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Abstract—Availability of an effective tool for protein multiple structural alignment (MSTA) is essential for discovery and analysis of

biologically significant structural motifs that can help solve functional annotation and drug design problems. Existing MSTA methods

collect residue correspondences mostly through pairwise comparison of consecutive fragments, which can lead to suboptimal

alignments, especially when the similarity among the proteins is low. We introduce a novel strategy based on: building a contact-

window based motif library from the protein structural data, discovery and extension of common alignment seeds from this library, and

optimal superimposition of multiple structures according to these alignment seeds by an enhanced partial order curve comparison

method. The ability of our strategy to detect multiple correspondences simultaneously, to catch alignments globally, and to support

flexible alignments, endorse a sensitive and robust automated algorithm that can expose similarities among protein structures even

under low similarity conditions. Our method yields better alignment results compared to other popular MSTA methods, on several

protein structure data sets that span various structural folds and represent different protein similarity levels. A web-based alignment

tool, a downloadable executable, and detailed alignment results for the data sets used here are available at http://sacan.biomed.

drexel.edu/Smolign and http://bio.cse.ohio-state.edu/Smolign.

Index Terms—Protein structure, multiple structure alignment, partial order curve comparison, structural motif library, secondary

structure elements (SSE), distance map, contact map, HOMSTRAD.

Ç

1 INTRODUCTION

PROTEINS carry out their specific biological roles through
interaction with other proteins or other macromole-

cules. This interaction is determined largely by the three
dimensional structures of molecules. Therefore, an im-
portant direction toward understanding how proteins
function is to study and analyze their structures. In
particular, since many structurally similar proteins have a
common evolutionary origin, one fundamental task
involved in such an analysis is the structural alignment
problem, where the proteins are superimposed in order to
find the similarities and differences in their structures.
Alignment and comparison of protein structures can help
discover biologically significant structural motifs and
reveal distant evolutionary relationships that may not be
detectable from the sequence information alone.

In recognition of the important relationship between

structure and function, there has been a large volume of

research on the structural alignment problem over the past

20 years. Early research focused primarily on the pairwise

structural alignment problem [1], where an optimal super-
position of two protein structures is sought such as to
minimize a given geometric distance measure. The quality of
an alignment is generally quantified by two parameters: the
number of corresponding residues among the structures and
the root mean square distance (RMSD) between the atomic
coordinates of these correspondences. Whereas finding the
optimal superimposition is a relatively simple task if the set
of correspondences is already known [2], finding the optimal
superimposition and correspondences simultaneously is
NP-hard [3]. Nevertheless, various heuristics have been
developed and successfully applied to the pairwise align-
ment problem [4], [5], [6], [7], [8], [9], [10], [11], [12].

Recently, there has been an increasing focus on the more
complex, multiple structure alignment problem (MSTA).
Structural alignment of a set of related proteins helps find
the conserved cores shared by all or a subset of proteins and
gives better insight into the significance of these structural
cores than the pairwise alignment. Unfortunately, MSTA is
computationally a very difficult problem. Even for a fixed
transformation, finding the optimal correspondences
among residues from k proteins of average length L takes
OðLkÞ time under most standard distance measures.

In order to reduce the computational complexity, most
approaches build a multiple alignment based on progres-
sively aligning inputs in a pairwise manner [13], [14]. For
example, the center-star approach used by Gerstein and
Levitt [15] maintains a consensus template, and at each step,
a new input structure is aligned to this consensus by
pairwise alignment method. Alternatively, one can also
construct a consensus template hierarchically using a binary
similarity tree, where each leaf represents an input
structure, and each internal node aligns the two structures
from its children [13], [16]. One of the main limitations of
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these greedy methods is that following locally (pairwise)
optimal solutions may not lead to a globally optimal
solution. As a result, these methods are not effective at
detecting low levels of similarities, as an incorrect decision
committed early on may cause to miss the few correspon-
dences that would have otherwise led to the globally
optimal solution.

In contrast to progressive pairwise methods, aligned
fragment pair (AFP) chaining methods break each input
structure into a set of small motifs, such as short fragments of
protein backbones [17] or the secondary structure elements
(SSEs) [18]. Motifs shared by all proteins are then assembled
in a geometrically consistent manner. Since the motifs are
much smaller than the whole protein, one can afford to use
more accurate methods to align them. Furthermore, using
the alignments between motifs as seeds to align the entire
structures helps detect partial local similarities among the
input structures, yielding flexible alignments.

While the AFP methods tend to be more effective at
aligning proteins with diverse structures, they still present
limitations and challenges. We observe that the perfor-
mance of the AFP methods rely heavily on the quality of the
representation provided by the fragments. Using backbone
fragments [17] tend to produce too many motifs and each
motif is only constructed by local sequence fragments
which hardly reflect spatial similarity; while using SSEs (or
relations between SSEs) [18] may miss motifs that are not
based on secondary structures. Specifically, we wish to find
a concise (so that the computational cost remains low), yet
complete (so that we do not miss important structural
similarities) set of motifs. Furthermore, the extension of the
seed fragment alignments to global alignments also remain
a challenging problem. Currently, the filtering employed on
the possible seeds and the geometric constraints imposed
during the extension stage, in most cases, speed up the
process at the cost of missing better global alignments.

In this paper, we propose and develop a robust MSTA
algorithm that addresses the aforementioned limitations and
challenges. In particular, for each input protein, we construct
a small set of structurally related motifs based on interacting
windows in its contact map. The contact map motifs are able
to capture features from both SSEs and the residues that do
not form distinct SSEs. Additionally, they are spatially
constructed to encode geometrical and functional informa-
tion not available in sequence fragment based motifs. We
then develop a novel multilevel extension algorithm that
rapidly extends seed alignments from contact-map motifs to
global alignments among multiple structures. Finally, we
iteratively improve the resulting alignments by an enhanced
partial order (EPO) curve comparison method [19], which
further optimizes the correspondences among proteins.

This strategy induces a sensitive and robust automated
algorithm that can detect similarities among multiple
protein structures even under low-similarity conditions.
The success of our method is demonstrated on several
protein structure data sets that have previously been used
under the context of MSTA and that span various structural
folds and represent different protein similarity levels. For
all of the data sets, our method yields better alignment
results compared to other popular MSTA methods in

general. Our resulting software is available both as a
downloadable binary and as a web service at http://
bio.cse.ohio-state.edu/Smolign.

2 METHODS

The objective of our algorithm is to find the largest multiple
alignment among k protein structures while maintaining a
cumulative error below a threshold �. This error is
quantified as the multiple RMSD (mRMSD) measure [17]
which computes the average of the RMSD values between
the aligned residues of a pivot protein p and the
corresponding residues of the other proteins

mRMSDp ¼
1

k� 1

Xk

i¼1;i6¼p
RMSDðPp; PiÞ; ð1Þ

where Pp denotes the pivot protein and Pi represents each
of the k proteins. Variations of this error measure exist, such
as using all-pairs average RMSD instead of the average
RMSD to a pivot structure, or weighting the contribution of
individual residues or individual structures in the calcula-
tion of the error measure [20]. For brevity, we have focused
our discussion to the mRMSD measure defined above,
which is a widely accepted and reported error measure.

A high-level description of our algorithm is shown in
Fig. 1. From a data set of k protein structures, we first
extract contact window (CW) patterns from the distance
map of each protein. These patterns provide a transforma-
tion-invariant representation of local structures. We observe
that pairs of contact windows present a good balance
between sensitivity and specificity of fragments to
be utilized in multiple structure alignment. Therefore, the
contact window patterns in a distance map that are in close
proximity are paired up into linked motifs, which make up
the Spatial Motifs Library (SML). Compatible motifs common
to all proteins are identified from the SML using a dynamic
filtering procedure. An efficient distance-map-based align-
ment method is used to build local seed alignments as a set
of correspondences. The local seed alignments that induce
similar 3D transformations and whose combination satisfy a
predefined mRMSD threshold are merged to build larger
extended seed alignments. To obtain a rigid structure
alignment, a single extended seed is refined using the
EPO method, an enhanced partial order curve comparison
algorithm [19]. To obtain a flexible structure alignment,
multiple extended seed alignments that cover different
portions of the protein structures are used in the refinement
step. In the following sections, we describe each of these
steps in detail.

2.1 Construction of the SML

The residue-contact patterns of protein structures are the
most conserved features of distantly related proteins [21],
which motivates us to capture and use such patterns for
aligning multiple structures. We represent each protein
structure using the distance matrix [22] of its alpha-carbon
atoms. Distance matrix captures the structural and
connectivity information and provides a complete repre-
sentation of the protein structure that is invariant under
rigid transformations [23].
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The entries of the distance matrix that are less than a
predefined threshold (typically 6 �A) are denoted as contact
cells and they correspond to the residues that are in close
proximity in the 3D structure. The collection of these cells
give the contact map of the protein (Fig. 1b), which can be
used to identify SSE or other structural patterns. Specifi-
cally, the fragments along the diagonal are alpha-helices
ð�Þ, the fragments parallel or perpendicular to the diagonal
are parallel and antiparallel beta-sheets ð�þ and ��Þ, and
other, less regular fragments of residue contacts correspond
to small loops ðLÞ and free shapes ðF Þ. We utilize the
distance and contact maps to extract and classify similar
structural motifs that constitute the Spatial Motif Library.

2.1.1 Contact Windows

An initial 4� 4 sliding window is used to scan the distance
map for detecting any of the SSEs and other significant
patterns. We then expand the initial size of the captured
window row and column-wise simultaneously until such
an expansion no longer incorporates a new contact cell.

Note that individual contact windows by themselves do
not in general provide a sensitive representation to be used
for structural alignment. Because of the regularities in SSEs,
many of the contact windows from multiple proteins would
align well, but would not necessarily induce a good
alignment for the rest of the protein. On the other hand,
using pairs of contact windows as seed motifs greatly
increases the discrimination power of such motifs. One can
use even higher order motifs by combining multiple contact
windows; however, this risks being too restrictive and it
may not be possible to find such higher order motifs shared
by all proteins. Therefore, we use pairs of contact windows
as our primary spatial motifs, to serve as seed alignments.

Using pairs of structural fragments have previously been
utilized by one of the earlier MSTA methods [18], where
SSEs are represented as line segments and pairs of SSEs are
used to provide seed alignments. Using contact windows
instead of SSEs provides a more descriptive representation

of motifs and captures spatial arrangements that do not
form distinct SSEs.

2.1.2 Spatial Motifs

Pairs of interacting and compatible contact windows are
linked to form the Spatial Motifs (Fig. 1c). A regular spatial
motif is formed by linking two � helices ð��Þ, or an � helix
and a � sheet ð��Þ, or two � sheets ð��Þ. In order to impose
that the linked contact windows are interacting in the 3D
structure, we further require that the fragments represented
by the contact windows are closer than a predefined
threshold (typically 13 �A), and in the case of � sheets, that
they share one of their strands.

Note that for some sets of proteins, the regular motifs
formed by � and � contact windows may not be sufficient to
induce a global alignment. Moreover, the SSE assignments
are error-prone and may not be consistent across the related
proteins. In order to handle such cases, we store the
irregular contact windows from loops ðLÞ and free shapes
ðF Þ as part of the SML, and resort to these motifs if the
regular motifs do not provide satisfactory alignment seeds.

2.2 Obtaining Seed Alignments

Alignment of similar motifs from the SML would provide
seed alignments around which the rest of the protein
structure can be aligned. However, determination of simi-
larity involves the expensive operations of finding residue
correspondences and performing structural alignment. We
develop several pruning strategies to reduce the number of
spatial motifs to be compared. In order to facilitate efficient
identification and fast alignment of compatible motifs, we
associate each motif with the following features:

. Number of amino acid residues ð�Þ separating the
contact windows along the backbone.

. The minimum euclidean distance ðDÞ between the
amino acid residues of the pairs of contact windows.

. The angle (�) between the backbone segments in
each applied contact window.
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Fig. 1. Overview of the algorithm. (a) Input protein structures. (b) An example contact map. The contact cells are shown as dots in the corresponding
matrix entries. The subwindows are extracted to cover the spatial patterns in the contact map. (c) Spatial Motif Library composed of motifs extracted
from the contact maps. (d) Seed alignment of an �� motif. (e) Extended seed alignment from compatible seeds. (f) Refined alignment using EPO on
the extended seed.



Our pruning strategy relies on heuristics using the SSE
types, and the D, �, and � feature values of the motifs. We
only perform alignment of motifs that are similar within the
thresholds for these features. The thresholds are adjusted
dynamically starting from strict similarity and gradually
relaxing the threshold values until a desired number of high-
quality seed alignments are obtained. After the pruning step,
we obtain a set of candidate seeds, where each seed consists of
k similar motifs, with exactly one from each protein.

2.2.1 Alignment of Candidate Seeds

In the alignment stage, we consider each candidate seed
separately and perform alignment of its member motifs to
generate and identify the seed alignments satisfying the
mRMSD criteria. The alignment of the spatial motifs
involves identifying residue correspondences and from
these correspondences, calculating the superimposition that
minimizes the mRMSD measure.

The beta-sheets possess relatively well-defined shapes.
Thus, for the �� category, we simply select the smallest
motif to be the central motif and slide it over the rest of the
motifs in the candidate seed to generate gapless align-
ments. We then apply Quaternion transformation and
rotation [24] based on the correspondences induced by
each alignment and identify the seed alignments that
satisfy the mRMSD criteria.

For the rest of the motif categories, we utilize the contact
windows of the motifs to assign the residue correspon-
dences. The contact window of a motif is part of the contact
map that covers only the residues forming the motif. The
alignment of two contact windows (CW1 and CW2) is found
using the MaximumOverlap algorithm below. The contact
windows are slided over each other and each sliding
window defines a gapless alignment between the two
motifs. The algorithm returns the sliding window that
maximizes the number of contacts common to both contact
windows as induced by the alignment.

We consider each motif in a candidate seed as the central
motif and calculate the pairwise alignments with each of
the rest of the motifs in the candidate seed. If a contact cell
from the central motif’s contact window overlaps with a
contact cell from every other motif, we note that there is a
common correspondence involving a pair of amino acids
from each protein. We repeat the alignment procedure,
considering each of the motifs as the central motif, and seek
the one that gives the maximum number of common
correspondences. Based on these correspondences, the
Quaternion transformations are calculated to obtain the
mRMSD error of the alignment.

Fig. 1d shows an example candidate seed from the ��
category, which includes 5 Serine Protease proteins repre-
sented in color. The longest common correspondences of
the candidate seed is found to be 34, which gives a seed
alignment with an mRMSD of 0:44 �A.

2.3 Extending the Seed Alignments

Each seed alignment contains a small local geometrical
motif common to all protein structures and can be used as a
reference to rotate and translate the whole structures.
However, we realize that an individual candidate seed

may be too small to generate high-quality global transfor-
mations. Furthermore, some of the seed alignments may
induce the same global alignment causing redundant
computation. To alleviate these problems, we construct
more reliable skeleton structures through merging of
compatible seed alignments.

In the ExtendSeed algorithm outlined below, a seed
alignment si is enriched with the compatible correspon-
dences from other seeds that have similar transformations.
A correspondence is added onto si so long as it does not
conflict with a correspondence already present in si and its
addition still maintains a structural superposition error
below the threshold ðmRMSD < �Þ.

Each extended seed combines multiple motifs from the
seed alignments and obtains longer high-quality correspon-
dences. A larger extended seed provides more reliable basis
for the Quaternion transformation and induces a better
global alignment with a larger core. In the sample shown in
Fig. 1e, the seed alignment is extended from 34 ð0:44 �AÞ to
134 ð1:0 �AÞ common correspondences.

2.4 Refinement by EPO

The extended candidate sets provide correspondences for
only certain sections (motifs) of the protein structures, from
which pairwise translation and rotation matrices are
generated. It still remains to find correspondences for the
rest of the structure and optimize the transformations to
minimize the global mRMSD. We use the Enhanced Partial
Order curve comparison algorithm [19] to find common
superpositions of the transformed structures and optimize
the global rigid-body alignment.

The EPO algorithm has been developed as an improve-
ment over the partial order alignment (POA) methods [25],
[26], especially enhancing the sensitivity in detecting low
levels of similarity and the ability to handle high-dimen-
sional curves. The overall algorithm of EPO is composed of
two main stages: the initial construction of a partial order
graph (POG) representing the consensus alignment of
structures, and a merging stage that refines the POG by
merging its nodes while maintaining the constraints
defined by the order of residues along each path. Using
this update scheme, EPO performs an iterative optimization
process, where each iteration generates new correspon-
dences and transformations, which are then used as input to
the next iteration. The process is repeated until no
improvement in mRMSD is obtained. The details of the
EPO algorithm, along with its application to investigation of
folding trajectories, are discussed in [19]. Fig. 1f shows the
final alignment of five protein structures; where EPO finds
a structural superposition of 243 correspondences with
mRMSD ¼ 1:15 �A.

2.5 Flexible Alignments

Introducing flexibility to structural alignment becomes
useful for two main reasons. First, a protein may be present
in multiple conformational states due to phosphorylation,
interaction with other proteins, or ligand binding [27].
Second, distantly related proteins contain twists and bends
in their structures that cannot be detected by rigid
alignment alone. Because Smolign uses a bottom-up
approach starting from local structural motifs, the method
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introduced thus far can naturally be extended to handle
flexibility in alignments. Specifically, we achieve this by
building multiple structural cores that cover different areas
of the proteins, without restricting that they share the same
rigid transformation. The final set of alignments generated
in this way not only handle flexibility in the structures, but
also can capture sequence order independent alignments.

The CollectFlexibleSeeds algorithm below outlines the
process of identifying a complementary set of structural
cores from the extended seed alignments produced in
Section 2.3. In order to avoid testing an exponential number
of different combinations of seeds, we use a heuristic cost
measure to focus the grouping of seeds toward combina-
tions that include larger, complementary fragments. For
each seed, we quantify the cost of combining it with other
seeds by a mergeCost, defined as

mergeCosti ¼
number of seeds conflicting seedi

size of seedi
: ð2Þ

We sort the list of seeds by their mergeCost values and
starting with the seed that has the smallest mergeCost, we
combine compatible seeds to cover as much of the proteins
as possible. A new seed is combined with the collection of
compatible seeds S0, only if its inclusion increases the
coverage of the correspondence set by a minFragment
threshold (minFragment ¼ 4 is used as the default value).
This ensures that the proteins are not overfragmented in the
final flexible alignment.

After a collection of core alignments is obtained, each
core is used to induce an optimized multiple alignment
through EPO, as done in Section 2.4. Whenever a residue
correspondence conflict arises between the assignments of
different cores, the assignment of the larger core is kept. In
order to spatially combine the transformations of multiple
cores, we take the central protein structure from the first
core in the collection as the rigid structure. The transforma-
tions of the other cores are calculated in reference to this
central structure. The residues that do not have any
correspondences are transformed using the transformation
of the first core.

3 EXPERIMENTS

We performed a number of case-based and large scale
experiments to demonstrate the capability of Smolign to
handle different challenges of MSTA problems. In Section 3.1,
we report the results of typical multiple alignment data sets
from the literature and discuss how well Smolign handles
different spatial data. In Section 3.2, we describe a flexible
alignment case in detail. Finally, in Section 3.3, we provide a
large scale comparison with other MSTA methods using the
Homstrad benchmark [28]. The experiments presented here,
along with alignments from the BAliBASE [29] benchmark
data set, are made available on the supplementary website at
http://sacan.biomed.drexel.edu/Smolign and http://bio.
cse.ohio-state.edu/Smolign.

We compare the multiple alignments generated by
Smolign with those generated by other multiple structure
alignment method, namely CE-MC [30], Multiprot [17],
MAMMOTH-mult [31], POSA [32], and MASS [18]. CE-MC

[30] uses the CE [7] algorithm to perform all-pairwise
alignments, which are then progressively combined follow-
ing the order defined by the UPGMA guide tree [33] of the
pairwise alignments. The progressive alignments are re-
fined using Monte Carlo simulations. The CE [7] pairwise
alignment algorithm that forms the basis for CE-MC uses
short backbone segments as aligned fragment pairs, which
are combined using combinatorial extension.

Multiprot [17] is also a fragment-based multiple struc-
ture alignment method. In contrast to the guide-tree
approach of CE-MC, it follows a center-star [15] method
where each protein is tested as a pivot against which all
others are aligned. Multiprot uses a sweeping technique to
detect aligned fragments from multiple proteins, enabling
Multiprot to detect partial alignments that do not involve all
of the input proteins.

MAMMOTH-mult [31] (also referred as MAMMOTH in

this report) follows an approach similar to CE-MC [30]. It

generates a guide tree from all pairwise alignments, where

each pairwise alignment is produced using the MAMMOTH

[9] pairwise alignment method. MAMMOTH-mult addi-

tionally employs a SIMPLEX [34] optimization of the

multiple alignment at each step, to counteract the greediness

of the progressive alignment. Like CE-MC and Multiprot,

MAMMOTH is a fragment-based alignment method. MAM-

MOTH uses unit-vector root mean square (URMS) distance

[35] between hepta-peptide segments as the main mechan-

ism to detect corresponding residues. A method similar to

MaxSub [36] is used to find the largest subset of residues that

align within a predefined distance threshold ð4 �AÞ.
The POSA [32] multiple structure alignment program

extends the formalism introduced by the FATCAT [37]

pairwise structure alignment method. Similar to other

structure alignment methods, it starts with identifying a

list of aligned fragment pairs, where each fragment is eight

residues long and the RMSD between the AFPs is defined to

be less than a distance threshold (3 �A). The structure

alignment of these AFPs is represented using a Partial

Order Graph, which is a Directed Acyclic Graph. POSA

follows a progressive alignment using a guide-tree, similar

to CE-MC and Multiprot, but uses single linkage clustering

instead of average linkage. POSA has the unique feature of

being one of the few multiple structure alignment methods

that can generate a flexible alignment.
The MASS [18] multiple structure alignment differs from

the other multiple alignment methods in that it considers all
the given structures simultaneously, rather than progressive
alignment following a guide-tree. MASS uses secondary
structure elements as the basic representation of the proteins,
and identifies matching SSEs from multiple proteins using
Geometric Hashing [38]. Each SSE is represented as a least
squares line from its C� atoms, and each pair of SSEs is
represented as two line segments, and the midpoint-distance
and angle between them. The type of SSE is also utilized to
focus the matching on the most similar SSE segments. Like
Multiprot and POSA, MASS is able to detect alignments
involving only a subset of the proteins.

Smolign differs from these multiple structure alignment
methods mainly in its use of contact windows as the main
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representation of proteins. Smolign uses contact windows,

which is less restrictive than backbone segments of
predefined lengths or backbone segments that form well-

defined SSE elements. The filtering employed in Smolign

is similar to MASS, except that using contact windows

allows additional opportunities for filtering as described in

Algorithm 1 above, before a more costly structure super-

position is to be employed. Like MASS, Smolign considers

all of the protein structures at once, and avoids the local
optima caused by the guide-tree based approaches. The

refinement step used in Smolign is comparable in its

nature to the Partial Order Graph search used in POSA;

Smolign employs the EPO algorithm [19] to refine and

extend a multiple alignment of all of the proteins, whereas

POSA employs POG search at each of its pairwise
iterations. Like POSA, Smolign is able to generate flexible

structure alignments.

Algorithm 1. MaximumOverlap

Input: contact windows CW1; CW2

Output: bestS: sliding window with maximum overlap of

contacts

maxContacts 0;

foreach sliding window s aligning CW1 and CW2

do

count 0;

foreach pair of overlapped cells do

if both are contact cells then

countþþ;

if count > maxContacts then

maxContacts count;

bestS  s;

Algorithm 2. ExtendSeed

Input: S: the set of seed alignments

Input: si 2 S: the seed to be extended

Output: si: the extended seed

foreach sj 2 S and sj 6¼si do

if �j � �i then //similar transformations

foreach cp 2 sj do //cp: residue correspondence

if not Conflictsðcp; si) and

mRMSDðsi [ cpÞ < � then

si  si [ cp

Algorithm 3. CollectFlexibleSeeds

Input: S ¼ fsig: the set of extended seeds

Output: S0: collection of compatible extended seeds
Sort S in ascending order of mergeCost;

S0  fs0g;
for i ¼ 1 . . . jSj do

if mergeCost ¼¼ 0 then //can be added without

conflicts

S0  S0 [ si
else

s0i  sinS0 //residues not already covered;
If js0ij � minFragment then

S0  S0 [ si
Using contact windows instead of backbone segments of

predefined lengths or segments that form well-defined SSE
elements avoids missing structural cores that do not obey
these assumptions.

3.1 Sample Alignments

Five protein structural data sets are used to benchmark the
performance of our algorithm (See Table 1). These data sets
represent different structural folds, span different structural
similarity levels, and have previously been used in analysis
of multiple structure alignment algorithms. The multiple
alignment results for all five data sets are compared with
those of other popular MSTA methods. In particular, we
compare with CE-MC [30], Multiprot [17], MAMMOTH-
mult [31], POSA [32], and MASS [18].

We obtained the multiple alignments for each data set
using the online web service provided for these methods.
Two vital norms are used for comparing the results:
NCORE, which is the length of the multiple alignment
calculated as the number of amino-acid correspondences,
and mRMSD, which is an indicator of the alignment quality.

The results for all methods are summarized in Table 2.
The POSA algorithm provides two sets of results: flexible
and nonflexible alignments. We use the nonflexible align-
ments for comparison here and use the flexible case in the
next section. For the results from MAMMOTH, we count
the number of “strict cores” as NCORE since “loose cores”
reported by MAMMOTH only align partial structures
closely. Multiprot allows adjustment of its parameters and
returns the most competitive results; we have adjusted its
parameters to obtain an accuracy level that matches that of
Smolign, in order to make the NCORE comparison more
meaningful. Specifically, the accuracy values of 3.8, 4.4, 3.5,
3.1, and 3.0 �A were used for the Multiprot server for data
sets 1-5, respectively.
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Note that the main objective of our method is to obtain

the longest alignment that satisfies a user-defined structural

similarity threshold. In some cases, smaller but more

conserved alignments may also be biologically important

and of interest to the user. Therefore, in the available

implementation we provide the top n final alignments, in

decreasing order of the alignment lengths. For comparison

with other methods, we report here only the top scoring

alignment for each data set in Table 2. The complete set of

alignments obtained by Smolign can be viewed and

downloaded from the supplementary website at http://

sacan.biomed.drexel.edu/Smolign and http://bio.cse.ohio-

state.edu/Smolign
The five proteins in Set 1 belong to the Subtilases family

of subtilisin-like serine proteases, that have a common

evolutionary origin and share highly similar structures and

functional features [39]. All of the compared methods align

these proteins reasonably well. Our method provides better

alignments than CE-MC, POSA, and Multiprot. POSA has

the maximum NCORE but incurs a large mRMSD cost.
MAMMOTH and MASS generate more conservative
alignments, that align tightly but have smaller coverage.
If the � error threshold in Smolign is reduced from 3 to 2 �A
in order to seek more conservative alignments, it is
possible to obtain an alignment with NCORE ¼ 230 and
mRMSD ¼ 0:89 �A, which is a longer alignment than that
of MAMMOTH, with only a slightly worse mRMSD.

Set 2 has only three proteins (PDB: 1cnx, 1jfjA, and
2sas), but the aligned motifs are very diverse. CATH [40]
classifies 1ncx and 2sas to have one alpha helical domain
and 1jfjA to have two alpha helical domains. The
alignments produced by each method is shown in Fig. 2.
CE-MC and POSA return alignments with inferior mRMSD
scores, without significant improvement in coverage over
other methods. Our method, Multiprot, and MASS align
the same domain regions, where our alignment is compar-
able in both norms to Multiprot. MASS gives a smaller
core and a better mRMSD. MAMMOTH, as in Set 1, finds a
very small conservative core with a worse mRMSD than
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TABLE 2
Comparison of Multiple Structure Alignment Methods on Sample Alignment Data Sets

In order to obtain comparable results with other methods, a similarity threshold of � ¼ 3 �A was used in Smolign. “-” indicates that the respective
server did not return any results.

Fig. 2. Multiple structure alignments of Set 2 Calmoduline-like proteins by different methods. Each protein is shown in a different color: 1jfj, yellow;
1ncx, red; and 2sas, green. The thick blue portions of the backbones indicate the aligned residues. CE-MC alignment provides the superposed
structures, but not the residue correspondences.



MASS. We are again able to control the accuracy of our
results by seeking more conservative alignments that
satisfy a smaller mRMSD threshold and obtain an
alignment with NCORE ¼ 48 and mRMSD ¼ 1:4 �A when
� ¼ 1:7 �A, which is comparable to the output of MASS. The
Smolign alignment is shown in Fig. 2f. The differences in
the alignment of this data set are mainly due to the fact
that the progressive pairwise alignment procedure pre-
vents the methods to find the best alignment. While the
proteins 1ncx and 2sas are most similar at the EF-hand
calcium binding domain (cd00051 in the Conserved
Domain Database [41]), 1jfjA and 2sas are most similar at
the long alpha-helical segment that connects the two EF-
hand domains. An initial alignment of 1jfjA and 2sas,
having better global similarity than the other two pairwise
alignments, prevents the EF-hand domains of all three
proteins to be aligned properly. The center-star alignment
procedure used in Multiprot, and the nonprogressive
alignment methodology of MASS and Smolign avoid this
pitfall and give better results. MASS and Smolign capture
the common EF-hand domain by using the alignment
seeds from the EF-hand region, and considering all of the
proteins simultaneously, extend these seeds to obtain the
final alignment core.

Set 3, the Tim-barrels proteins, contains seven complex
structures. Each structure has multiple alpha-helices and
beta strands, creating a large number of potential alignment
combinations. CE-MC, POSA, and MAMMOTH fail to
produce an alignment. Our algorithm not only outperforms
both Multiprot and MASS, but also produces an alignment
with better spatial continuity. Fig. 3 shows that Multiprot
aligns less number of structural fragments, whereas MASS
produces an overfragmented alignment core, and only
Smolign captures the most complete set of structural
fragments, including three alpha-helical segments and four
beta strands. Note that, the Tim-barrel proteins usually
contain their enzymatic active sites on the loop regions,
frequently on the C-terminal end of the sheets. While it is
desirable to detect such functional residues, they are not
part of the conserved structural core of the proteins and are
not detected by multiple structure alignment methods.
Methods based on residue conservation [42] are more
appropriate for such an analysis.

Set 4 contains helix-bundle proteins selected from six
superfamilies, whose skeleton includes four closely packed
alpha-helices. It presents a challenge for MSTA methods

because of the large data set size and its structural
divergence. CE-MC, POSA, and MAMMOTH again fail to
report an alignment. MASS alignment contains a very short
helix pair, whereas Multiprot reports either a single long
helix or a shorter helix pair depending on the chosen
parameters. Smolign consistently outperforms both methods
in both norms: it finds a longer alpha-helix pair and a higher
quality alignment. Smolign alignment takes under 8 minutes
for this data set.

Set 5 is a very large data set of OB-fold proteins, serving
as a stress test for the multiple alignment programs, and the
similarity among proteins is extremely low (7 percent
average sequence identity). It is commonly used as a special
case to test the sensitivity of MSTA methods. Only our
method and Multiprot survive the strain, giving compar-
able NCORE and mRMSD trade-offs. The common fold of
the OB(oligonuclueotide/oligosaccharide binding)-fold
proteins has a five-stranded beta-barrel, capped by an
alpha helix [43]. Multiprot finds an alignment involving
only two of these beta-strands. Smolign is able align three of
these beta-strands common among the 15 proteins in the
data set, at an execution time of 40 minutes.

3.2 Flexible Alignments

The flexible alignment feature of Smolign is demonstrated
here using the data set 2, Calmodulin-like proteins. These
proteins are composed of two distinct components separated
by a long and flexible alpha helix. Due to bending of this
alpha helical segment, it is not possible to simultaneously
align the two substructures by a rigid alignment (Fig. 2f).
The best rigid alignment of Smolign aligns 59 residues from
the C-terminal domain with an mRMSD of 1.95 �A. Using this
alignment as the anchor, we aggregate compatible cores as
described in Section 2.5 to obtain a flexible alignment shown
in Fig. 4b.

The flexible alignments produced by POSA and Smolign
show comparable coverage and quality metrics, while
Smolign achieves a less fragmented alignment (Figs. 4a
and 4b). The main difference of the flexible alignment
results comes from the philosophy of applying flexibility.
POSA and other MSTA algorithms tend to bend a sequence
of fragments multiple times to gain better core size and
mRMSD at the cost of loosing structural integrity between
aligned fragments. Smolign, on the other hand, strictly
maintains spatial consistency of each aligned core, while
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Fig. 3. A closer look into the alignment produced by Multiprot, MASS, and Smolign for data set 3, Tim barrels. We only show the complete structure
of PDB:4enl as a blue trace. In (d), a helix or strand is considered to be a fragment if its alignment spans more than five amino acids and the gaps
within the fragment is less than 2.



optimizing for core size and mRMSD. The POSA flexible
alignment in Fig. 4a breaks the PDB:1cnx structure at four
locations and does not preserve the spatial relationship of
the fragments. Whereas, the Smolign alignment (Fig. 4b)
consists of only two cores whose spatial arrangement is
more faithful to the conformation of the structures being
aligned and readily yields the interpretation that a single
flexible alpha helical segment is responsible for the
structural differences among these proteins.

3.3 Homstrad Benchmark

Homstrad [28] benchmark data set contains manually
curated pairwise and multiple alignments of highly homo-
logous proteins. The similarity of the aligned proteins is
comparable to that of the family level in the SCOP [44]
hierarchical classification database. Following the experi-
ments by Menke et al. [45] and Ye and Godzik [32], we use
the 399 Homstrad alignments that have more than two
structures, to illustrate the performance of Smolign.

The coverage and accuracy of the rigid alignments
obtained by Smolign is found comparable to other methods
(Table 3). MATT, POSA, and Smolign give similar overall
results, with Smolign giving slightly longer alignments
comparable or better mRMSD. MUSTANG performs worse
than others in both mRMSD and core size. Multiprot
alignments are more conservative and do not capture the
extent of structural fold similarity of the aligned proteins.

While the results for highly similar Homstrad families
were consistent among all the methods, Smolign performed
comparable to or better than other methods on less similar
data sets, such as the seatoxin data set, whose members do not

include distinct secondary structure elements, but are
composed of many coils and turns. Furthermore, the Smolign
flexible alignments are particularly enhanced in detecting
multiply concurrent structural motifs while maintaining the
spatial continuity of the aligned segments. Comparison of
flexible and rigid alignments of the HOMSTRAD data sets
identifies 57 cases of flexible alignments. The average
coverage of Smolign rigid alignments for these 57 sets were
201 residues ðmRMSD ¼ 2:19 �A). The flexible alignments
increase the coverage by 10 percent ðNcore ¼ 221 residues,
mRMSD ¼ 2:17 �AÞ, with an average of 2.2 bends introduced
in each alignment. The rigid and flexible Homstrad align-
ment results can be accessed on the supplementary web-
pages at http://sacan.biomed.drexel.edu/Smolign and
http://bio.cse.ohio-state.edu/Smolign.

3.3.1 Running Time

The execution of Smolign on the Homstrad families takes
from seconds to hours, depending on the number, length,
and divergence of the structures being aligned and the
number of candidate seeds detected for the specified error
threshold. Since a rigorous running-time comparison with
other methods is not possible due to unavailability of their
of software distributions, we summarize the running time
of only Smolign in Fig. 5. Smolign takes under 1 minute to
align 70 percent of the families and under 10 minutes to
align 92 percent of the families. Of the eight families that
take more than 1 hour to align, five families (Homstrad
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TABLE 3
Multiple Alignment Results for the

Homstrad Benchmark

Method Avg. mRMSD Avg. Core Size

MATT 2.04 172
Multiprot 1.35 142
MUSTANG 2.67 171
POSA (rigid) 2.00 165
POSA (flexible) 2.22 168
Smolign (rigid) 2.05 174
Smolign (flexible) 2.00 177

mRMSD and core size are averages of all Homstrad data sets. The
results (except for those of Smolign) are taken from [45].

Fig. 5. Running time distribution on 399 Homstrad families. All
experiments were performed on an Intel Quad Core 2.66 GHz PC with
4G RAM.

Fig. 4. Rigid and flexible alignments of data set 2, Calmodulin-like proteins. The rigid/seed core is shown in thick blue trace in each subfigure.
Each alignment core in the flexible alignment is shown in a different color. Blue portion is the alignment core without bending, other colors
show alignments after bending. Only 1cnx is shown in full to provide a perspective of the whole structure. The residues of 1jfjA and 2sas that
are not part of the alignment are omitted for clarity. Bending occurs on the conjunction points of different colors.



codes: Cyclodex-gly-tran, histone, kunitz, HLH, and RRF)
induce a large number of candidate cores to evaluate; two
families (alpha-amylase and alpha-amylase-NC) include a
large number of very long peptide chains; and the
remaining rhv family involves isolated secondary structures
which could not be captured in the SML stage and thus
forces EPO to execute more iterations to combine the motifs
into an optimized rigid alignment.

4 ADDITIONAL DATA SETS

We have presented above, the performance of Smolign on a
set of commonly used multiple structure alignments and on
the Homstrad database. We have also compared the
alignments obtained by Smolign against those of some of
the popular multiple structure alignment methods. Addi-
tional data sets that have been used to benchmark structural
alignment methods include SISYPHUS [46], SABmark [47],
and BALiBASE [29]. A comprehensive evaluation of the
available methods and data sets is beyond the scope of the
current study and is left as a future exercise. In this section,
we compare Smolign to two of the more recent multiple
structure alignment methods, namely MISTRAL [48] and
MAPSCI [49].

The MISTRAL structure alignment method [48] uses a
piecewise-linear sigmoidal weight function to reward short
separations of pairs of amino acids from proteins. A
simulated annealing based search over the relative orienta-
tions of the proteins is then performed to obtain the
translation and rotation matrices that minimize this energy
function. MISTRAL follows a center-star multiple align-
ment approach, by first computing all-pairwise structure
alignments and then assigning one of the proteins as the
pivot protein to which other proteins are aligned.

The performance of MISTRAL for multiple structure
alignments have been demonstrated for four data sets [48].
The first two data sets contain two sets of globins previously
considered in [50], and the last two data sets are two groups of
proteins from the Homstrad database. The structural align-
ments generated by Smolign using the default parameters are
compared with those reported for MISTRAL are shown in
Table 4. MISTRAL has a reported tendency to generate
smaller alignments than other methods [48], and this is also
observed for data sets 1 and 4, when compared with Smolign.
The alignments produced by MISTRAL and Smolign are
similar for Set 3, with Smolign giving a slightly longer
alignment. Note, however, that Smolign gives a significantly
longer alignment with a better mRMSD for Set 2. The residue

correspondences reported by MISTRAL are a subset of those
reported by Smolign (Fig. 6). We attribute the insufficient
expansion of the MISTRAL alignment to its protein-centric
pairwise evaluation strategy, compared to the motif-centric
all-inclusive evaluation used in Smolign. Additional alpha
helices and turns detected by Smolign, and the reduced
mRMSD are due to the candidate expansion and alignment
optimization stages followed in Smolign.

MAPSCI [49] is another recent method employing a
center-star approach to construct the multiple alignment.
The method is quite similar to that described in [51], with
the main difference being that MAPSCI works on the C�
coordinates directly, whereas [51] translates the backbone
vectors to the origin. Both of these methods work on a
consensus pseudostructure as the average of the proteins
being aligned. The sum of the pairwise distances between
this consensus structure and each protein in the set is then
iteratively minimized to obtain the final alignment.

MAPSCI is reported to produce alignments that compare
favorably with the alignments produced by MAMMOTH [9]
and MATT [45]. The measurement of the core RMSD is
different in MAPSCI than the mRMSD measure reported
here, making a direct comparison of the alignment quality
difficult. On the other hand, Smolign generally produces
alignments with greater coverage than MAPSCI. On a set of
232 HOMSTRAD families considered in [49], MAPSCI
produces alignments with an average coverage of 71 percent
(expressed in percent of the length of the shortest protein in
each HOMSTRAD family), whereas Smolign produces
alignments with an average coverage of 85 percent.

5 DISCUSSION

We have presented Smolign as a novel multiple protein
structure alignment method based on a spatial motif library
generated from residue distance matrices. Smolign provides
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TABLE 4
Comparison of Multiple Structure Alignments

Obtained by MISTRAL and Smolign
on Four Data Sets Considered in [48]

Fig. 6. Multiple alignments produced by (a) MISTRAL and (b) Smolign on the data set of globins from [48]. Residues that are part of the detected
alignment are shown in blue. (c) Residues considered part of the alignment by Smolign but not MISTRAL are highlighted in blue.



alignment-order independent results and can generate
flexible as well as rigid structural alignments. The align-
ments produced are comparable to or better than those of
other methods, both in alignment quality and coverage.

In the terminology and formalism introduced in [52],
Smolign uses an element-based structure description, as
opposed to a space-based description such as dividing a
structure into a grid. Smolign utilizes several element
classes, including the contact windows, residue coordinates,
and secondary structure elements. The clustering of compa-
tible pairs of structure elements is done by use of transforma-
tions, where the element pairs with similar translation and
rotation matrices are merged, similar to the SARF program
[53] and to the method introduced in [54].

Smolign differs from previous multiple alignment
methods in several major aspects. Most importantly,
Smolign utilizes contact windows as the basic representa-
tion of proteins, from which 3D structural similarities can
be identified. Contact windows have previously been used
in pairwise structural alignment, DALI [4] being the most
known example, but not in multiple structural alignment
problem. The main bottleneck in using contact windows for
structural alignment is the computational cost of identifying
and extending common structural conformations. The
problem of finding similar contact subwindows, known as
the Contact Map Overlap (CMO) [55] can be directly
translated to a maximum clique problem [56]. Because this
is an NP-complete problem [57], several heuristics have
been proposed for the pairwise alignment case [58]. Instead
of modeling the problem directly as a maximum clique
problem, Smolign exploits the additional information
contained in the protein structures, such as secondary
structure type, and euclidean distance and angle between
backbone segments, greatly reducing the search space.

Other aspects of the novelty of the Smolign include its
dynamic filtering of seed alignments that explore the
possible candidates in a best-first search and refinement
of the alignments by a powerful partial order curve
comparison algorithm [19]. Furthermore, Smolign provides
the ability to generate flexible alignments, which is not
supported by many of the other available methods.

We attribute the success of Smolign to the concise yet
complete representation of the input structures it uses to
construct the motif library. Pairs of interacting contact map
subwindows provide a good balance between the sensitiv-
ity of the representation and the corresponding search
space. Through its dynamic filtering and efficient candidate
evaluation and expansion algorithms, Smolign handles
large and complex data sets where other methods fail to
produce any results.

Unless otherwise noted, the results reported here were
obtained using the default parameters. These defaults are
available on the job submission website as advanced
options. Even though the default parameters achieve
competitive results, we allow the interested users to change
these parameters to control the quality versus coverage and
the speed versus accuracy trade-offs. Of particular impor-
tance is the � error threshold, which sets an upper threshold
for the mRMSD of the alignment that can be obtained. A
tight � error threshold would generate fewer candidate
seeds but discover only highly conserved structural motifs,
whereas a relaxed � would discover more divergent motifs,

at the computational cost of generating many false
candidates that need to be evaluated.

We believe that Smolign provides an import step in the
advancement of the multiple protein structural alignment,
but we acknowledge that it may not give the best or most
appropriate results in every single case. While Smolign can
be utilized for large scale automated analysis, the use of
different alignment programs that are developed under
varying assumptions and that use varying representations
of proteins, is likely to enrich any given case study. It must
also be noted that the currently available multiple structure
alignment programs, including Smolign, are geared toward
identifying conserved structural cores of proteins, which is
an important task in structure classification, fold recogni-
tion, and structure prediction problems. On the other hand,
they may not be able to identify conservation of individual
residue conformations or functional motifs, such as done by
LFMPro [59], gSpan [60], and [61].

Smolign is provided both as a web service for fast and
convenient access and as a downloadable binary for the
more intensive batch tasks. The sample alignments de-
scribed here and the alignments for Homstrad and BaliBase
benchmark data sets are also provided on the supplemen-
tary websites at http://sacan.biomed. drexel.edu/Smolign
and http://bio. cse.ohio-state.edu/Smolign.
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