3

cg21611682 11 68138269 LRP5 − 0.734 8.10 × 10−9 − 0.874 4.23 × 10−20 0.075 6.38 × 10−1

cg22851561 14 74214183 C14orf43 − 0.634 3.92 × 10−7 − 0.5 5.24 × 10−7 − 0.326 7.07 × 10−2

cg00378510 19 2291020 LINGO3 − 0.781 1.53 × 10−8 − 1.478 3.59 × 10−62 − 0.133 4.66 × 10−1

cg03636183 19 17000585 F2RL3 − 0.826 1.80 × 10−14 − 0.466 2.37 × 10−7 − 0.372 1.45 × 10−2

IlmnID, Illumina probe ID; CHR, chromosome; Location, Illumina probe location (bp); Coef., regression coefficients from the linear mixed effect model, positive

values denote hypermethylation in non-smokers and negative values denote hypermethylation in current smokers

Fig. 5 Tissue-shared smoking-associated DNA methylation and gene expression patterns at AHRR. a coMET plot [49] of the association between

66 AHRR CpG sites and smoking. Top panel shows the -log10P value of the association; the middle panel shows genomic annotation; and the

lower panel shows co-methylation patterns based on Spearman correlation coefficients. b Tissue-shared and tissue-specific methylation signals

across CpG sites in the AHRR gene region in adipose (blue) and blood samples (red). c DNA methylation and gene expression levels with respect

to smoking cessation. Methylation and gene expression levels are shown for five different smoking status categories: current smokers (red);

subjects who quit within 1 year, subjects who quit between 1 and 5 years, and subjects who quit over 5 years at the time of methylation

sampling (gray); and non-smokers (blue). X-axis labels include the proportion of subjects who reverted in each smoking quit year category
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Impacts on metabolic health and disease risk

Given the wide-ranging effects of smoking on human

disease, we explored the links between the identified

adipose methylation and expression smoking signals

and phenotypes that are major risk factors for meta-

bolic disease. Three metabolic disease risk pheno-

types—total fat mass (TFM), visceral fat mass (VFM),

and android-to-gynoid fat ratio (AGR)—were profiled

using dual X-ray absorptiometry in 288 subjects with

adipose methylation and expression profiles. We

assessed the association of the 42 smoking-DMS and 42

smoking-DES with these adiposity phenotypes using a

twofold approach.

First, we tested for association between adipose methy-

lation levels at the 42 smoking-DMS and the three phe-

notypes, adjusting for covariates including age, BMI, and

smoking. We observed that smoking-DMS in CYP1A1

and NOTCH1 were significantly associated with mea-

sures of metabolic disease risk. First, methylation levels

at three CpG sites in CYP1A1 were significantly associ-

ated with VFM and AGR, either as main effects

(cg23160522 and VFM, beta = 1.35 × 10−3, SE = 3.03 × 10−3,

P = 4.35 × 10−7; cg23680900 and AGR, beta = − 1.59, SE =

0.44, P = 6.58 × 10−6) or taking into account interactions

(cg10009577 and AGR, P = 5.50 × 10−4), where current

smokers and non-smokers have different patterns of associ-

ation between DNA methylation at CYP1A1 cg10009577

and AGR (Fig. 3c). Probe cg10009577 is located in the

CYP1A1 promoter, suggesting gene regulatory impacts on

CYP1A1 expression levels. Correspondingly, we observed a

nominally significant association between CYP1A1 gene ex-

pression and VFM (Fig. 3c), where current smokers and

non-smokers have different patterns of association (P =

0.042). A significant negative association between DNA

methylation levels and AGR was also observed with

cg14120703 in NOTCH1 (beta = − 1.80, SE = 0.43, P =

1.07 × 10−7). We pursued replication of these associations

in an independent sample of 69 younger Finnish twins with

adipose tissue Illumina 450K methylation profiles. We rep-

licated the overall negative association between CYP1A1

cg10009577 and AGR (discovery sample beta = − 0.95,

SE = 0.31; replication sample beta = − 0.58, SE = 0.25,

P = 0.02) and observed a similar direction of inter-

action effects, which did not reach nominal significance

in the replication sample (Additional file 2: Table S5).

We performed similar analyses with the 42 smoking-

DES and observed main effects at F2RL3 on the three

phenotypes (VFM beta = − 1.5 × 10−3, SE = 3.78 × 10−4,

P = 7.8 × 10−4; AGR beta = 2.3, SE = 0.56, P = 4.5 × 10−5;

TFM beta = 1.6 × 10−3, SE = 3.9 × 10−4, P = 5.8 × 10−5),

and OR51E1 on VFM (beta = − 1.5 × 10−3, SE = 3.78 ×

10−4, P = 7.8 × 10−4) and AGR (beta = − 2.85, SE = 0.51,

P = 3.1 × 10−8). We did not observe significant evidence

for interaction effects in the gene expression results.

In the second set of phenotypic analyses, we explored

the role of the 42 smoking-DMS and 42 smoking-DES

on weight gain after smoking cessation. Recent studies

have reported not only a gain in weight on smoking

cessation, but also an increase in visceral fat [5]. We

considered adiposity phenotypes in 246 of the individ-

uals in our study at two time points, where time point

1 was the initial adipose DNA methylation profiling

and phenotype measurement, and time point 2 was a

phenotype measurement on average 5 years later. We

found that current smokers who go on to quit smoking

over this 5-year interval show a gain in adiposity across

all phenotypes (Fig. 6a), and this effect is also observed

in individuals who quit within up to 4 years at time

point 1. However, our data suggests that this gain in

adiposity is not long lasting, because we do not observe

this effect in the group of ex-smokers who had quit for

> 5 years at time point 1. In comparison, there were no

major phenotype changes within constant smokers

(current smokers at both time points) or never smokers

(non-smokers at both time points) across the two time

points.

We tested if the 42 smoking-DMS and 42 DES in adi-

pose tissue could predict future changes in adiposity

upon smoking cessation, focusing on visceral fat accu-

mulation as the major risk factor for the development of

adiposity-related metabolic diseases. Based on the phe-

notype results (Fig. 6a), we compared two groups of in-

dividuals: first, the combined group (n = 18) of current

smokers at the time of methylation profiling (time

point 1) who subsequently quit smoking (n = 5), and in-

dividuals who had quit within 1–4 years at time point 1

(n = 13); and second, the combined group (n = 228) of

ex-smokers who had quit for > 5 years at time point 1

(n = 92), as well as constant smokers (n = 12) and never

smokers (n = 124) across the two time points. We

assessed the impact of methylation or expression at the

42 smoking-DMS (Additional file 1: Figure S4) and 42

smoking-DES (Additional file 1: Figure S5) on future

changes in visceral fat, selecting results that showed

significantly different patterns of association in the two

groups of 18 and 228 subjects.

After Bonferroni correction for multiple testing, we

found one DMS and one DES significantly associated

with future changes in visceral fat, where a strong asso-

ciation effect was only observed in the group 18 sub-

jects. This group consists of current smokers who go on

to quit smoking (n = 5) and recent ex-smokers who re-

main ex-smokers (n = 13), and where all subjects exhibit

a gain in adiposity over time. The first signal was ob-

served in cg16320419 in BHLHE40 (methylation by

group interaction term P = 9.3 × 10−4), where methyla-

tion levels in current smokers or recent ex-smokers ex-

plain 35.5% of the variation in future gain in visceral fat
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(Fig. 6b). The second signal was observed in AHRR (gene

expression by group interaction term P = 4.7 × 10−5),

where gene expression levels in current smokers or recent

ex-smokers explain 44% of the variation in future gain in

visceral fat (Fig. 6c). The results were similar after correct-

ing for smoking years and years since smoking cessation.

Discussion

Tobacco smoking is a major disease risk factor. Our

study is the first to identify smoking-associated DNA

methylation and gene expression changes in adipose tissue

in humans. Approximately 30% of the identified smoking-

methylation signals showed significant coordinated changes

in gene expression levels in five genes, giving insights into

the cascade of molecular events that are triggered in re-

sponse to smoking, toxin exposure, and nicotine metabol-

ism. At least a third of smoking-methylation signals (in

nine genomic regions) were shared across tissues, showing

that smoking leaves tissue-shared signatures. Given that

our target tissue was adipose, we considered the impact

of the identified smoking methylation and expression

signals on metabolic disease risk. Significant associa-

tions were observed between visceral fat and

android-to-gynoid fat ratio and several smoking-methyla-

tion and expression markers. Furthermore, methylation

and expression levels at BHLHE40 and AHRR in current

smokers or recent ex-smokers were predictive of future

gain in visceral fat observed after smoking cessation. Our

findings provide a first comprehensive assessment of

methylation and expression changes related to

smoking in adipose tissue, with insights for metabolic

health and disease risk.

Coordinated smoking methylation and expression

changes overlapped at five genes (AHRR, CYP1A1,

CYP1B1, CYTL1, and F2RL3), which include well-known

and strongly replicated smoking-methylation signals,

such as AHRR and F2RL3. Some of these genes have

previously been linked to human phenotypes. For ex-

ample, GWAS associations have been reported with

multiple diseases and traits, such as drinking behavior

(CYTL1) [44], cystic fibrosis severity (AHRR) [45], caf-

feine consumption (CYP1A1) [46], and diastolic blood

pressure (CYP1A1) [47], and methylation levels at AHRR

have been linked to multiple phenotypes including lung

function [48] and BMI [49]. At the five overlapping

genes, methylation levels were predominantly negatively

correlated with expression levels. CpG sites in AHRR,

CYP1B1, and F2RL3 were located on the gene body,

whereas those in CYTL1 and CYP1A1 were in the pro-

moter. Our results are consistent with the expectation

that promoter-based CpG sites negatively associate with

gene expression [50–52]. Studies have reported both

positive and negative correlations between methylation

and expression for CpG sites in the gene body [53–56].

DNA methylation sites in the gene body that are nega-

tively associated with expression levels may be located in

alternative promoters that regulate the expression of

particular isoforms.

CYP1A1, or cytochrome P4501A1, is a lung cancer sus-

ceptibility gene. Although in our data, CYP1A1 smoking

Fig. 6 Smoking-DMS and smoking-DES relate to future changes in visceral fat mass on smoking cessation. a Adiposity phenotype changes over a

5-year time period between time point 1 (2007–2008) and time point 2 (2012–2013). Adiposity phenotypes include BMI, total fat mass (TFM),

android-to-gynoid fat ratio (AGR), and visceral fat mass (VFM). Phenotype changes are shown for five categories of subjects: current smokers at

the two time points (S-S, n = 12), current smokers at time point 1 who quit smoking by time point 2 (S-E, n = 5), ex-smokers (who quit smoking

within 1–5 year) at time point 1 who remain ex-smokers at time point 2 (E1-E5, n = 13), ex-smokers who quit > 5 years at time point 1 who

remain ex-smokers at time point 2 (E5+, n = 92), and non-smokers at both time points (N-N, n = 124). b Left panel shows the association between

DNA methylation levels at cg16320419 in BHLHE40 and future changes in visceral fat mass in 18 subjects in categories S-E and E1-E5 (red points),

compared to all remaining subjects (gray points). Right panel shows methylation cessation patterns at cg16320419 in BHLHE40. c Association

between DNA methylation (left panel, red points) and gene expression (right panel, blue points) in AHRR with future changes in visceral fat mass

in 18 subjects in categories S-E and E1-E5, compared to all remaining subjects (gray points)
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signals appear adipose-specific, independent studies have

reported links to smoking in multiple tissues. CYP1A1

smoking-associated methylation signals are present in the

lung in the fetus [57] and in adults [30, 35]. In adults, ef-

fects are observed in normal lung tissue from lung cancer

patients at both the CYP1A1 promoter [35] and enhancer

[30], which is also differentially methylated between nor-

mal tissue and lung tumor tissue [30]. A recent large-scale

meta-analysis of smoking methylation signals in blood also

reported a moderate effect at CYP1A1 [20]. Maternal to-

bacco use was also associated with alterations in promoter

methylation of placental CYP1A1, and these changes were

correlated with CYP1A1 gene expression and fetal growth

restriction [58]. Furthermore, CYP1A1 gene expression is

downregulated by AHRR. CYP1A1 is inducible by agonists

of the aryl hydrocarbon receptor (AhR), which include en-

vironmental pollutants and components of cigarette

smoke. Following activation of AhR by an agonist in the

cytoplasm, the AhR-ligand complex translocates to the

nucleus, where it dimerizes with the aryl hydrocarbon re-

ceptor nuclear translocator (ARNT) [59]. This heterodi-

mer binds to the xenobiotic response element (XRE) site

of CYP1A1 in the upstream enhancer region, which acti-

vates transcription. CYP1A1 metabolizes drug molecules

and environmental pollutants, including polycyclic aro-

matic hydrocarbons, dioxin, and benzo(α)pyrene, into

highly reactive intermediates. These derivatives can bind

to DNA and form adducts, which may contribute to car-

cinogenesis [60]. AhR, in a complex with xenobiotic com-

pounds and ARNT, induces CYP1A1 expression, which

subsequently detoxifies toxic components of cigarette

smoke. AHRR suppresses the effects of AhR through bind-

ing to ARNT. Hypo-methylation of AHRR and increased

AHRR expression may therefore reduce cellular responses

to smoking, potentially through CYP1A1 [61]. However,

our findings of increased gene expression levels at both

AHRR and CYP1A1 in current smokers suggest that

smoking-induced AHRR changes do not impact the

CYP1A1 response to smoking in adipose tissue. The

smoking effects at CYP1A1 in our study appear to be

adipose-specific; therefore, these observations do not ex-

tend to blood, skin, or lung samples.

In addition to CYP1A1, other smoking signals that

we identify in this study have also been previously

linked to lung cancer. CYP1B1 differentially methyl-

ated effects have been reported for smoking, for lung

cancer, and for age at cancer diagnosis in non-small

cell lung carcinoma (NSCLC) samples [62]. Several of

our smoking signals were previously reported to be

differentially methylated in lung adenocarcinoma tumor

and matched non-tumor tissue [63]. These included two

of our top smoking-DMS, CYTL1 and ACVRL1, and seven

of our top smoking-DES, CYTL1, JAM2, CYGB, TAL1,

GRIK3, SOX17, and TEK.

In line with previous studies, we observe that genetic

variation can impact the smoking-DMS, with potential

implications for genotype influences on the rates of

toxin elimination and nicotine metabolism in the human

body. Importantly, we observe that all of the major

smoking genetic variants detected in the largest smoking

GWAS to date appear to influence DNA methylation

levels in cis. These findings strongly suggest that DNA

methylation may mediate some of the effects of genetic

influences on smoking behavior, toxin elimination, or

nicotine metabolism. We also replicate results from a

genome-wide association study of nicotine metabolite

ratio, identifying a 4.2-Mb region on chromosome 19q13

where GWAS SNPs were also associated with DNA

methylation levels [43]. Taken together, these findings

suggests some of the observed genetic impacts on smok-

ing behavior and nicotine metabolism may be mediated

by DNA methylation and that such effects are robust

and shared across tissues.

Our analyses specifically in ex-smokers show variability

in the extent of signal reversal over time, which is consist-

ent with previous findings. We observe an overall trend

towards at least partial reversal at most of the identified

smoking-associated signals. Importantly, our study is the

first to show that this trend is also observed in gene ex-

pression levels. Our findings suggest that smoking has a

longer lasting influence on the methylome compared to

the transcriptome, where the majority of reversal effects

occur within the first year after smoking cessation.

The smoking-methylation signals were assessed for

association with adiposity phenotypes that constitute

major metabolic disease risk. Significant associations

were observed between visceral fat mass and android-

to-gynoid fat ratio with methylation levels at smoking

markers with functional impacts on gene expression,

such as CYP1A1 with replication, and in signals that

were shared across tissues, such as NOTCH1. Associa-

tions were also detected with smoking-DES. These re-

sults may help improve our understanding of how

smoking impacts metabolic health, and to explore this

further, we considered smoking effects on future changes

in metabolic phenotypes on smoking cessation. Visceral

fat has a strong association with obesity-related metabolic

diseases, such as type 2 diabetes and cardiovascular

disease [64, 65] and is a major metabolic disease risk fac-

tor. At smoking markers BHLHE40 and AHRR, DNA

methylation and gene expression levels in current smokers

were predictive of future gain in visceral fat observed after

smoking cessation. Although the sample size of current

smokers who go on to quit smoking in our data is modest,

these findings provide an interesting insight into potential

molecular mechanisms mediating environmental effects

on metabolic disease risk and require replication in larger

samples.
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A limitation to our study is partial correction for the

influence of expected covariates. These include, first, alco-

hol consumption, which co-occurs with smoking. In our

co-occurrence analyses, none of the alcohol-associated

CpG sites reached genome-wide significance after adjust-

ing for smoking. In a previous alcohol EWAS in blood,

Liu et al. [66] also found that the effect size of the majority

alcohol-DMS was not affected by smoking status suggest-

ing that despite their co-occurrence, smoking and alcohol

impact DNA methylation in different aspects. A related

question is optimal correction for cell composition in adi-

pose tissue. Since we only had access to subcutaneous adi-

pose tissue biopsies, rather than isolated cell subtypes, we

corrected for cell composition by using the analytical ap-

proach within the reference-free EWAS [32] framework

and found that the majority of results remained largely

unchanged. However, it is possible that this does not

fully capture the effect of a heterogeneous population

of cells as a confounder. Some of the smoking-DMS

such as BHLHE40, which was also found to be predict-

ive of future gain in visceral fat, may reflect cell-specific

methylation profiles. BHLHE40 was previously reported

to be hypo-methylated in activated NK cells (but not in

naive NKs, T, and B cells) [67] and a similar trend was

observed for AHRR [67]. One interpretation of these

findings is that some smoking signals are cell subtype

specific [68, 69], potentially reflecting a selective en-

hancement of activated cells, because smoking can also

induce changes in blood count [70]. In adipose tissue,

this particular effect may be represented as an infiltra-

tion of activated NK cells, and this infiltration may in-

crease with obesity, diabetes, and smoking. On the

other hand, the relative abundance of NK DNA com-

pared with adipose DNA in adipose tissue is minimal;

therefore, these effects should be minimal. Future studies

are needed to assess the impact of these potential con-

founding effects using for example histological and im-

munological staining of adipose tissue.

Conclusion
Our results show that smoking can impact DNA methy-

lation and gene expression levels in adipose tissue. To

our knowledge, this is the first study that performed

genome-wide analyses of smoking in adipose tissue

DNA methylation and gene expression profiles. The key

results are that, first, smoking leaves a signature on both

the methylome and transcriptome with overlapping sig-

nals; second, smoking methylation signals tend to be

tissue-shared effects; third, smoking has a longer lasting

influence on DNA methylation levels than on gene ex-

pression after smoking cessation; and forth, specific

smoking methylation and expression signals are associ-

ated with metabolic disease risk phenotypes, as well as

future weight gain after smoking cessation.

Methods
Study population and sample collection

The primary sample of subjects is twins from the

TwinsUK cohort who were recruited as part of the

MuTHER (Multiple Tissue Human Expression Resource)

study [71]. All subjects are Caucasian females and ascer-

tained to be free from severe disease when the samples

were collected. The sample consisted of 542 female twins,

comprising 54 current smokers, 197 ex-smokers, and 291

non-smokers. The 542 twins included 84 MZ twin pairs,

112 DZ twin pairs, and 150 unrelated individuals (Add-

itional file 2: Table S6). Adipose tissue biopsies were ob-

tained from all subjects between August 2007 and May

2009. Details of biopsy procedures and sample descrip-

tions are described previously [72]. Briefly, subcutaneous

adipose tissue biopsies were dissected from near the um-

bilicus of the abdominal region; the fat layer was separated

from skin layers and stored immediately in liquid nitro-

gen. Both DNA and RNA were extracted from the same

adipose tissue biopsy, as previously described [72, 73].

Ethical approval was granted by the National Research

Ethics Service London-Westminster, the St Thomas’

Hospital Research Ethics Committee (EC04/015 and

07/H0802/84). All research participants have signed an

informed consent prior to taking part in any research

activities.

To explore tissue-shared effects, peripheral blood sam-

ples from 789 and 362 subjects from TwinsUK were also

explored for genome-wide methylation and expression

profiling, respectively. The blood samples for methyla-

tion measurement were taken from 1992 to 2012, and

the samples for gene expression measurement were

taken from 2007 to 2009. From the 542 subjects with

available adipose tissue samples, 200 and 222 subjects

donated blood samples for methylation and expression

profiling, respectively. Blood samples and adipose tissues

were collected during the subject’s visit to the clinic.

The majority of data analysis focused on methylation and

expression level differences between current smokers and

non-smokers. The sample subsets of current smokers and

non-smokers comprised 345 subjects in adipose methyla-

tion and expression samples, 567 subjects in blood methy-

lation samples, and 237 in blood expression samples.

Replication and validation analyses

The 42 smoking-DMS that we identified in the TwinsUK

cohort were further explored in five independent data-

sets: (1) 104 subjects from the LEAP cohort were used

for adipose smoking-DMS replication (dataset 1); (2) 69

subjects from the Finnish Twins were used for replica-

tion of methylation associations with metabolic pheno-

types (dataset 2); and (3) 195 subjects (skin, dataset 3),

(4) 168 subjects (lung, dataset 4), and (5) 567 subjects

(blood, dataset 5) were used to explore tissue-shared
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effects at the 42 smoking-DMS. Details of dataset 5 were

described in the previous section.

Dataset 1: LEAP cohort adipose tissue (USA)

To replicate the 42 adipose tissue smoking-DMS, we

studied 104 participants from the New England Family

Study, the LEAP cohort (mean BMI 30.9 ± 7.03, mean

age 47 ± 1.7, 48% male; see Additional file 2: Table S6),

described in detail elsewhere [39]. The individuals are of

mixed ancestry (63.5% white) and were not affected with

disease. There were 46 current smokers and 58 non-

smokers. Subcutaneous adipose tissue samples in these

participants were collected from the upper outer quadrant

of the buttock, followed by DNA extraction, and Infinium

HumanMethylation450 BeadChip array profiling as previ-

ously described [37]. Replication analyses were performed

using a linear regression model adjusting for age, gender,

BMI, and batch effect.

Dataset 2: Finnish twin adipose tissue

To replicate the methylation associations with metabolic

health traits, we studied 69 Finnish twins (mean age

31.1 ± 4.43 years, mean BMI 27.5 ± 4.72, 44.9% male; see

Additional file 2: Table S6), who were recruited as a part

of the Finnish twin cohort. Adipose tissue sample collec-

tion and DNA extraction in this sample have been previ-

ously described in detail [74, 75]. The sample included

34 full MZ twin pairs and 21 current smokers. DNA

methylation profiling was measured by Infinium

HumanMethylation450 BeadChip array and TFM and

AGR were determined by dual energy X-ray absorpti-

ometry (DEXA). Replication analyses were performed

using a linear mixed effect regression model adjusting

for age, gender, BMI, family, batch effect, and alcohol in-

take. Sample characteristics of the replication cohorts

are shown in Additional file 2: Table S6.

To examine the tissue specificity of the 42 smoking-

DMS, we included two additional datasets (dataset 3 and

dataset 4) for validation of tissue-shared smoking effects.

Dataset 3: TwinsUK skin tissue

The first validation dataset for identifying tissue-shared

effects included 195 skin tissue samples from twins

(mean age 59.1 ± 9.71 years, mean BMI 26.7 ± 4.71; see

Additional file 2: Table S6) from the TwinsUK cohort.

This analysis included 37 current smokers and 158 non-

smokers cancer-free female subjects only, and some sub-

jects also provided adipose samples in the current study.

The TwinsUK skin samples and the evaluation of DNA

methylation in the samples are described elsewhere [34].

We performed the analysis using a linear mixed effects

model adjusting for age, BMI, alcohol consumption, batch

effect, family structure, and zygosity. Sample characteristics

are shown in Additional file 2: Table S6.

Dataset 4: Lung cancer tissue

The second validation dataset for identifying tissue-shared

smoking effects included 168 lung cancer female subjects

(mean age 65.1 ± 10.66 years; see Additional file 2:

Table S6) from a multicenter cohort of 450 subjects

with non-small cell lung cancer (GEO dataset: GSE39279)

[76]. In the validation analysis, we selected only female

subjects who had smoking records (129 current smokers

and 39 non-smokers) and used a linear regression model

to test for the effect of smoking on methylation, adjusting

for age, cancer stage [1 to 4], and cancer type (adeno-

carcinoma or squamous). DNA methylation levels were

obtained using the Infinium HumanMethylation450

BeadChip, and BMIQ normalization was performed

prior to analysis.

Phenotype collection

During a subject’s clinical visit, basic demographic infor-

mation was collected, with on-site measurements such

as height and weight, DEXA measurements, and biopsy

collection. Self-reported smoking status is obtained

through longitudinal questionnaires. Data included an-

swers to the following questions: “Do you currently

smoke (more than 3 days per week)?” (yes/no), “How

long has it been since you gave up smoking (in years/

months)?”, “How long have you smoked for in total (in

years/months)?”, “On average how many cigarettes do

you smoke a day (cigarette numbers)?”, “How many

cigarette you smoke in the past 100 days (cigarette

numbers)?”. Longitudinal data were available for each

subject, and we excluded subjects who did not have

consistent longitudinal smoking records. Smoking sta-

tus was defined in three categories: current smokers,

ex-smokers, and non-smokers. Current smokers were

defined as subjects who consistently smoked cigarettes

(and have not stopped at any point) according to their

longitudinal records up to the clinical visit when the

adipose tissue biopsy was obtained. Ex-smokers were

individuals who have successfully (and consistently) re-

ported to have quit smoking cigarettes for at least

3 months prior to the adipose tissue biopsy. Non-smokers

were individuals who never smoked according to the lon-

gitudinal questionnaire records. Other phenotypes such as

age, body mass index (BMI), and alcohol consumption

were also collected during the clinical visit. The alcohol

consumption data were obtained by questionnaires, and

subjects were asked about the quantity (mL) and beverage

types (beer, cider, lager, wine, spirits) drank per week. We

then summarized the total alcohol intake as units per

week and then converted to grams/day (one unit of alco-

hol in the UK is defined as 7.9 g [77]). Adiposity pheno-

types, such as total fat mass (TFM), visceral fat mass

(VFM), and android-to-gynoid ratio (AGR) were mea-

sured by DEXA scan.
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Some participants have regular clinical research visits,

approximately every 2 years. To study the weight gain

after smoking cessation, we used phenotype information

for VFM collected at two time points: the first time

point is the date nearest to the adipose tissue collection

date, and the second time point is the most recent clin-

ical research visit of the subject where VFM data were

collected. The time between longitudinal clinical re-

search visits used in this study ranged between 3 and

7 years with a mean of 5.1 ± 0.70.

Genome-wide DNA methylation profiles

The Infinium HumanMethylation450 BeadChip (Illumina

Inc., San Diego, CA) was used to measure DNA methyla-

tion in both adipose and blood samples. Details of experi-

mental approaches have been previously described [72, 78].

At each probe, the methylation levels are characterized as

a finite bounded quantitative trait ranging between 0 and

1, and represented as beta values. To overcome biases

caused by the two Illumina probe types and two-color

channels [79], we performed the beta mixture quantile

dilation (BMIQ) method [80] and background correction

for each sample. DNA methylation probes that mapped

incorrectly or to multiple locations in the reference se-

quence were removed. Probes with more than 1% of sub-

jects with detection P value > 0.05 were also removed. All

the probes have non-missing values in blood samples and

less than 1% missing subjects in adipose samples. Probes

located on chromosomes X and Y were removed from the

analysis. To check for sample swaps, we compared 65 sin-

gle nucleotide polymorphism (SNP) markers that featured

as control probes on the array to genotypes for each sub-

ject and removed subjects with incomparable genotypes.

Because methylation levels on the majority of probes do

not follow the normal distribution, which might violate

the regression assumption for downstream analysis, we

normalized the methylation levels to N(0,1) prior to ana-

lysis. For all the other methylation datasets (USA adipose,

Finnish adipose, lung cancer tissues, TwinsUK skin sam-

ples, and TwinsUK blood samples), we performed exactly

the same quality control steps for data cleaning and

normalization prior to the analysis.

RNA-sequencing data

The twin adipose RNA-seq data and quality control have

been previously described [81, 82]. Briefly, sequenced

paired-end reads (49 bp) were mapped to the human

genome (GRCh37) by Burrows-Wheeler aligner (BWA)

software v0.5.9 [83], then genes were annotated as de-

fined by protein coding in GENCODE v10 [84]. Samples

were excluded if they failed during library preparation or

sequencing. Samples were only considered to have good

quality if more than 10 million reads were sequenced

and mapped to exons. Gene expression levels were

quantified per gene, estimated as RPKM values (reads

per kilobase of transcript per million mapped reads) and

rank normal transformed prior to analysis. The genotype

of each subject was used for identity checks in case of

sample swaps. After removing genes located on chromo-

somes X and Y, and non-coding transcripts, 17,399

genes were included in the gene expression analysis for

adipose tissues and blood samples.

Genotype data

Genotypes were available for all subjects in study. Geno-

typing of the larger TwinsUK dataset was performed

using HumanHap300, HumanHap610Q, HumanHap1M

Duo, and HumanHap1.2M Duo 1M arrays. Imputation

was done in two datasets separately and subsequently

merged with GTOOL. Genotype data were pre-phased

using IMPUTE2 without a reference panel, then using

the resulting haplotypes to perform fast imputation from

1000 Genome phase1 dataset [85, 86]. We used 1000

Genomes Phase I (interim) as reference set, based on a

sequence data freeze from 23 Nov 2010; the phased hap-

lotypes were released Jun 2011. After imputation, SNPs

were filtered at a MAF > 5%. Genotypes were used for

identification of meQTLs and eQTLs in the 542 adipose

samples.

Statistical analysis

Differential methylation and expression analyses

Principal component analysis (PCA) was used to identify

potential batch effects and covariates to be included in the

statistical model for both methylation and gene expression

adipose data. To identify the adipose methylation differ-

ences between current smokers and non-smokers, a linear

mixed effect regression model (LMER) was applied adjust-

ing for batch effects (plate, position on the plate, bisulfite

conversion levels, and bisulfite conversion efficiency), age,

BMI, alcohol consumption, family and zygosity structure.

In the blood, the methylation differences between current

smokers and non-smokers were tested adjusting for batch

effects (plate and position on the plate), age, BMI, alcohol

consumption, and seven predicted cell count estimates

(plasma blast, CD8pCd28nCD45Ran, CD8 naïve, CD4T,

NK, monocytes, and granulocytes), family and zygosity

structure. Blood cell counts were calculated using the

Horvath online calculator [87]. A linear mixed effect re-

gression model was applied as the data contained MZ and

DZ twins. Family structure and zygosity were included as

random effect terms, while all the other covariates were

included as fixed effect terms. Similarly, in the RNA-seq

data analysis, the adipose and blood expression differences

between current smokers and non-smokers were exam-

ined using LMER adjusting for age, BMI, alcohol con-

sumption (grams/day), GC mean, primer index, clinic visit

date, family structure, and zygosity. Family structure,
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zygosity, primer index, and clinic visit date were taken as

random effect, and all the other covariates were included

as fixed terms. For each CpG site or gene, a full model

that regressed all of the covariates was compared to a null

model that excluded smoking status. The models were

compared using the ANOVA F statistic. A genome-wide

significance level was set at 1% false discovery rate for all

analyses.

In order to account for mixtures of cell types in adipose

tissue, we performed a EWAS using the reference-free ap-

proach proposed by Houseman et al. [32]. The method is

similar to surrogate variable analysis (SVA) and inde-

pendent surrogate variable analysis (ISVA), which is

used to adjust for technical errors (e.g., batch effect)

and confounders. In addition, the reference-free ap-

proach also includes a bootstrap step to account for the

correlation in the structure of standard errors. Using

this approach, we can estimate direct epigenetic effects

that account for cell compositions and use bootstrap-based

P values to assess their significance. Due to the limitation

that the reference-free approach can currently only be ap-

plied to datasets of unrelated individuals, we used 251 unre-

lated individuals from the original 542 twins and compared

the top results between two EWASs.

To identify tissue-shared smoking differentially meth-

ylated signals across adipose and whole blood datasets,

we compared the genome-wide FDR 1% signals across

adipose and whole blood DNA methylation analyses. In

whole blood samples, we tested for association between

smoking status and DNA methylation levels at 452,874

CpG sites in 86 current and 481 non-smokers in blood.

We compared the FDR 1% adipose DMS to 2782 CpG

sites that were associated with smoking in blood at

FDR 1% (P = 1.14 × 10−5). To further explore tissue spe-

cificity in other tissues, we explored the 14 tissue-

shared smoking-DMS identified in both adipose and

blood samples. We used previously published datasets

of 196 cancer-free female subjects with skin tissue biop-

sies [34] and a lung cancer DNA methylation dataset

[76], applying a Bonferroni-adjusted P value of 3.6 × 10−4

as the significance threshold.

Receiver operative curve (ROC) analysis

We tested several models for predicting smoking status

based on the different combinations of the adipose

smoking-DMS and smoking-DES. The sensitivity and

specificity of these prediction models were calculated

using receiver operative curve (ROC). The ROC analysis

was performed in R using the “pROC” package [88] with

the “lme” function for logistic regression, where outcomes

are categorized as current smokers and non-smokers. We

then used the “predict” function to predict the expected

probabilities under different combinations of predicting

factors (methylation levels of 14 CpG sites and expression

levels at five genes), and the “roc” function to predict

the sensitivity and specificity and draw the area under

the curve. We selected 27 current smokers and 145

non-smokers as a training set to construct a logistic

model for smoking status classification, and then used

the remaining set of 173 subjects (27 current smokers)

as a validation set, in which we obtained the AUC values.

We repeated this procedure 1000 times and report the

average AUC values across 1000 validation sets.

Smoking cessation analyses

We quantified “reversal” time by estimating the time (in

smoking-quit years) required for ex-smokers to revert to

25% of the change in methylation towards non-smokers.

We first calculate the difference between methylation

levels in current smokers and those in non-smokers

and use 25% change of that difference as a “reversal”

threshold. For example, at cg05575921 in AHRR, the

median level of methylation residual is − 0.234 in

current smokers and 0.037 in non-smokers, resulting in

a 0.271 methylation change. Therefore, ex-smokers who

reached methylation levels of − 0.031 were classified as

subjects who “reversed”. We quantified the proportion

of subjects who reversed within different quit years. For

example, at cg05575921, 6 ex-smokers quit in less than

1 year, but only one had methylation reverting to 25%

of the methylation change towards non-smokers; there-

fore, the reversal rate was 16.7%. We quantified reversal

at the gene expression level using the same approach.

Methylation QTL (meQTL) analyses

Genome-wide meQTL analyses were performed testing

for the association between common genetic variants

and DNA methylation at CpG sites in the two adipose

tissue samples. We only considered SNPs that were sig-

nificantly associated with DNA methylation in cis to be

meQTLs. If multiple SNPs were identified for a single

CpG site, we reported only the most significant SNP per

CpG site (P = 5 × 10−5, as described in Grundberg et al.

[72]). In total, methylation levels of 102,461 CpG sites

were associated with genetic factors in cis, and 25,531

sites in trans.

We tested for adipose tissue meQTLs first by fitting a

LME model regressed all the identified covariates, then

performed a linear regression of the residuals on the

SNPs using the MatrixeQTL R package [89]. Results

from meQTL analyses are presented at a P value of 10−5

for the smoking-DMS, the smoking-DES, and at the

smoking GWAS genetic variants. For meQTL analyses

replicating the results from Loukola et al. [43], we ap-

plied a different threshold. Loukola et al. [43] conducted

a genome-wide association study of nicotine metabolite

ratio, identifying many strongly associated SNPs in a

4.2-Mb region on chromosome 19q13. Among the 158
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CpG sites within that region, 16 CpG sites showed sta-

tistically significant association with 173 SNPs. We com-

pared our meQTL findings to those from Loukola et al.

[43] at a modified Bonferroni significance threshold of

1.81 × 10−5 (= 0.05/(16 × 173)) and identified SNPs that

influence methylation levels at 5 CpG sites (in CYP2A7,

ENGL2, and LTBP4 genes) (Additional file 2: Table S5).

Correlations between methylation and gene expression

levels

We compared the 542 subjects’ adipose methylation and

gene expression levels at the five overlapping genes iden-

tified in the two genome-wide association analyses. Both

the methylation and expression data were first adjusted

for covariates, and Spearman’s correlation test was then

performed on the residuals.

Metabolic disease risk phenotype analyses

We studied the impacts of smoking methylation signals

on obesity and metabolic phenotypes. We explored 288 adi-

pose subjects (42 current smokers and 246 non-smokers,

mean BMI = 26.70 ± 4.62) who had available DEXA profiles

at or within up to 1 year of the adipose tissue biopsy. We

compared the association between DNA methylation and

the adiposity phenotypes, such as visceral fat mass (VFM),

total fat mass (TFM), and android-to-gynoid fat ratio

(AGR). Analyses were carried out at the 42 smoking-DMS

using a linear regression model adjusting for BMI, age,

and smoking status. A significance level was set at a

Bonferroni-adjusted threshold of P = 5.7 × 10−4. We

used a similar approach to test for phenotype associa-

tions with the 42 smoking-DES.

To further investigate the effect of 42 smoking-DMS

and 42 smoking-DES on weight gain after smoking ces-

sation, the adiposity phenotype differences were ob-

tained at two time points in a reduced sample size of

248 subjects. Depending on a subjects’ smoking behavior

at the two time points, we categorized subjects into five

categories: current smokers at the two time points (con-

stant smokers, S-S, n = 12), current smokers at time

point 1 who quit smoking by time point 2 (S-E, n = 5),

ex-smokers (who quit smoking within 1–5 years) at time

point 1 who remain ex-smokers at time point 2 (E1-E5,

n = 13), ex-smokers who quit > 5 years at time point 1

who remain ex-smokers at time point 2 (E5+, n = 92),

and non-smokers at both time points (never smokers,

N-N, n = 124). We then calculated the phenotype differ-

ences (phenotype at time point 2 minus phenotypes at

time point 1) for each subject and correlated this differ-

ences to their adipose methylation (42 smoking-DMS)

and gene expression levels (42 smoking-DES).

We used the R statistical software (https://www.r-projec-

t.org/) for all analyses and figures, and the regional plots

were generated using the coMET package [90].

Additional files

Additional file 1: Figure S1. Scatterplot of correlations between EWAS

-log10P-values from the linear mixed effect model used in the current study

adipose discovery sample (y-axis) and results from Reference-free EWAS

approach proposed by Houseman et al. (x-axis) [32]. Figure S2. Smoking

cessation and adipose DNA methylation profiles. DNA methylation levels at

the 42 smoking-DMS and smoking status in 542 adipose samples. Subject

groups include current smoker, subjects who quit smoking within one year,

subjects who quit between 1 to 5 years, subjects who quit smoking more

than 5 years, and subjects who never smoked. Fourteen CpG sites located

in genes with both smoking-DMS and smoking-DES are denoted with

asterisks. Figure S3. Smoking cessation and adipose gene expression

profiles. Gene expression levels at the 42 smoking-DES and smoking

status in 542 adipose samples. Subject groups include current smoker,

subjects who quit smoking within one year, subjects who quit between

1 to 5 years, subjects who quit smoking more than 5 years, and subjects who

never smoked. Five genes with both smoking-DMS and smoking-DES are

denoted with asterisks. Figure S4. Association between DNA methylation

levels at the 42 smoking-DMS and future change in visceral fat mass (VFM) in

18 (red solid dots) and 228 subjects (gray hollow dots). Figure S5. Association

between gene expression levels at the 42 smoking-DES and future change in

visceral fat mass (VFM) in 18 (blue solid dots) and 228 subjects (gray

hollow dots). (PDF 1411 kb)

Additional file 2: Table S1. Four smoking-induced differentially

methylated and expressed genes in blood samples. Table S2. Validation

of 14 tissue-shared smoking-DMS across four sample types. Table S3.

Replication of the 42 smoking-DMS in the LEAP cohort [39] with 104 current

smokers and non-smokers. Table S4. Previously-identified smoking genetic

variants and their impacts on DNA methylation and gene expression in

adipose tissue. Table S5. DNA methylation QTL (meQTLs) analyses at the

chromosome 19 region from Loukola et al. [43], showing replication in

TwinsUK adipose tissue samples. Table S6. Characteristics of TwinsUK

(adipose tissue, blood samples, and skin tissue [34]), Finnish cohort [74, 75],

LEAP cohort [39], and lung cancer [76] samples. (XLSX 43 kb)
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