
ARTICLE

Smoking is significantly associated with increased
risk of COVID-19 and other respiratory infections
Daniel B. Rosoff1,2,3, Joyce Yoo1,3 & Falk W. Lohoff 1✉

Observational studies suggest smoking, cannabis use, alcohol consumption, and substance

use disorders (SUDs) may impact risk for respiratory infections, including coronavirus 2019

(COVID-2019). However, causal inference is challenging due to comorbid substance use.

Using summary-level European ancestry data (>1.7 million participants), we performed

single-variable and multivariable Mendelian randomization (MR) to evaluate relationships

between substance use behaviors, COVID-19 and other respiratory infections. Genetic lia-

bility for smoking demonstrated the strongest associations with COVID-19 infection risk,

including the risk for very severe respiratory confirmed COVID-19 (odds ratio (OR)= 2.69,

95% CI, 1.42, 5.10, P-value= 0.002), and COVID-19 infections requiring hospitalization

(OR= 3.49, 95% CI, 2.23, 5.44, P-value= 3.74 × 10−8); these associations generally

remained robust in models accounting for other substance use and cardiometabolic risk

factors. Smoking was also strongly associated with increased risk of other respiratory

infections, including asthma-related pneumonia/sepsis (OR= 3.64, 95% CI, 2.16, 6.11,

P-value= 1.07 × 10−6), chronic lower respiratory diseases (OR= 2.29, 95% CI, 1.80, 2.91,

P-value= 1.69 × 10−11), and bacterial pneumonia (OR= 2.14, 95% CI, 1.42, 3.24, P-value=
2.84 × 10−4). We provide strong genetic evidence showing smoking increases the risk for

COVID-19 and other respiratory infections even after accounting for other substance use

behaviors and cardiometabolic diseases, which suggests that prevention programs aimed at

reducing smoking may be important for the COVID-19 pandemic and have substantial public

health benefits.
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S ince the first reported cases in Wuhan, China in December
20191, coronavirus disease 2019 (COVID-19) has subse-
quently affected more than 200 countries and continues to

be a global pandemic of substantial worldwide morbidity and
mortality2,3. More broadly, upper and lower respiratory infections
(URIs and LRIs, respectively) and other respiratory diseases (i.e.,
asthma, chronic obstructive pulmonary disease (COPD), etc.) are
leading causes of yearly worldwide morbidity and mortality4,5.
For example, the Global Burden of Disease Study estimated that
LRIs caused more than two million deaths globally in 20164,
while approximately 2.3 million people died from COPD in
20155. Respiratory infection and diseases are also a large eco-
nomic burden: URIs result in more than 40 million missed days
of school and work per year6.

Substance use (tobacco smoking, cannabis use, and alcohol
consumption) are risk factors linked with adverse lung and
respiratory outcomes7–9. For example, observational data has
shown chronic heavy alcohol consumption to be associated with
increased risk for pneumonia7 and acute respiratory distress
syndrome10, while cannabis smoke has been shown to contain
many of the same toxins and irritants as smoke derived from
tobacco11, but may differ from tobacco in its association with
bronchitis and other respiratory infections12. In addition, it has
been suggested that chronic alcohol abuse may compromise the
ability of immune cells to destroy bacteria in the lungs, which
may result in an increased vulnerability to respiratory infections
like pneumonia and tuberculosis13.

Paralleling the COVID-19 pandemic have been increases in
substance use14, which combined with data showing approxi-
mately 10.8% of US adults suffering from a substance use disorder
(SUD)15 and recent work using electronic health records (EHRs)
to show that individuals with a SUD are at increased risk for
COVID-1916, suggest identifying potential causal relationships
between substance use, SUD and respiratory infectious diseases
would have substantial public health benefits.

However, observational studies cannot be used to reliably
identify causality due to limitations such as residual confounding
and reverse causality17. For example, outcomes reached from
observational studies may be subject to unmeasured confounders
like comorbid disorders or underlying genetic differences that
may lead to biased estimates, and consequently, may not reflect
true causal relationships18,19. While randomized controlled trials
(RCTs) are considered the “gold standard”, RCTs can be both
unethical and impractical20,21. Constructing an RCT to examine
the effect of substance use on respiratory infection risk may be
further complicated by other existing comorbidities.

Mendelian randomization (MR) is a genetic approach that uses
genetic variants as instrumental variables to explore causal rela-
tions between exposures (e.g., alcohol consumption, tobacco
smoking, cannabis use) and health outcomes (e.g., respiratory
infections and diseases). This technique takes publicly available
genome wide association studies to screen for suitable genetic
instrumental variables, which allows researchers to perform MR
studies without the need to recruit new patients22. Because
germline variants are randomly assorted at meiosis, MR may be
considered conceptually equivalent to RCTs, though a more
naturalized version19,22. More specifically, given genetic instru-
ments cannot be influenced by other confounders (i.e., lifestyle, or
environmental factors), MR studies, are in theory, less susceptible
to confounding or reverse causality than traditional observational
studies23. Therefore, MR is an important analytical approach to
strengthen causal inference when RCTs are challenging due to
methodological or ethical constraints24. Given the potential for
confounding and limited causal inference derived from observa-
tional data, we used large, publicly available genome-wide asso-
ciation study (GWAS) data and two-sample MR methods to

evaluate the relationships between substance use, substance use
disorders (cannabis use disorder (CUD) and alcohol use disorder
(AUD)) and respiratory infection and disease outcomes. Finding
the genetic liability for smoking increases the risk for COVID-19
and several other respiratory infections, even after accounting for
other substance use behaviors builds upon recent literature
identifying modifiable risk factors for COVID-19 risk9,25,26, and
also may inform research and clinical practice given the recent
increase in substance use, abuse, and use disorders paralleling the
COVID-19 pandemic14.

Results
Associations of substance use and SUDs with COVID-19
infection risk. COVID-19 results comparing SVMR and MVMR
results are presented in Table 1. Supplementary Data 8–12 pre-
sent the full COVID-19 results. Broadly, among all substance use
exposures, the genetic liability for lifetime tobacco smoking
consistently demonstrated the strongest associations with
COVID-19 infection risk, including the risk for very severe
respiratory confirmed COVID-19 (SVMR odds ratio (OR)= 2.69,
95% CI, 1.42, 5.10, P-value = 0.002), and also the risk for
COVID-19 infection requiring hospitalization (hospitalized
COVID-19 vs population: SVMR odds ratio (OR)= 3.49, 95% CI,
2.23, 5.44, P-value = 3.74 × 10−8; MVMR accounting for sub-
stance use disorders OR= 3.61, 95% CI, 2.19, 5.95, P-value =
4.92 × 10−7; and hospitalized vs not hospitalized COVID-19:
SVMR OR= 3.44, 95% CI, 1.72, 6.87, P-value = 4.60 × 10−4;
MVMR OR= 3.61, 95% CI, 1.63, 8.01, P-value = 0.002) (Table 1;
Supplementary Data 8, 10, and 11). This association remained
robust in secondary sensitivity analyses excluding UK Biobank
participants in the COVID-19 outcome GWAS, but with reduced
precision (hospitalized COVID-19 vs population: SVMR OR=
2.42,95% CI, 1.46, 4.01, P-value = 6.09 × 10−4; MVMR OR=
2.62, 95% CI, 1.46, 4.71, P-value = 0.001; and hospitalized vs not
hospitalized COVID-19: SVMR OR= 3.27, 95% CI, 1.15, 9.33, P-
value = 0.03; MVMR OR= 4.84, 95% CI, 1.46, 15.39, P-value =
0.008) (Supplementary Data 8, 10, and 11). Importantly, these
associations were consistent across complementary SVMR and
MVMR methods, including single variable GSMR (Supplemen-
tary Data 8, 10, and 11). Leave-one-out analyses highlight var-
iants with heterogeneous causal effects that would be flagged as
invalid by MR PRESSO and MV MR Lasso and removed for
outlier corrected results (Supplementary Data 9).

Given the strong associations of lifetime tobacco smoking and
COVID-19 risk, we further evaluated robustness by performing
MVMR analyses accounting for cardiometabolic disorders (CAD,
T2D, and obesity) previously reported as risk factors for COVID-
19 risk27–29. Genetic liability for lifetime tobacco smoking
generally remained associated with increased risk for COVID-
19 hospitalization (e.g., accounting for CAD, hospitalized
COVID-19 vs. population: MVMR OR= 3.18, 95% CI, 2.06,
4.92, P-value = 1.80 × 10−7; accounting for Type 2 diabetes,
MVMR OR= 4.16, 95% CI, 2.51, 6.92, P-value = 3.76 × 10−8;
accounting for obesity, MVMR OR= 3.75, 95% CI, 2.25, 6.25,
P-value = 4.01 × 10−7) (Supplementary Data 12).

Associations of substance use and SUDs with other respiratory
infectious disease risk. We further assessed the genetic rela-
tionships between substance use and respiratory infections.
Tables 2 and 3 compares SVMR and MVMR results for asthma-
related respiratory infections, bronchitis, and the common cold;
Tables 4 and 5 compares SVMR and MVMR results for influenza
and pneumonias. Supplementary Data 13–17 contain the full
FinnGen results.
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As with COVID-19 infection risk results, we found that the
genetic liability of lifetime tobacco smoking was the substance use
risk factor with the strongest associations, including results that
were robust in MVMR models. Tobacco smoking, for example,
was associated with increased risk of asthma-related infections
and asthma-related pneumonia/sepsis (SVMR OR= 2.52, 95%
CI, 1.59, 3.97, P-value = 7.29 × 10−7; accounting for substance
use disorders, MVMR OR= 3.64, 95% CI, 2.16, 6.11, P-value =
1.07 × 10−6), but for neither bronchitis nor the common cold
(Table 3; Supplementary Data 13–15). Tobacco smoking was also
associated with chronic lower respiratory diseases (SVMR
OR= 2.23, 95% CI, 1.73, 2.87, P-value = 5.69 × 10−10; MVMR
OR= 2.29, 95% CI, 1.80, 2.91, P-value = 1.69 × 10−11) and
several pneumonia-related outcomes, including bacterial pneu-
monia (SVMR OR= 2.22, 95% CI, 1.57, 3.15, P-value =
7.32 × 10−6; MVMR OR= 2.14, 95% CI, 1.42, 3.24, P-value =
2.84 × 10−4) (Table 5, Supplementary Data 13–15).

As with the smoking-COVID-19 findings, we tested robustness
of the smoking-respiratory infection risk results using additional
MVMR models that accounted for cardiometabolic disorders
(CAD, T2D, and obesity) with evidence for an impact on
respiratory infection risk30–32. Our smoking-related results were
broadly robust to inclusion of cardiometabolic confounders
(Supplementary Data 16). These associations were generally
consistent across complementary SVMR and MVMR methods,
including single variable GSMR (Supplementary Data 13–16).
Leave-one-out analyses again highlight variants with heteroge-
neous causal effects that would be flagged as invalid by MR

PRESSO and MV MR Lasso and removed for outlier corrected
results (Supplementary Data 17).

Discussion
Using large summary-level GWAS data and complementary two-
sample MR methods, we show that the genetic liability for
tobacco smoking has potential causal relationships with several
respiratory infection and disease outcomes, including COVID-19.
These tobacco smoking-respiratory findings were supported by
multivariable MR analyses accounting for alcohol and cannabis
use and abuse, which in addition to the broadly consistent IVW
results (within the IVW MR 95% confidence interval but typically
less precise) with estimates from the weighted median, weighted
mode, and MR Egger sensitivity analyses strengthen causal
inference. Further, in single variable MR, we identify potential
adverse impacts of CUD on lower respiratory infections, the
common cold, and several asthma-related infections, suggesting
evidence for a dose-dependent impact of cannabis use where
heavy cannabis use may be harmful to the respiratory system. In
parallel, we find little evidence for an alcohol-respiratory infection
relationship suggesting that previous observational data may be
due to confounding.

Our COVID-19 results extend recent MR studies showing
adverse effects of smoking on COVID-19 risk by accounting for
highly comorbid alcohol consumption, cannabis use, and SUDs,
which when combined with reports suggesting smoking intensi-
fies the severity of COVID-19 symptoms33,34, the risk for being

Table 1 Single variable and multivariable MR results of the genetic liability of alcohol, cannabis and lifetime smoking exposures
on COVID-19 outcomes.

Single-variable MR Multivariable MR

N SNPs OR 95%
CI Lower

95%
CI Upper

P-value N SNPs MV OR 95%
CI Lower

95%
CI Upper

P-value

Very severe respiratory confirmed
COVID-19 vs. population
Tobacco smoking 91 2.69 1.42 5.10 0.002 111 2.72 1.27 5.82 0.010
Cannabis use 28 1.17 0.92 1.50 0.207 114 1.03 0.76 2.80 0.856
CUD 22 0.97 0.82 1.15 0.748 111 1.02 0.86 1.22 0.805
Drinks per week 22 1.39 0.52 3.74 0.511 114 0.83 0.33 2.30 0.698
AUD 9 0.91 0.75 1.11 0.344 111 0.95 0.82 1.09 0.442
Hospitalized COVID-19 vs. not
hospitalized COVID-19
Tobacco smoking 91 3.44 1.72 6.87 4.60E−04 111 3.61 1.63 8.01 0.002
Cannabis use 28 0.87 0.68 1.11 0.270 114 1.02 0.77 2.78 0.883
CUD 21 1.07 0.91 1.25 0.404 111 1.04 0.87 1.25 0.627
Drinks per week 21 0.69 0.27 1.76 0.432 114 0.37 0.15 1.45 0.034
AUD 9 0.83 0.69 0.99 0.035 111 0.94 0.81 1.10 0.451
Hospitalized COVID-19 vs. population
Tobacco smoking 91 3.49 2.23 5.44 3.74E−08 111 3.61 2.19 5.95 4.92E−07
Cannabis use 28 0.99 0.85 1.16 0.887 114 1.00 0.83 2.73 0.964
CUD 21 0.99 0.90 1.10 0.871 111 1.01 0.90 1.13 0.915
Drinks per week 21 1.01 0.57 1.81 0.964 114 0.59 0.32 1.80 0.079
AUD 8 0.94 0.82 1.08 0.375 111 0.98 0.89 1.07 0.633
COVID-19 vs. population
Tobacco smoking 91 1.21 0.97 1.52 0.095 111 1.25 0.95 1.64 0.104
Cannabis use 28 1.11 1.02 1.21 0.022 114 1.04 0.95 2.83 0.404
CUD 21 0.98 0.93 1.03 0.436 111 0.98 0.92 1.04 0.411
Drinks per week 21 1.09 0.81 1.47 0.565 114 0.93 0.68 2.52 0.622
AUD 8 1.08 1.00 1.16 0.039 111 1.03 0.98 1.08 0.310

Notes: Results from two sample SVMR inverse-variance weighted MR analysis; outliers identified by MR PRESSO global test and, for MVMR, MV MR Lasso penalization were removed; estimated
associations reported as odds ratios with 95% confidence intervals. Boldface indicates statistical significance after correction for multiple comparisons (P < 0.0025). Genetic instruments selected from
five GWASs, selection threshold P < 5 × 10−8 or P < 5 × 10−6 (CUD and AUD), clumped at linkage disequilibrium (LD) r2= 0.001 (10 000 kilobase pair window); N SNPs differs across outcomes
depending on number of genetic instruments found in outcome GWASs. CUD cannabis use disorder, AUD alcohol use disorder, COVID-19 coronavirus 2019,MRMendelian randomization, GWAS genome
wide association study, N SNPs number of single-nucleotide polymorphism (genetic instruments), OR odds ratio, CI confidence interval.
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admitted to an intensive care unit or requiring ventilation34, and
recent transcriptomics-based work showing that smoking may
increase the expression of angiotensin converting enzyme 2
(ACE2), the putative receptor for severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) (the virus that causes
COVID-19)35, suggests smoking may be an important modifiable
risk factor for COVID-19 risk.

Our genetics-based findings support and extend the observa-
tional literature identifying tobacco smoking as a risk factor for
respiratory infection and diseases9,25,26, and add to the recent MR
literature identifying potential causal links of smoking with
reduced lung function36, lung cancer37, and increased mortality
due to respiratory disease38. Potential mechanisms by which
smoking increases respiratory infection risk include structural
changes to the respiratory tract and a dysregulated cellular and
humoral immune response, including peribronchiolar inflam-
mation, decreased levels of circulating immunoglobulins, and
changes to pathogen adherence. For example, smoking has been
shown to stimulate the release of catecholamine and corticos-
teroids, which may, in turn, increase circulating CD8+ lympho-
cytes and suppress the host defense against infections. Notably,
many immunological effects related to smoking may resolve
within six weeks of smoking cessation, which suggests that
smoking cessation programs may have an important impact on
reducing respiratory infections.

Regarding cannabis use, while we failed to find evidence of any
relationships, smoking cannabis, like tobacco smoking, may
prompt the onset of coughing, which could consequently increase
viral transmission, or may possibly exacerbate respiratory
symptoms.

As cannabis is the most used drug worldwide—an estimated
188 million recreational users worldwide—this aspect of cannabis
use may have important implications for the spread of COVID-
19. In contrast, the single-variable MR CUD results demonstrated
adverse effects on several respiratory outcomes, but not COPD,
which supports the existing literature39–41; however, accounting
for lifetime tobacco smoking attenuated the CUD results, thus
highlighting the complex nature of these relationships. Further,
habitual cannabis smoking may have several effects on respiratory
and immune systems that may impact respiratory infection sus-
ceptibility. For example, structural abnormalities in alveolar
macrophages and coincident dysregulated cytokine production
and antimicrobial activity have been reported. While our study
provides preliminary genetic evidence suggesting potential causal
relationships between heavy cannabis use and respiratory infec-
tion, additional triangulating lines of evidence (i.e., immune
monitoring studies) are required to further elucidate the CUD-
respiratory infection relationship. However, given that the toxin
and irritant profiles of cannabis and tobacco smoke are similar11,
the direct route of administration via inhalation for these

Table 2 Single variable and multivariable MR results of the genetic liability of alcohol, cannabis and lifetime smoking exposures
on asthma-related respiratory infections.

Outcome Exposure Single-variable MR Multivariable MR

N SNPs OR 95%
CI Lower

95%
CI Upper

P-value N SNPs OR 95%
CI Lower

95%
CI Upper

P-value

Asthma related
acute respiratory
infections

Tobacco smoking 116 2.06 1.39 3.05 3.15E−04 137 2.07 1.31 3.26 0.002
Cannabis Use 35 1.07 0.98 1.16 0.128 142 1.03 0.88 1.22 0.704
CUD 27 1.10 1.03 1.19 0.007 137 1.01 0.92 1.11 0.835
Drinks Per Week 32 0.92 0.56 1.53 0.757 142 1.06 0.65 1.72 0.816
AUD 11 1.04 0.93 1.17 0.456 137 1.01 0.93 1.10 0.826

Asthma related
infections

Tobacco smoking 115 2.31 1.61 3.31 5.69E−06 127 2.15 1.45 3.17 1.21E−04
Cannabis Use 35 1.02 0.94 1.09 0.672 142 1.06 0.91 1.23 0.484
CUD 27 1.08 1.00 1.16 0.040 127 0.98 0.91 1.07 0.662
Drinks Per Week 32 0.94 0.61 1.44 0.773 142 0.96 0.61 1.49 0.845
AUD 11 1.04 0.95 1.13 0.385 127 1.03 0.96 1.10 0.358

Asthma-related
pneumonia

Tobacco smoking 116 2.52 1.59 3.97 7.29E−05 138 3.64 2.16 6.11 1.07E−06
Cannabis Use 36 0.95 0.85 1.06 0.382 136 1.07 0.90 1.27 0.500
CUD 27 1.07 0.98 1.18 0.120 138 0.95 0.85 1.06 0.380
Drinks Per Week 31 1.47 0.83 2.59 0.187 136 1.09 0.61 1.93 0.272
AUD 11 1.09 0.97 1.21 0.132 138 0.99 0.90 1.08 0.755

Asthma-related
pneumonia or
sepsis

Tobacco smoking 116 2.54 1.61 4.02 6.54E−05 138 3.66 2.17 6.16 1.04E−06
Cannabis Use 35 0.96 0.87 1.07 0.472 141 1.08 0.90 1.31 0.401
CUD 27 1.07 0.98 1.18 0.122 138 0.95 0.85 1.07 0.399
Drinks Per Week 32 1.85 1.04 3.26 0.035 141 1.15 0.66 2.00 0.616
AUD 11 1.09 0.97 1.21 0.138 138 0.98 0.89 1.08 0.734

Notes: Results from two sample SVMR inverse-variance weighted MR analysis; outliers identified by MR PRESSO global test and, for MVMR, MV MR Lasso penalization were removed; estimated
associations reported as odds ratios with 95% confidence intervals. Boldface indicates statistical significance after correction for multiple comparisons (P < 0.000714). Genetic instruments selected from
5 GWASs, selection threshold P < 5 × 10−8 or P < 5 × 10−6 (CUD and AUD), clumped at linkage disequilibrium (LD) r2= 0.001 (10 000 kilobase pair window); N SNPs differs across outcomes depending
on number of genetic instruments found in outcome GWASs. CUD cannabis use disorder, AUD alcohol use disorder,MRMendelian randomization, GWAS genome wide association study, N SNPs number
of single-nucleotide polymorphism (genetic instruments), OR odds ratio, CI confidence interval.
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substances could result in dysregulated pulmonary physiology
which may, in turn, increase infection risk.

In contrast to our tobacco smoking findings, we failed to find
genetic evidence of respiratory implications due to alcohol con-
sumption not meeting the threshold of AUD, or binge drinking,

suggesting that previous observational literature may be due to
confounding from other comorbid behaviors—such as smoking—
that may be the true causal risk factors for respiratory infections.
For example, observational and genetic evidence have shown a
strong association between alcohol consumption and smoking. It

Table 3 Single variable and multivariable MR results of the genetic liability of alcohol, cannabis and lifetime smoking exposures
on chronic obstructive pulmonary disorder, bronchitis, and the common cold.

Outcome Exposure Single-variable MR Multivariable MR

N SNPs OR 95%
CI Lower

95%
CI Upper

P-value N SNPs OR 95%
CI Lower

95%
CI Upper

P-value

COPD (Kela code
203)

Tobacco smoking 117 2.08 1.49 2.88 1.35E−05 121 2.07 1.55 2.77 7.34E−07
Cannabis Use 35 1.02 0.96 1.08 0.531 126 1.00 0.91 1.10 0.998
CUD 27 1.03 0.99 1.08 0.178 121 0.98 0.92 1.04 0.440
Drinks Per Week 31 0.76 0.53 1.09 0.130 126 0.84 0.62 1.15 0.099
AUD 11 1.00 0.94 1.06 0.959 121 1.00 0.95 1.05 0.948

Bronchitis
Tobacco smoking 117 1.66 0.75 3.66 0.210 138 1.43 0.58 3.55 0.436
Cannabis Use 36 0.93 0.79 1.10 0.405 142 1.04 0.76 1.40 0.820
CUD 27 1.07 0.90 1.27 0.453 138 1.04 0.85 1.26 0.713
Drinks Per Week 33 1.12 0.44 2.86 0.806 142 1.63 0.66 3.98 0.286
AUD 11 1.03 0.84 1.25 0.783 138 1.09 0.92 1.28 0.325

Acute
nasopharyngitis
(common cold)

Tobacco smoking 117 1.80 0.98 3.32 0.058 138 1.76 0.86 3.59 0.119
Cannabis Use 36 1.01 0.87 1.16 0.941 142 1.15 0.89 1.48 0.273
CUD 27 1.03 0.91 1.17 0.640 138 1.09 0.93 1.27 0.276
Drinks Per Week 33 1.04 0.49 2.21 0.916 142 0.58 0.28 1.24 0.160
AUD 11 0.97 0.82 1.14 0.684 138 0.96 0.85 1.10 0.571

Notes: Results from two sample SVMR inverse-variance weighted MR analysis; outliers identified by MR PRESSO global test and, for MVMR, MV MR Lasso penalization were removed; estimated
associations reported as odds ratios with 95% confidence intervals. Boldface indicates statistical significance after correction for multiple comparisons (P < 0.000714). Genetic instruments selected from
5 GWASs, selection threshold P < 5 × 10−8 or P < 5 × 10−6 (CUD and AUD), clumped at linkage disequilibrium (LD) r2= .001 (10 000 kilobase pair window); N SNPs differs across outcomes depending
on number of genetic instruments found in outcome GWASs. CUD cannabis use disorder, AUD alcohol use disorder, COPD chronic obstructive pulmonary disorder, MR Mendelian randomization, GWAS
genome wide association study, N SNPs number of single-nucleotide polymorphism (genetic instruments), OR odds ratio, CI confidence interval.

Table 4 Single variable and multivariable MR results of the genetic liability of alcohol, cannabis and lifetime smoking exposures
on influenza, chronic lower respiratory diseases, and acute upper respiratory infections.

Outcome Exposure Single-variable MR Multivariable MR

N SNPs OR 95% CI Lower 95% CI Upper P-value N SNPs OR 95% CI Lower 95% CI Upper P-value

Influenza
Tobacco smoking 117 1.70 1.09 2.65 0.019 138 1.71 1.01 2.91 0.048
Cannabis Use 36 1.01 0.91 1.13 0.836 142 1.17 0.97 1.41 0.093
CUD 27 1.03 0.95 1.13 0.455 138 1.01 0.90 1.13 0.891
Drinks Per Week 33 1.16 0.67 1.99 0.599 142 0.74 0.43 1.27 0.276
AUD 11 1.08 0.95 1.24 0.240 138 1.00 0.91 1.10 0.955

Influenza and Pneumonia
Tobacco smoking 116 1.53 1.25 1.87 4.13E−05 138 1.62 1.27 2.05 8.50E−05
Cannabis Use 35 1.01 0.97 1.06 0.587 137 1.05 0.97 1.13 0.261
CUD 27 1.05 1.01 1.09 0.013 138 0.99 0.94 1.04 0.662
Drinks Per Week 33 0.97 0.75 1.25 0.812 137 0.97 0.77 1.22 0.780
AUD 11 1.06 1.01 1.11 0.021 138 1.00 0.96 1.05 0.955

Chronic Lower Respiratory
Diseases

Tobacco smoking 113 2.23 1.73 2.87 5.69E−10 122 2.29 1.80 2.91 1.69E−11
Cannabis Use 35 1.04 0.99 1.09 0.172 121 1.02 0.94 1.10 0.986
CUD 27 1.05 1.01 1.10 0.015 122 1.02 0.97 1.07 0.533
Drinks Per Week 31 0.91 0.69 1.20 0.492 121 0.89 0.68 1.15 0.020
AUD 11 1.00 0.95 1.06 0.906 122 1.01 0.97 1.05 0.678

Acute Upper Respiratory
Infections

Tobacco smoking 116 1.32 1.09 1.61 0.004 130 1.47 1.19 1.82 3.52E−04
Cannabis Use 34 1.02 0.97 1.06 0.484 135 1.06 0.99 1.14 0.115
CUD 27 1.04 1.00 1.09 0.035 130 1.02 0.98 1.07 0.346
Drinks Per Week 33 0.93 0.74 1.18 0.568 135 0.95 0.77 1.18 0.636
AUD 11 0.99 0.95 1.04 0.699 130 0.98 0.95 1.02 0.355

Notes: Results from two sample SVMR inverse-variance weighted MR analysis; outliers identified by MR PRESSO global test and, for MVMR, MV MR Lasso penalization were removed; estimated
associations reported as odds ratios with 95% confidence intervals. Boldface indicates statistical significance after correction for multiple comparisons (P < 0.000714). Genetic instruments selected from
5 GWASs, selection threshold P < 5 × 10−8 or P < 5 × 10−6 (CUD and AUD), clumped at linkage disequilibrium (LD) r2= .001 (10 000 kilobase pair window); N SNPs differs across outcomes depending
on number of genetic instruments found in outcome GWASs. CUD cannabis use disorder, AUD alcohol use disorder,MRMendelian randomization, GWAS genome wide association study, N SNPs number
of single-nucleotide polymorphism (genetic instruments), OR odds ratio, CI confidence interval.
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has been estimated that 85% of smokers consume alcohol42–44

and alcohol drinkers are 75% more likely than abstainers to
smoke45. Therefore, it is possible that the observational study-
based alcohol-respiratory infection links may be due, instead, to
tobacco smoking; however, future work will be needed to confirm
this hypothesis. In addition, it is important to note that our
results should not be interpreted as suggesting that alcohol does
not impact overall lung health and structure, which has been
previously reported7. Further, while we failed to find evidence
that weekly alcohol consumption impacted COVID-19 risk, the
Centers for Disease Control recently showed that dining at on-
site locations, such as restaurants and bars, is associated with
increased COVID-19 risk; since alcohol consumption may lower
inhibition and increase impulsivity, individuals consuming alco-
hol may take social distancing less seriously, and thereby unin-
tentionally spread the SARS-CoV-2 virus.

This study has several strengths including the use of multiple
alcohol consumption and cannabis use variables, which enabled
us to evaluate various dimensions of substance use and abuse and
identify possible causal relationships of substance use disorders
and respiratory outcomes. In addition, our main single variable
analyses included multiple MR methods, each relying on ortho-
gonal assumptions, which provide confidence in robustness of the
results and strengthen causal inference46. Our multivariable two-
sample MR design, the most appropriate design given the strong
correlation between tobacco smoking, alcohol consumption and
cannabis use, yielded estimates that account for these correlated
behaviors for each exposure on COVID-19 risk and other
respiratory outcomes. Another strength is our extension of
MVMR to test the robustness of the main tobacco smoking
findings by incorporating other potential confounders that may
impact infectious disease risk (obesity, cardiovascular disease,
and T2D).

This study also has limitations. A main limitation is the pos-
sibility of collider bias—especially with regards to the COVID-19
datasets47. Collider bias may occur when analyses are controls or
selects the sample based upon a collider variable that is caused by
both the exposure and outcome variables and distorts the true
underlying association48,49. The recent commentaries by Griffith

et al. (2020) and Tattan-Birch et al. (2020) discuss in detail the
potential for collider bias in COVID-19 datasets47,49, and are
important for context when interpreting COVID-19 findings
based upon observational data. For example, an observational
study from early in the COVID-19 pandemic reported an
apparent protective effect of tobacco smoking on COVID-19
risk50; however, as Tattan-Birch et al. discuss, both smoking and
COVID-19 may cause coughing, which, during the COVID-19
pandemic, may increase the likelihood for smokers to be tested
and their subsequent overrepresentation among clinical study
participants testing negative for COVID-1949. As a result, among
samples with COVID-19 tests, smoking may appear to have a
protective effect49. While it is often not possible to ensure the
absence of collider bias47, we aimed to design our study incor-
porating measures that may mitigate its impact. For example, we
used the most recently released version of publicly available
COVID-19 data (from January 18, 2021)51 that may include
participants more representative of the general population com-
pared to samples collected earlier in the COVID-19 pandemic.
Reassuringly, we also found similar smoking effect estimates in
several respiratory-related infection outcomes, which suggests a
broader impact of smoking on the respiratory system that extends
to COVID-19.

In addition, as with all self-reported substance use literature,
these exposures may be either under- or over-reported52. Because
many of the datasets included UK Biobank participants, who are
more educated, lead healthier lifestyles, and have fewer health
problems than the UK population53, this discrepancy may
limit the applicability of our findings to other populations.
Regarding our mainly null alcohol-respiratory infection results, it
is possible that alcohol may have indirect impacts on infection
risk through a modified immune response54, or other system
dysregulations that may modulate infection risk that we were not
able to directly assess using MR. However, like other recent
psychiatric MR studies where the exposure instruments included
a relaxed statistical threshold, our binge drinking and AUD
instruments were comprised of independent SNPs associated
with the respective drinking behavior (i.e., P-value < 5 × 10−6)
for SNP inclusion due to the lack of conventionally GWS SNPs

Table 5 Single variable and multivariable MR results of the genetic liability of alcohol, cannabis and lifetime smoking exposures
on pneumonia risk.

Outcome Exposure Single-variable MR Multivariable MR

N SNPs OR 95% CI Lower 95% CI Upper P-value N SNPs OR 95% CI Lower 95% CI Upper P-value

Bacterial pneumonia
Tobacco smoking 117 2.22 1.57 3.15 7.32E−06 138 2.14 1.42 3.24 2.84E−04
Cannabis Use 36 1.05 0.96 1.15 0.268 142 0.97 0.84 1.12 0.685
CUD 27 1.05 0.98 1.13 0.145 138 1.02 0.93 1.12 0.648
Drinks Per Week 33 1.17 0.72 1.89 0.530 142 1.19 0.78 1.83 0.416
AUD 11 1.04 0.95 1.14 0.426 138 1.01 0.93 1.08 0.892

All Pneumoniae
Tobacco smoking 115 1.52 1.22 1.88 1.34E−04 134 1.46 1.15 1.85 0.002
Cannabis Use 34 1.01 0.96 1.06 0.833 136 1.03 0.95 1.12 0.439
CUD 27 1.05 1.01 1.09 0.014 134 0.98 0.94 1.04 0.544
Drinks Per Week 31 0.97 0.76 1.24 0.814 136 0.96 0.75 1.23 0.750
AUD 11 1.05 1.00 1.11 0.056 134 1.01 0.97 1.05 0.625

Viral Pneumonia
Tobacco smoking 117 1.66 0.53 5.17 0.386 138 1.70 0.44 6.52 0.443
Cannabis Use 36 1.07 0.81 1.41 0.638 142 1.34 0.84 2.15 0.221
CUD 27 1.00 0.78 1.28 0.993 138 0.90 0.67 1.20 0.479
Drinks Per Week 33 2.24 0.60 8.43 0.232 142 1.27 0.32 5.04 0.736
AUD 11 1.13 0.85 1.51 0.409 138 1.09 0.85 1.39 0.501

Notes: Results from two sample SVMR inverse-variance weighted MR analysis; outliers identified by MR PRESSO global test and, for MVMR, MV MR Lasso penalization were removed; estimated
associations reported as odds ratios with 95% confidence intervals. Boldface indicates statistical significance after correction for multiple comparisons (P < 0.000714). Genetic instruments selected from
5 GWASs, selection threshold P < 5 × 10−8 or P < 5 × 10−6 (CUD and AUD), clumped at linkage disequilibrium (LD) r2= .001 (10 000 kilobase pair window); N SNPs differs across outcomes depending
on number of genetic instruments found in outcome GWASs. CUD cannabis use disorder, AUD alcohol use disorder,MRMendelian randomization, GWAS genome wide association study, N SNPs number
of single-nucleotide polymorphism (genetic instruments), OR odds ratio, CI confidence interval.
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(P-value < 5 × 10−8)55,56, which may impact the results. Because
heavy alcohol consumption and AUD have been previously
linked with acute respiratory distress syndrome10—one of the
most severe complications of COVID-19—future studies should
re-evaluate the links between heavy alcohol consumption and
AUD when better powered GWAS data become available.

Further, the included samples were comprised of primarily
white individuals of European ancestry, and research has shown
strong racial, ethnic, and socioeconomic disparities in COVID-19
risk and severity57–59. Therefore, we caution the generalization of
these findings and urge future work to investigate these rela-
tionships using a genetics-based approach in other populations
when the data become available. Another limitation is the overlap
of the UKB participants between the alcohol consumption, life-
time smoking, and COVID-19 outcomes, which may bias
resulting estimates60. However, potential bias would likely be
minimal60, and it has also been shown that two-sample MR may
be used in single samples provided the data is derived from large
biobanks, i.e., the UKB, FinnGen, etc61. Also, results were largely
unchanged when we performed analyses using the COVID-19
endpoints excluding UKB participants suggesting minimal bias.

In conclusion, our data provide genetic evidence of adverse
relationships between smoking and many respiratory-related
disease outcomes ranging from the common cold to severe
COVID-19, which suggests prevention programs aimed at
smoking cessation and prevention may have public health and
clinical benefits.

Methods
Data sources and genetic instruments. Summary-level data for both modifiable
risk factor instrument and infectious disease outcome data were derived from
publicly available GWASs in populations of predominantly European ancestry
(Fig. 1; Table 6; Supplementary Data 1). All GWASs have existing ethical per-
missions from their respective institutional review boards and include participant
informed consent with rigorous quality control. For this study, we included all
exposure SNPs associated at conventional genome-wide significance (GWAS)
P < 5 × 10−8 for smoking, alcohol and cannabis use, and 5 × 10−6 for AUD and
CUD due to the relatively low number of SNPs at GWS, clumped at linkage
disequilibrium (LD) r2= 0.001 and a distance of 10,000 kb, using reference samples
comprised of participants of European ancestry 62.

Tobacco smoking. We included lifetime smoking instruments from the recent
GWAS of a lifetime smoking index/score (which combined smoking initiation,
duration, heaviness and cessation), conducted in a sample of 462 690 current,
former and never smokers in the UKB (mean score value 0.359 (standard deviation
(SD)= 0.694); sample: 54% female, mean age 56.7 years, 54% never smokers, 36%
former smokers, and 11% current smokers63,64. (An SD increase in lifetime
smoking index score would be equivalent to smoking 20 cigarettes per day for 15
years and stopping 17 years previously or 60 cigarettes per day for 13 years and
stopping 22 years previously)63 (Supplementary Data 2).

Cannabis use. We included two cannabis-related instrument sets: cannabis use
and CUD. Summary statistics for lifetime cannabis use (a yes/no variable of
whether participants reported using cannabis during their lifetime) were obtained
from the PGC meta-analysis GWAS of 3 cohorts (International Cannabis Con-
sortium (35,297 respondents, 55.5 percent female, ages 16–87, mean 35.7 years;
42.8 percent had used cannabis); UKB (126 785 respondents, 56.3 percent female,
ages 39–72, mean age 55.0 years, 22.3 percent had used cannabis); and 23andMe
(22,683 respondents, 55.3 percent female, ages 18–94, mean age 54.0 years, 43.2%
had used cannabis))65,66. CUD instruments were obtained from a recent PGC
meta-analysis of three cohorts of predominantly European ancestry (PGC, Lund-
beck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), and
deCODE cohorts, excluding related individuals from PGC family-based cohorts;
demographics not available), including 14,808 cases of cannabis abuse or depen-
dence defined as meeting DSM-IIIR, DSM-IV, DSM-5, or ICD10 codes (depending
on study cohort) criteria; the 358 534 controls were defined as anyone not meeting
the criteria67,68 (Supplementary Data 3).

Alcohol consumption. We included two instrument sets related to alcohol use:
drinks per week69, and AUD. Drinks per week instruments were obtained from the
GSCAN GWAS meta-analysis of 29 cohorts (941 280 individuals; demographics
not available) of predominantly white European ancestry69,70. Given the varied
cohort methods used to measure alcohol consumption (binned, normalized, etc.),
the data was log transformed: thus, the effect estimate is measured in log trans-
formed drinks per week69 (Supplementary Data 4). For the AUD instrument set,
we used the Psychiatric Genomics Consortium (PGC) GWAS meta-analysis of 28
cohorts (51.6% female, 8485 cases, 20,657 controls) of predominantly European
ancestry71,72. AUD was diagnosed by either clinician rating or semi-structured
interview using DSM-IV criteria including the presence of at least three of seven
alcohol-related symptoms (withdrawal, drinking larger amounts/drinking for
longer time, tolerance, desire or attempts to cut down drinking, giving up
important activities to drink, time related to drinking, or continued alcohol con-
sumption despite psychological and/or physical problems)73 (Supplementary
Data 4).

For the multivariable MR (MVMR) analyses, we concatenated independent
instrument sets for alcohol use, cannabis use and lifetime smoking, and also AUD,
CUD, and lifetime smoking, clumping the resulting two multivariable (MV)

Fig. 1 Study overview. Abbreviations: SNP: single nucleotide polymorphism; COVID-19: coronavirus disease 2019; COPD: Chronic obstructive pulmonary
disease; IVW, Inverse Variance Weighted MR; SVMR; single variable Mendelian randomization; GSMR: generalized summary Mendelian randomization;
MVMR: multivariable Mendelian randomization; MR PRESSO: MR pleiotropy residual sum and outlier; HEIDI: heterogeneity in dependent instruments.
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instrument sets to exclude intercorrelated SNPs with pairwise LD r2 > 0.001,
leaving 141 and 126 MV instruments, respectively (Supplementary Data 5 and 6).

Obesity, coronary heart disease (CAD), and Type 2 Diabetes (T2D) have been
identified as risk factors for COVID-1927–29, and other respiratory infections30–32.
Therefore, in supplementary sensitivity analyses to further test robustness of the
lifetime smoking results, we concatenated independent instrument sets for lifetime
smoking and, alternatively, CAD using the CARDIoGRAMplusC4D-UK Biobank
CAD (Coronary ARtery DIsease Genome wide Replication and Meta-analysis
(CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics) GWAS
meta-analysis74,75; T2D, using a recent meta-analysis of three T2D studies, i.e.
DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), Genetic
Epidemiology Research on Aging (GERA) and the full cohort release of UKB76,77;
and obesity, using GWASs from GIANT (Genetic Investigation of ANthropometric
Traits)78,79 (see Supplementary Data 1 for more information; Supplementary
Data 7).

F statistics for the unconditional instruments were strong (>10, Supplementary
Data 2–4). We were unable to calculate conditional F statistics to assess the
strength of the multivariable instrument sets: SVMR statistical methods recently
extended to two sample MVMR are appropriate only for non-overlapping exposure
summary level data sources. When overlapping, the requisite pairwise covariances
between SNP associations are only determinable by using individual level data 80.

COVID-19 outcomes. We used summary GWAS statistics from the COVID-19
Host Genetics Initiative (COVID-19 hg) meta-analysis round 5a (18 January 2021
release date) (https://www.covid19hg.org/results)81 for four COVID-19 phenotypes
in cohorts of European ancestry, both including and excluding the UKB cohorts for

sensitivity analyses (N cases; N controls): very severe respiratory confirmed
COVID-19 versus population (4606; 702,801); very severe respiratory confirmed
COVID-19 versus population excluding UKB cohorts (4297; 374,224); hospitalized
versus not hospitalized COVID-19 (4829; 11,816); hospitalized versus not hospi-
talized COVID-19 excluding UKB cohorts (3159; 7206); hospitalized COVID-19
versus population (9373; 1,197,256); hospitalized COVID-19 versus population
excluding UKB cohorts (7703; 868,679); COVID-19 versus population (29,071;
1,559,712); COVID-19 versus population excluding UKB cohorts (22,581;
1,231,135) (demographics not available) (Fig. 1; Table 6; Supplementary Data 1).

Other respiratory infection and disease outcomes. We used data from FinnGen
Release 5 (released to public, 11 May 2021) for additional respiratory-related
outcomes82, including acute upper respiratory infections, asthma related acute
respiratory infections, pneumonia, influenza, bronchitis, chronic lower respiratory
diseases, and acute nasopharyngitis (common cold) (N ≤ 218,792) (Fig. 1; Table 6;
Supplementary Data 1). FinnGen is a public-private partnership incorporating
genetic data for disease endpoints from Finnish biobanks and Finnish health
registry EHRs82. Detailed documentation is provided on the FinnGen website
(https://finngen.gitbook.io/documentation/).

Sample independence. Participant overlap in samples used to estimate genetic
associations between exposures and outcomes can increase weak instrument bias
(WIB) in MR analyses60,83, but to a lesser extent with large biobank samples
(including UKB and deCODE). Given the large size of the overlapping cohorts
(e.g., UKB, deCode) (Supplementary Data 1) and the strength of the instruments in

Table 6 Study data sources.

Phenotypes: Consortium First author (Year) Sample size N cases N controls Population

Exposures:
Drinks per week GSCAN Liu (2019) 941,280 NA NA European
Alcohol use disorder PGC Walters (2019) 28,757 8485 20,272 European
Lifetime smoking MRC-IEU Wootton (2019) 462,690 NA NA European
Cannabis Use PGC Pasman (2018) 162,082 43,380 118,702 European
Cannabis Use Disorder PGC Johnson (2020) 358,534 14,808 343,726 European
Coronary Artery Disease CARDIoGRAMplusC4D van der Harst (2017) 547,261 122,733 424,528 European
Type 2 Diabetes DIAGRAM Xue (2018) 590,283 50,721 539,562 European
Obesity Class I GIANT Berndt (2013) 98,697 32,858 65,839 European
Obesity Class II GIANT Berndt (2013) 725,46 9889 62,657 European
Obesity Class III GIANT Berndt (2013) 50,364 2896 47,468 European
COVID-19 outcomes (Round 5):
Very severe respiratory confirmed COVID-19 vs.
population

COVID 19-hg — 707,407 4606 702,801 European

Very severe respiratory confirmed COVID-19 vs.
population (excluding UKB)

COVID 19-hg — 378,521 4297 374,224 European

Hospitalized vs. not hospitalized COVID-19 COVID 19-hg — 16,645 4829 11,816 European
Hospitalized vs. not hospitalized COVID-19
(excluding UKB)

COVID 19-hg — 10,365 3159 7,206 European

Hospitalized COVID-19 vs. population COVID 19-hg — 1,206,629 9373 1,197,256 European
Hospitalized COVID-19 vs. population
(excluding UKB)

COVID 19-hg — 876,382 7703 868,679 European

COVID-19 vs. population COVID 19-hg — 1,588,783 29,071 1,559,712 European
COVID-19 vs. population (excluding UKB) COVID 19-hg — 1,25,3716 22,581 1,231,135 European
FinnGen outcomes (Release 5):
Acute Upper Respiratory Infections FinnGen — 218,792 35,847 182,945 European
Asthma related acute respiratory infections FinnGen — 142,793 7348 135,445 European
Asthma/COPD (Kela code 203) FinnGen — 208,167 21,444 186,723 European
Asthma related infections FinnGen — 218,792 58,925 159,867 European
Asthma-related pneumonia or sepsis FinnGen — 140,994 5545 135,449 European
Asthma-related pneumonia FinnGen — 140,981 5532 135,449 European
Bacterial pneumonia FinnGen — 196,855 7987 188,868 European
Bronchitis FinnGen — 218,792 27,361 191,431 European
Chronic Lower Respiratory Diseases FinnGen — 218,792 32,069 186,723 European
Acute nasopharyngitis (common cold) FinnGen — 185,198 2253 182,945 European
Influenza FinnGen — 193,130 4262 188,868 European
Influenza and Pneumonia FinnGen — 218,792 29,924 188,868 European
All Pneumoniae FinnGen — 218,798 27,376 191,422 European
Viral Pneumonia FinnGen — 189,568 700 188,868 European

GSCAN GWAS & Sequencing Consortium of Alcohol and Nicotine,MRC-IEUMedical Research Council Integrative Epidemiology Unit, PGC Psychiatric Genomics Consortium, GIANT Genetic Investigation
of ANthropometric Traits, CARDIoGRAMplusC4D Coronary ARtery DIsease Genome-wide Replication and Meta-analysis (CARDIoGRAM) plus The Coronary Artery Disease (C4D) Genetics), DIAGRAM
DIAbetes Genetics Replication and Meta-analysis, COVID-19 coronavirus disease 2019.
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both directions (F statistics > 10; Supplementary Data 2–4), considerable WIB
would not be expected60,84. We have conducted analyses for COVID-19 outcomes
using COVID-19 GWAS performed both including and excluding UKB cohorts.

Statistics and reproducibility. For SVMR analyses, we used inverse-variance
weighted MR (MR IVW) as the main analyses, supplemented by MR-Egger, weighted
median, and weighted mode methods. These are complementary robust methods
developed to estimate consistent causal effects under weaker assumptions than MR
IVW to assess evidence of causal effects for each of alcohol, cannabis and tobacco use,
and use disorders on infectious disease outcomes, and evaluate the sensitivity of the
analyses to different patterns of violations of IV assumptions85. Consistency of results
across methods strengthens an inference of causality85. For MVMR analyses, we used
the multivariable extensions of MR IVW, MR Egger, and MR median 83,86.

We used the MR Egger intercept test87, Cochran Q heterogeneity test88, and
multivariable extensions thereof, to evaluate heterogeneity in instrument effects, as
heterogeneity may indicate violations of IV assumptions86,87,89. The MR pleiotropy
residual sum and outlier (MR PRESSO) global test, and multivariable extensions
thereof90, were used to facilitate identification and removal of outlier instruments
to correct potential directional horizontal pleiotropy and resolve detected
heterogeneity. For SVMR, we also used, alternatively, Generalized single variable
Summary-data based MR (GSMR) to identify and remove instruments with
heterogeneous causal estimates suspected to be invalid instruments with apparent
pleiotropic effects on both exposure and outcome disease (using the recommended
default HEIDI (heterogeneity in dependent instruments) -outlier threshold (0.01)
to retain sufficient power to detect heterogeneity)91. We used the SVMR Steiger
directionality test to test the causal direction between the hypothesized exposure
and outcomes62. We also performed a leave-one-out analysis to evaluate the
potential SNPs within each instrument that may be high influence points85.

For MVMR, in addition to the multivariable extension of the MR PRESSO
global test, we used the multivariable extension of the MR Lasso method, which
applies lasso-type penalization to the direct effects of the instruments on the
outcome disease: the so-called post-lasso estimate is obtained by performing MR
IVW using only those instruments identified as valid instruments (tuning
parameter specified at default heterogeneity stopping rule)89. Analyses were carried
out using TwoSampleMR, version 0.5.585, MendelianRandomization, version 0.5.0,
in the R environment, version 4.0.2; the GSMR method was implemented in the
GCTA (Genome-wide Complex Trait Analysis) software (https://cnsgenomics.
com/software/gcta/#GSMR).

Reported results and interpretation of findings. MR IVW odds ratios (OR) with
95% CI, per unit increase in the exposures (e.g., per unit increase of log-transformed
alcoholic drinks per week or lifetime smoking index), with P-values derived from
two-sided tests, corrected for outlier or invalid variants, are presented in Tables 1–5.
For our COVID-19 analyses, we used a two-sided α of 0.0025 (based on comparing
four COVID-19 outcomes and five substance use exposures) and for the other
infectious disease outcomes, a threshold of 0.00071 (based on comparing 14 FinnGen
infectious respiratory diseases and five substance use exposures) as a heuristic that
allows for follow-up analyses for a plausible number of findings. In assessing con-
sistency and robustness, we looked for estimates substantially agreeing in direction
and magnitude (overlapping confidence intervals) across then four complementary
MR methods used. We evaluate evidence strength based upon the effect magnitude
and direction, the 95% confidence interval of that effect, and the P-value.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All analyses were based upon publicly available data. Single-variable MR and multivariable
MR instrument datasets for each substance use behavior required to replicate the findings
of this study are available in the Supplemental Data files. Full COVID-19 GWAS
summary-level data is available at https://www.covid19hg.org/results/. FinnGen data are
available at https://www.finngen.fi/en; lifetime smoking at https://data.bris.ac.uk/data/
dataset/10i96zb8gm0j81yz0q6ztei23d; alcohol drinks per week data at: https://genome.
psych.umn.edu/index.php/GSCAN; cannabis use disorder and alcohol use disorder data
are available through the Psychiatric Genomics Consortium data portal: https://
www.med.unc.edu/pgc/download-results/; and the cannabis use data are available through
the International Cannabis Consortium at: https://www.ru.nl/bsi/research/group-pages/
substance-use-addiction-food-saf/vm-saf/genetics/international-cannabis-consortium-icc/
. Coronary artery disease and obesity summary statistics are available through the
Cardiovascular Disease Knowledge Portal: https://cvd.hugeamp.org/. Type 2 Diabetes
summary-level data is available Type 2 Diabetes Knowledge Portal: https://t2d.huge
amp.org/.

Code availability
We used TwoSampleMR and MendelianRandomization R packages to perform
Mendelian Randomization analysis. These packages are publicly available at https://
github.com/MRCIEU/TwoSampleMR, and https://github.com/cran/Mendelian
Randomization, respectively.
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