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SMOOTH ANALYSIS OF THE CONDITION NUMBER

AND THE LEAST SINGULAR VALUE

TERENCE TAO AND VAN VU

Abstract. Let x be a complex random variable with mean zero and bounded
variance. Let Nn be the random matrix of size n whose entries are iid copies
of x and let M be a fixed matrix of the same size. The goal of this paper is
to give a general estimate for the condition number and least singular value
of the matrix M +Nn, generalizing an earlier result of Spielman and Teng for
the case when x is gaussian.

Our investigation reveals an interesting fact that the “core” matrix M does
play a role on tail bounds for the least singular value of M+Nn. This does not
occur in Spielman-Teng studies when x is gaussian. Consequently, our general
estimate involves the norm ‖M‖. In the special case when ‖M‖ is relatively
small, this estimate is nearly optimal and extends or refines existing results.

1. Introduction

Let M be an n × n matrix and s1(M) ≥ · · · ≥ sn(M) its singular values. The
condition number of A, as defined by numerical analysts, is

κ(M) := s1(M)/sn(M) = ‖M‖‖M−1‖.
This parameter is of fundamental importance in numerical linear algebra and

related areas, such as linear programming. In particular, the value

L(M) := log κ(M)

measures the (worst case) loss of precision that the equation Mx = b can exhibit
[21, 2].

The problem of understanding the typical behavior of κ(M) and L(M) when
the matrix M is random has a long history. This was first raised by von Neumann
and Goldstine in their study of numerical inversion of large matrices [30]. Several
years later, the problem was restated in a survey of Smale [21] on the efficiency of
algorithm of anaylsis. One of Smale’s motivations was to understand the efficiency
of the simplex algorithm in linear programming. The problem is also at the core
of Demmel’s plan on the investigation of the probability that a numerical analysis
problem is difficult [8] (see also [18] for a work that inspires this investigation).

To make the problem precise, the most critical issue is to choose a probability
distribution for M . A convenient model has random matrices with independent
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gaussian entries (either real of complex). An essential feature of this model is that
here the joint distribution of the eigenvalues can be written precisely:

(Real Gaussian) c1(n)
∏

1≤i<j≤n

|λi − λj | exp(−
n∑

i=1

λ2
i /2).(1)

(Complex Gaussian) c2(n)
∏

1≤i<j≤n

|λi − λj |2 exp(−
n∑

i=1

λ2
i /2).(2)

Here c1(n), c2(n) are normalization factors whose explicit formulae can be seen
in, for example, [16].

Most questions about the spectrum of these random matrices can then be an-
swered by estimating a properly defined integral with respect to these measures.
Many advanced techniques have been worked out to serve this purpose (see, for
instance, [16]). In particular, the condition number is well understood, thanks to
works of Kostlan and Oceanu [12, 21], Edelman [6] and many others (see Section
2).

The gaussian model, however, has serious shortcomings. As pointed out by
many researchers (see, for example [3, 23]), the gaussian model does not reflect
the arbitrariness of the input. Let us consider, for example, a random matrix with
independent real gaussian entries. By sharp concentration results, one can show
that the fraction of entries with absolute values at most 1, is, with overwhelming

probability, close to the absolute constant 1√
2π

∫ 1

−1
exp(−t2/2)dt. Many classes of

matrices that occur in practice simply do not possess this property. This problem
persists even when one replaces gaussian by another fixed distribution, such as
Bernoulli.

About 10 years ago, Spielman and Teng [23, 24], motivated by Demmel’s plan
and the problem of understanding the efficiency of the simplex algorithm proposed
a new and exciting distribution. Spielman and Teng observed that while the ideal
input may be a fixed matrix M , it is likely that the computer will work with a
perturbationM+N , where N is a random matrix representing random noise. Thus,
it raised the issue of studying the distribution of the condition number of M +N .
This problem is at the heart of the so-called Spielman-Teng smooth analysis. (See
[23, 24] for a more detailed discussion and [3, 4, 5, 25, 9] for many related works
on this topic.) Notice that the special case M = 0 corresponds to the setting
considered in the previous paragraphs.

The Spielman-Teng model nicely addresses the problem about the arbitrariness
of the inputs, as in this model every matrix generates a probability space of its own.
In their papers, Spielman and Teng considered mostly gaussian noise (in some cases
they also considered other continuous distributions such as uniformity on [−1, 1]).
However, in the digital world, randomness often does not have gaussian nature. To
start with, all of the real data are finite. In fact, in many problems (particularly
those in integer programming) all entries of the matrix are integers. The random
errors made by the digital devices (for example, sometimes a bit gets flipped) are
obviously of discrete nature. In other problems, for example, those in engineering,
the data may contain measurements where it would be natural to assume gaussian
errors. On the other hand, data are usually strongly truncated. For example, if
an entry of our matrix represents the mass of an object, then we expect to see a
number such as 12.679 (say, tons), rather than 12.6792347043641259. Thus, instead
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of the gaussian distribution, we (and/or our computers) often work with a discrete
distribution, whose support is relatively small and does not depend on the size of
the matrix. (A good example is random a Bernoulli matrix, whose entries take
values ±1 with probability of half.) This leads us to the following problem:

Problem (Smooth analysis of the condition number). Estimate the condition num-
ber of a random matrix Mn := M +Nn, where M is a fixed matrix of size n, and
Nn is a general random matrix.

The goal of this paper is to investigate this question, where, as a generalization
of the Spielman-Teng model, we think of Nn as a matrix with independent random
entries which (instead as being gaussian) have arbitrary distributions. Our main
result will show that with high probability, Mn is well-conditioned. This result
could be useful in further studies of smooth analysis in linear programming. The
Spielman-Teng smooth analysis of the simplex algorithm [23, 24] was done using
gaussian noise. It is a natural and (from the practical point of view) important
to repeat this analysis using discrete noise (such as Bernoulli). This problem was
posed by Spielman to the authors a few years ago. The paper [23] also contains a
specific conjecture on the least singular value of a random Bernoulli matrix.

In connection, we should mention here a recent series of papers by Burgisser,
Cucker and Lotz [3, 4, 5], which discussed the smooth analysis of condition number
under a somewhat different setting (they considered the notion of conic condition
number and a different kind of randomness).

Before stating mathematical results, let us describe our notation. We use the
usual asymptotic notation X = O(Y ) to denote the estimate |X| ≤ CY for some
constant C > 0 (independent of n), X = Ω(Y ) to denote the estimate X ≥ cY for
some c > 0 independent of n, and X = Θ(Y ) to denote the estimates X = O(Y )
and X = Ω(Y ) holding simultaneously. In some cases, we write X � Y instead
of X = O(Y ) and X � Y instead of X = Ω(Y ). Notation such as X = Ox,b(Y )
or X �a,b (Y ) mean that the hidden constant in O or � depend on previously
defined constants a and b. We use o(1) to denote any quantity that goes to zero as
n → ∞. X = o(Y ) means that X/Y = o(1).

Recall that

κ(M) := s1(M)/sn(M) = ‖M‖‖M−1‖.
Since ‖M‖2 ≥

∑
ij |mij |2/n (where mij denote the entries of M) it is expected

that ‖M‖ = nΩ(1). Following the literature, we say that M is well-conditioned (or
well-posed) if κ(M) = nO(1) or (equivalently) L(M) = O(logn).

By the triangle inequality, we get

‖M‖ − ‖Nn‖ ≤ ‖M +Nn‖ ≤ ‖M‖+ ‖Nn‖.

Under very general assumptions, the random matrix Nn satisfies ‖Nn‖ = nO(1)

with overwhelming probability (see many estimates in Section 3). Thus, in order to
guarantee that ‖M +Nn‖ is well-conditioned (with high probability), it is natural
to assume that

(3) ‖M‖ = nO(1).

This is not only a natural, but fairly safe assumption to make (with respect
to the applicability of our studies). Most large matrices in practice satisfy this
assumption, as their entries are usually not very large compared to their sizes.
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Our main result shows that under this assumption and a very general assumption
on the entries of Nn, the matrix M +Nn is well-conditioned, with high probability.
This result extends and bridges several existing results in the literature (see the
next two sections).

Notice that under assumption (3), if we want to show that M +Nn is typically
well-conditioned, it suffices to show that

‖(M +Nn)
−1‖ = sn(M +Nn)

−1 = nO(1)

with high probability. Thus, we will formulate most results in a form of a tail bound
for the least singular value of M +Nn. The typical form will be

P(sn(M +Nn) ≤ n−B) ≤ n−A

where A,B are positive constants and A increases with B. The relation between A
and B is of importance and will be discussed in length.

2. Previous results

Let us first discuss the gaussian case. Improving results of Kostlan and Oceanu
[21], Edelman [6] computed the limiting distribution of

√
nsn(Nn) when Nn is

gaussian. His result implies

Theorem 2.1. There is a constant C > 0 such that the following holds. Let x be
the real gaussian random variable with mean zero and variance one, let Nn be the
random matrix whose entries are iid copies of x. Then for any constant t > 0,

P(sn(Nn) ≤ t) ≤ n1/2t.

Concerning the more general model M + Nn, Sankar, Teng and Spielman [25]
proved:

Theorem 2.2. There is a constant C > 0 such that the following holds. Let x be
the real gaussian random variable with mean zero and variance one, let Nn be the
random matrix whose entries are iid copies of x, and let M be an arbitrary fixed
matrix. Let Mn := M +Nn. Then for any t > 0,

P(sn(Mn) ≤ t) ≤ Cn1/2t.

Once we give up the gaussian assumption, the study of the least singular value
sn becomes much harder (in particular, for discrete distributions such as Bernoulli,
in which x = ±1 with equal probability 1/2). For example, it is already non-trivial
to prove that the least singular value of a random Bernoulli matrix is positive
with probability 1 − o(1). This was first done by Komlós in 1967 [13], but good
quantitative lower bounds were not available until recently. In a series of papers,
Tao-Vu and Rudelson-Vershynin addressed this question [26, 28, 19, 20] and proved
a lower bound of the form n−Θ(1) for sn with high probability.

We say that x is sub-gaussian if there is a constant B > 0 such that

P(|x| ≥ t) ≤ 2 exp(−t2/B2)

for all t > 0. The smallest B is called the sub-gaussian moment of x. The following
is a corollary of a more general theorem by Rudelson and Vershynin [20, Theorem
1.2]
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Theorem 2.3. Let x be a sub-gaussian random variable with zero mean, variance
one and sub-gaussian moment B, and let A be an arbitrary positive constant. Let
Nn be the random matrix whose entries are iid copies of x. Then there is a positive
constant C (depending on B) such that for any t ≥ n−A we have

P(sn(Nn) ≤ t) ≤ Cn1/2t.

We again turn to the general model M +Nn. In [28], the present authors proved

Theorem 2.4 ([28, Theorem 2.1]). Let x be a random variable with non-zero vari-
ance. Then for any constants A,C > 0 there exists a constant B > 0 (depending
on A,C, x) such that the following holds. Let Nn be the random matrix whose
entries are iid copies of x, and let M be any deterministic n× n matrix with norm
‖M‖ ≤ nC . Then

P(sn(M +Nn) ≤ n−B) ≤ n−A.

Notice that this theorem requires very little about the variable x. It does not
need to be sub-gaussian nor does it have bounded moments. All we ask is that the
variance is bounded from zero, which basically means x is indeed “random”. Thus,
it guarantees the well-conditionness of M +Nn in a very general setting.

The weakness of this theorem is that the dependence of B on A and C, while
explicit, is too generous. The main result of this paper, Theorem 3.2, will improve
this dependence significantly and provide a common extension of Theorem 2.4 and
Theorem 2.3.

3. Main result

As already pointed out, an important point is the relation between the constants
A,B in a bound of the form

P(sn(M +Nn) ≤ n−B) ≤ n−A.

In Theorem 2.2, we have a simple (and optimal) relation B = A + 1/2. It is
natural to conjecture that this relation holds for other, non-gaussian, models of
random matrices. In fact, this conjecture was our starting point for this study.
Quite surprisingly, it turns out not to be the case.

Theorem 3.1. There are positive constants c1 and c2 such that the following holds.
Let Nn be the n × n random Bernoulli matrix with n even. For any L ≥ n, there
is an n× n deterministic matrix M such that ‖M‖ = L and

P(sn(M +Nn) ≤ c1
n

L
) ≥ c2n

−1/2.

The assumption n is even is for convenience and can easily be removed by re-
placing the Bernoulli matrix by a random matrix whose entries take values 0,±1
with probability 1/3, say. Notice that if L = nD for some constant D, then we have
the lower bound

P(sn(M +Nn) ≤ c1n
−D+1) ≥ c2n

−1/2,

which shows that one cannot expect Theorem 2.2 to hold in general and that the
norm of M should play a role in tail bounds of the least singular value.

The main result of this paper is the following.
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Theorem 3.2. Let x be a random variable with mean zero and bounded second
moment, and let γ ≥ 1/2, A ≥ 0 be constants. Then there is a constant c depending
on x, γ, A such that the following holds. Let Nn be the random matrix of size n whose
entries are iid copies of x, let M be a deterministic matrix satisfying ‖M‖ ≤ nγ ,
and let Mn := M +Nn. Then

P(sn(Mn) ≤ n−(2A+1)γ) ≤ c
(
n−A+o(1) +P(‖Nn‖ ≥ nγ)

)
.

Note that this theorem only assumes bounded second moment on x. The as-
sumption that the entries of Nn are iid is for convenience. A slightly weaker result
would hold if one omits this assumption.

Corollary 3.3. Let x be a random variable with mean zero and bounded second
moment, and let γ ≥ 1/2, A ≥ 0 be constants. Then there is a constant c2 depending
on x, γ, A such that the following holds. Let Nn be the random matrix of size n whose
entries are iid copies of x, let M be a deterministic matrix satisfying ‖M‖ ≤ nγ ,
and let Mn := M +Nn. Then

P(κ(Mn) ≥ 2n(2A+2)γ) ≤ c
(
n−A+o(1) +P(‖Nn‖ ≥ nγ)

)
.

Proof. Since κ(Mn) = s1(Mn)/sn(Mn), it follows that if κ(Mn) ≥ n(2A+2)γ , then
at least one of the two events sn(Mn) ≤ n−(2A+1)γ and s1(Mn) ≥ 2nγ holds. On
the other hand,

s1(Mn) ≤ s1(M) + s1(Nn) = ‖M‖+ ‖Nn‖ ≤ nγ + ‖Nn‖.
The claim follows. �

In the rest of this section, we deduce a few corollaries and connect them with
the existing results.

First, consider the special case when x is sub-gaussian. In this case, it is well-
known that one can have a strong bound on P(‖Nn‖ ≥ nγ) thanks to the following
theorem (see [20] for references)

Theorem 3.4. Let B be a positive constant. There are positive constants C1, C2

depending on B such that the following holds. Let x be a sub-gaussian random
variable with zero mean, variance one and sub-gaussian moment B and let Nn be
the random matrix whose entries are iid copies of x. Then

P(‖Nn‖ ≥ C1n
1/2) ≤ exp(−C2n).

If one replaces the sub-gaussian condition by the weaker condition that x has
fourth moment bounded B, then one has a weaker conclusion that

E(‖Nn‖) ≤ C1n
1/2.

From Theorem 3.2 and Theorem 3.4 we see that

Corollary 3.5. Let A and γ be arbitrary positive constants. Let x be a sub-gaussian
random variable with zero mean and variance one and let Nn be the random matrix
whose entries are iid copies of x. Let M be a deterministic matrix such that ‖M‖ ≤
nγ and set Mn = M +Nn. Then

(4) P(sn(Mn) ≤ (n1/2 + ‖M‖)−2A−1) ≤ n−A+o(1).

In the case ‖Mn‖ = O(n1/2) (which of course includes the Mn = 0 special case),
(4) implies
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Corollary 3.6. Let A be an arbitrary positive constant. Let x be a sub-gaussian
random variable with zero mean and variance one and let Nn be the random matrix
whose entries are iid copies of x. Let M be a deterministic matrix such that ‖M‖ =
O(n1/2) and set Mn = M +Nn. Then

(5) P(sn(Mn) ≤ n−A−1/2) ≤ n−A+o(1).

Up to a loss of magnitude no(1), this matches Theorem 2.3, which treated the
base case M = 0.

If we assume bounded fourth moment instead of sub-gaussian, we can use the
second half of Theorem 3.4 to deduce

Corollary 3.7. Let x be a random variable with zero mean, variance one and
bounded fourth moment, and let Nn be the random matrix whose entries are iid
copies of x. Let M be a deterministic matrix such that ‖M‖ = nO(1) and set
Mn = M +Nn. Then

(6) P(sn(Mn) ≤ (n1/2 + ‖M‖)−1+o(1)) = o(1).

In the case ‖M‖ = O(n1/2), this implies that almost surely sn(Mn) ≥ n−1/2+o(1).
For the special case M = 0, this matches (again up to the o(1) term) Theorem [20,
Theorem 1.1].

Let us now take a look at the influence of ‖M‖ on the bound. Obviously, there
is a gap between (4) and Theorem 3.1. On the other hand, by setting A = 1/2,
L = nγ and assuming that P(‖Nn‖ ≥ nγ) is negligible (i.e., super-polynomially
small in n), we can deduce from Theorem 3.2 that

P(sn(Mn) ≤ c1L
−2) ≤ c2n

−1/2+o(1).

This, together with Theorem 3.1, suggests that the influence of ‖M‖ in sn(Mn)
is of polynomial type.

In the next discussion, let us normalize and assume that x has variance one. One
can deduce a bound on ‖Nn‖ from the simple computation

E‖Nn‖2 ≤ E trNnN
∗
n = n2.

By Chebyshev’s inequality we thus have

P(‖Nn‖ ≥ n1+A/2) ≤ n−A

for all A ≥ 0.
Applying Theorem 3.2 we obtain

Corollary 3.8. Let x be a random variable with mean zero and variance one and let
Nn be the random matrix whose entries are iid copies of x. Then for any constant
A ≥ 0 we get

P(sn(Nn) ≤ n−1− 5
2A−A2

) ≤ n−A+o(1).

In particular, sn(Nn) ≥ n−1−o(1) almost surely.

It is clear that one can obtain better bounds for sn, provided we have better
estimates on ‖Nn‖. The idea of using Chebyshev’s inequality is very crude (we
just want to give an example) and there are more sophisticated tools. One can, for
instance, use higher moments. The expectation of a kth moment can be expressed
in a sum of many terms, each corresponding to a certain closed walk of length k
on the complete graph of n vertices (see [11, 31]). If the higher moments of Nn

(while not bounded) do not increase too fast with n, then the main contribution
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in the expectation of the kth moment still come from terms which correspond to
walks using each edge of the graph either 0 or 2 times. The expectation of such a
term involves only the second moment of the entries in Nn. The reader may want
to work this out as an exercise.

One can also use the following nice estimate of Seginer [22]

E‖Nn‖ = O(E max
1≤i≤n

√√√√ n∑
j=1

x2
ij +E max

1≤j≤n

√√√√ n∑
i=1

x2
ij).

The rest of the paper is organized as follows. In the next section, we prove
Theorem 3.1. The remaining sections are devoted to the proof of Theorem 3.2.
This proof combines several tools that have been developed in recent years. It
starts with an ε-net argument (in the spirit of those used in [26, 19, 28, 20]. Two
important technical ingredients are Theorem 6.8 from [28] and Lemma 9.1 from
[20].

4. Theorem 3.1: The influence of M

Let M ′ be the n − 1 × n matrix obtained by concatenating the matrix LIn−1

with an all L column, where L is a large number (we will set L ≥ n). The n × n
matrix M is obtained from M ′ by adding to it a (first) all zero row; thus,

M =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
L 0 . . . 0 L
0 L . . . 0 L
...

...
. . .

...
...

0 0 . . . L L

⎞
⎟⎟⎟⎟⎟⎠

.

It is easy to see that

‖M‖ = Θ(L).

Now consider Mn := M +Nn where the entries of Nn are iid Bernoulli random
variables

P(sn(Mn) � n1/4L−1/2) � n−1/2.

Let M ′
n be the (random) (n − 1) × n matrix formed by the last n − 1 rows of

Mn. Let v ∈ Rn be a unit normal vector of the n− 1 rows of M ′
n. By replacing v

with −v if necessary we may write v in the form

v =

(
1√
n
+ a1,

1√
n
+ a2, . . . ,

1√
n
+ an−1,

−1√
n
+ an

)
,

where −1√
n
+ an ≤ 0.

Let ξi be iid Bernoulli random variables. Multiplying v with the first row of M ′
n,

we have

0 = (L+ ξ1)(
1√
n
+ a1) + (L+ ξn)(−

1√
n
+ an)

= L(a1 + an) +
1√
n

(
(ξ1 − ξn) + ξ1a1 + ξnan

)
.

Since |ai| = O(1), it follows that |a1 + an| = O( 1
L ). Repeating the argument

with all other rows, we conclude that |ai + an| = O( 1
L ) for all 1 ≤ i ≤ n− 1.
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Since v has unit norm, we also have

1 = ‖v‖2 =

n−1∑
i=1

(
1√
n
+ ai

)2

+

(
−1√
n
+ an

)2

,

which implies that

2√
n
(a1 + · · ·+ an−1 − an) +

n∑
i=1

a2i = 0.

This, together with the fact that |ai + an| = O( 1
L ) and all 1 ≤ i ≤ n− 1, yields

na2n − 2nan(
1√
n
+

1

L
) = O(

√
n

L
+

1

L2
).

Since − 1√
n
+ an ≤ 0 and L ≥ n, it is easy to show from here that |an| = O( 1

L ).

It follows that |ai| = O( 1
L ) for all 1 ≤ i ≤ n.

Now consider

‖Mnv‖ =

∣∣∣∣∣
n−1∑
i=1

(
1√
n
+ ai)ξi + (− 1√

n
+ an)ξn

∣∣∣∣∣ .
Since n is even, with probability Θ( 1√

n
), ξ1 + · · · + ξn−1 − ξn = 0, and in this

case

‖Mnv‖ =

∣∣∣∣∣
n∑

i=1

aiξi

∣∣∣∣∣ = O
(n

L

)
,

as desired.

5. Controlled moment

It is convenient to establish some more quantitative control on x. We recall the
following notion from [28].

Definition 5.1 (Controlled second moment). Let κ ≥ 1. A complex random
variable x is said to have κ-controlled second moment if one has the upper bound

E|x|2 ≤ κ

(in particular, |Ex| ≤ κ1/2), and the lower bound

(7) ERe(zx− w)2I(|x| ≤ κ) ≥ 1

κ
Re(z)2

for all complex numbers z, w.

Example. The Bernoulli random variable (P(x = +1) = P(x = −1) = 1/2) has
1-controlled second moment. The condition (7) asserts, in particular, that x has
variance at least 1

κ , but also asserts that a significant portion of this variance occurs
inside the event |x| ≤ κ, and also contains some more technical phase information
about the covariance matrix of Re(x) and Im(x).

The following lemma was established in [28]:

Lemma 5.2 ([28, Lemma 2.4]). Let x be a complex random variable with finite
non-zero variance. Then there exists a phase eiθ and a κ ≥ 1 such that eiθx has
κ-controlled second moment.
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Since rotation by a phase does not affect the conclusion of Theorem 3.2, we
conclude that we can assume, without loss of generality, that x is κ-controlled for
some κ. This will allow us to invoke several estimates from [28] (e.g. Lemma 6.2
and Theorem 6.8 below).

Remark 5.3. The estimates we obtain for Theorem 3.2 will depend on κ but will
not otherwise depend on the precise distribution of x. It is, in fact, quite likely
that the results in this paper can be generalized to random matrices Nn whose
entries are independent and are all κ-controlled for a single κ, but do not need to
be identical. In order to simplify the exposition, however, we focus on the iid case.

6. Small ball bounds

In this section we give some bounds on the small ball probabilities P(|ξ1v1 +
· · · + ξnvn − z| ≤ ε) under various assumptions on the random variables ξi and
the coefficients vi. As a consequence we shall be able to obtain good bounds on
the probability that Av is small, where A is a random matrix and v is a fixed unit
vector.

We first recall a standard bound (cf. [28, Lemmas 4.2, 4.3, 5.2]):

Lemma 6.1 (Fourier-analytic bound). Let ξ1, . . . , ξn be independent variables.
Then we have the bound

P(|ξ1v1 + · · ·+ ξnvn − z| ≤ r) � r2
∫
w∈C:|w|≤1/r

exp(−Θ(
n∑

j=1

‖wvj‖2j)) dw

for any r > 0 and z ∈ C, and any unit vector v = (v1, . . . , vn), where

(8) ‖z‖j := (E‖Re(z(ξj − ξ′j))‖2R/Z)
1/2,

ξ′j is an independent copy of ξj, and ‖x‖R/Z denotes the distance from x to the
nearest integer.

Proof. By the Esséen concentration inequality (see e.g. [29, Lemma 7.17]), we have

P(|ξ1v1+ · · ·+ξnvn−z| ≤ r) � r2
∫
w∈C:|w|≤1/r

|E(e(Re(w(ξ1v1+ · · ·+ξnvn))))| dw

for any c > 0, where e(x) := e2πix. We can write the right-hand side as

r2
∫
w∈C:|w|≤1/r

n∏
j=1

fj(wvj)
1/2 dw

where
fj(z) := |E(e(Re(ξjz)))|2 = E cos(2πRe(z(ξj − ξ′j))).

Using the elementary bound cos(2πθ) ≤ 1−Θ(‖θ‖2R/Z) we conclude that

fj(z) ≤ 1−Θ(‖z‖2j ) ≤ exp(−Θ(‖z‖2j))
and the claim follows. �

Next, we recall some properties of the norms ‖z‖j in the case when ξj is κ-
controlled.

Lemma 6.2. Let 1 ≤ j ≤ n, let ξj be a random variable, and let ‖‖j be defined
by (8).

(i) For any w ∈ C, 0 ≤ ‖w‖j ≤ 1 and ‖ − w‖j = ‖w‖j.
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(ii) For any z, w ∈ C, ‖z + w‖j ≤ ‖z‖j + ‖w‖j .
(iii) If ξj is κ-controlled for some fixed κ, then for any sufficiently small positive

constants c0, c1 > 0 we have ‖z‖j ≥ c1Re(z) whenever |z| ≤ c0.

Proof. See [28, Lemma 5.3]. �

We now use these bounds to estimate small ball probabilities. We begin with a
crude bound.

Corollary 6.3. Let ξ1, . . . , ξn be independent variables which are κ-controlled.
Then there exists a constant c > 0 such that

(9) P(|ξ1v1 + · · ·+ ξnvn − z| ≤ c) ≤ 1− c

for all z ∈ C and all unit vectors (v1, . . . , vn).

Proof. Let c > 0 be a small number to be chosen later. We divide it into two cases,
depending on whether all the vi are bounded in magnitude by

√
c or not.

Suppose first that |vi| ≤
√
c for all c. Then we apply Lemma 6.1 (with r := c1/4)

and bound the left-hand side of (9) by

� c1/2
∫
w∈C:|w|≤c−1/4

exp(−Θ(
n∑

j=1

‖wvj‖2j )) dw.

By Lemma 6.2, if c is sufficiently small, then we have ‖wvj‖j ≥ c1Re(wvj), for
some positive constant c1. Writing each vj in polar coordinates as vj = rje

2πiθj ,
we thus obtain an upper bound of

� c1/2
∫
w∈C:|w|≤c−1/4

exp(−Θ(

n∑
j=1

r2jRe(e
2πiθjw)2)) dw.

Since
∑n

j=1 r
2
j = 1, we can use Hölder’s inequality (or Jensen’s inequality) and

bound this from above by

� sup
j

c1/2
∫
w∈C:|w|≤c−1/4

exp(−Θ(Re(e2πiθjw)2)) dw

which by rotation invariance and scaling is equal to∫
w∈C:|w|≤1

exp(−Θ(c−1/4Re(w)2)) dw.

From the monotone convergence theorem (or direct computation) we see that this
quantity is less than 1− c if c is chosen sufficiently small. (If necessary, we allow c
to depend on the hidden constant in Θ.)

Now suppose instead that |v1| >
√
c, say. Then by freezing all of the variables

ξ2, . . . , ξn, we can bound the left-hand side of (9) by

sup
w

P(|ξ1 − w| ≤
√
c).

But by the definition of κ-control, one easily sees that this quantity is bounded by
1− c if c is sufficiently small (compared to 1/κ), and the claim follows. �

As a consequence of this bound, we obtain
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Theorem 6.4. Let Nn be an n× n random matrix whose entries are independent
random variables which are all κ-controlled for some constant κ > 0. Then there
are positive constants c, c′ such that the following holds. For any unit vector v and
any deterministic matrix M ,

P(‖(M +Nn)v‖ ≤ cn1/2) ≤ exp(−c′n).

Proof. Let c be a sufficiently small constant, and let X1, . . . , Xn denote the rows of
M +Nn. If ‖(M +Nn)v‖ ≤ cn1/2, then we have |〈Xj , v〉| ≤ c for at least (1− c)n
rows. As the events Ij := |〈Xj , v〉| ≤ c are independent, we see from the Chernoff
inequality (applied to the sum

∑
j Ij of indicator variables) that it suffices to show

that
E(Ij) = P(|〈Xj , v〉| ≤ c) ≤ 1− 2c,

say, for all j. But this follows from Corollary 6.3 (after adjusting c slightly), noting
that each Xj is a translate (by a row of M) of a vector whose entries are iid copies
of x. �

Now we obtain some statements of inverse Littlewood-Offord type.

Definition 6.5 (Compressible and incompressible vectors). For any a, b > 0, let
Comp(a, b) be the set of unit vectors v such that there is a vector v′ with at most
an non-zero coordinates satisfying ‖v− v′‖ ≤ b. We denote by Incomp(a, b) the set
of unit vectors which do not lie in Comp(a, b).

Definition 6.6 (Rich vectors). For any ε, ρ > 0, let Sε,ρ be the set of unit vectors
v satisfying

sup
z∈C

P(|X · v − z| ≤ ε) ≥ ρ,

where X = (x1, . . . , xn) is a vector whose coefficients are iid copies of x.

Lemma 6.7 (Very rich vectors are compressible). For any ε, ρ > 0 we have

Sε,ρ ⊂ Comp

(
O(

1

nρ2
), O(

ε

ρ
)

)
.

Proof. We can assume ρ � n−1/2 since the claim is trivial otherwise. Let v ∈ Sε,ρ,
thus

P(|X · v − z| ≤ ε) ≥ ρ

for some z. From Lemma 6.1 we conclude that

(10) ε2
∫
w∈C:|w|≤ε−1

exp(−Θ(

n∑
j=1

‖wvj‖2j)) dw � ρ.

Let s > 0 be a small constant (independent of n) to be chosen later, and let A
denote the set of indices i for which |vi| ≥ sε. Then from (10) we have

ε2
∫
w∈C:|w|≤ε−1

exp(−Θ(
∑
j∈A

‖wvj‖2j )) dw � ρ.

Suppose A is non-empty. Applying Hölder’s inequality, we conclude that

ε2
∫
w∈C:|w|≤ε−1

exp(−Θ(|A|‖wvj‖2j )) dw � ρ

for some j ∈ A. By the pigeonhole principle, this implies that

(11) |{w ∈ C : |w| ≤ ε−1, |A|‖wvj‖2j ≤ k}| � k1/2ε−2ρ
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for some integer k ≥ 1.
If |A| � k, then the set in (11) has measure Θ(ε−2), which forces |A| � ρ−2.

Suppose instead that k ≤ s|A| for some small s′ > 0. Since |vj | ≥ sε, we have
s′/|vj | ≤ s′/sε. We will choose s′ sufficiently small to make sure that this ratio
is smaller than the constant c0 in Lemma 6.2. By Lemma 6.2, we see that the
intersection of the set in (11) with any ball of radius s′/|vj | has density at most√
k/|A|, and so by covering arguments we can bound the left-hand side of (11)

from above by � k1/2|A|−1/2ε−2. Thus we have |A| � ρ−2 in this case also. Thus
we have shown, in fact, that |A| � ρ−2 in all cases (the case when A is empty being
trivial).

Now we consider the contribution of those j outside of A. From (10) and Lemma
6.2 we have

ε2
∫
w∈C:|w|≤ε−1

exp(−Θ(
∑
j �∈A

Re(wvj)
2)) dw � ρ.

Suppose that A is not all of {1, . . . , n}. Using polar coordinates vj = rje
2πiθj as

before, we see from Hölder’s inequality that

ε2
∫
w∈C:|w|≤ε−1

exp(−Θ(r2Re(we2πiθj )2)) dw � ρ

for some j �∈ A, where r2 :=
∑

j �∈A r2j . After scaling and rotation invariance, we
conclude that ∫

w∈C:|w|≤1

exp(−Θ(
r2

ε2
Re(w)2)) dw � ρ.

The left-hand side can be computed to be at most O(ε/r). We conclude that
r � ε/ρ. If we let v′ be the restriction of v to A, we thus have ‖v − v′‖ � ε/ρ,
and the claim v ∈ Comp(O( 1

nρ2 ), O( ερ )) follows. (The case when A = {1, . . . , n} is

of course trivial.) �
Roughly speaking, Lemma 6.7 gives a complete characterization of vectors v such

that
sup
z∈C

P(|X · v − z| ≤ ε) ≥ ρ,

where ρ > Cn−1/2, for some large constant C. The lemma shows that such a vector

v can be approximated by a vector v′ with at most C′

ρ2 non-zero coordinates such

that ‖v − v′‖ ≤ C
′′
ε

ρ , where C ′, C
′′
are positive constants.

The dependence of parameters here are sharp, up to constant terms. Indeed,
in the Bernoulli case, the vector v = (1, . . . , 1, 0, . . . , 0) consisting of k 1’s lies in
S0,Θ(1/

√
k) and lies in Comp(a, 0) precisely when an ≥ k (cf. [7]). This shows that

the O( 1
nρ2 ) term on the right-hand side cannot be improved. On the other hand,

in the Gaussian case, observe that if ‖v‖ ≤ b, then X · v will have magnitude O(ε)
with probability O(ε/b), which shows that the term O( ερ ) cannot be improved.

Lemma 6.7 is only non-trivial in the case ρ ≥ Cn−1/2, for some large constant C.
To handle the case of smaller ρ, we use the following more difficult entropy bound
from [28].

Theorem 6.8 (Entropy of rich vectors). For any ε, ρ, there is a finite set S′
ε,ρ

of size at most n−(1/2−o(1))nρ−n + exp(o(n)) such that for each v ∈ Sε,ρ, there is
v′ ∈ S′

ε,ρ such that ‖v − v′‖∞ ≤ ε.
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Proof. See [28, Theorem 3.2]. �

7. Proof of Theorem 3.2: Preliminary reductions

We now begin the proof of Theorem 3.2. Let Nn,M, γ,A be as in that theorem.
As remarked in Section 5, we may assume x to be κ-controlled for some κ. We
allow all implied constants to depend on κ, γ, A. We may of course assume that n
is large compared to these parameters. We may also assume that

(12) P(‖Nn‖ ≥ nγ) ≤ 1

2

since the claim is trivial otherwise. By decreasing A if necessary, we may further
assume that

(13) P(‖Nn‖ ≥ nγ) ≤ n−A+o(1).

It will then suffice to show (assuming (12), (13)) that

P(sn(Mn) ≤ n−(2A+1)γ) � n−A+α+o(1)

for any constant α > 0 (with the implied constants now depending on α also), since
the claim then follows by sending α to zero very slowly in n.

Fix α, and allow all implied constants to depend on α. By perturbing A and α
slightly we may assume that A is not a half-integer; we can also take α to be small
depending on A. For example, we can assume that

(14) α < {2A}/2
where {2A} is the fractional part of 2A.

Using the trivial bound ‖Nn‖ ≥ sup1≤i,j≤n |xij |, we conclude from (12) and (13)
that

P(|xij | ≥ nγ for some i, j) ≤ min(
1

2
, n−A+o(1)).

Since xij are iid copies of x, the n2 events |xij | ≥ nγ are independent with identical
probability. It follows that

(15) P(|x| ≥ nγ) ≤ n−A−2+o(1).

Let F be the event that sn(Mn) ≤ n−(2A+1)γ , and let G be the event that
‖Nn‖ ≤ nγ . In view of (13), it suffices to show that

P(F ∧G) ≤ n−A+α+o(1).

Set

(16) b := βn1/2−γ

and

(17) a :=
β

log n
,

where β is a small positive constant to be chosen later. We then introduce the
following events:

• FComp is the event that ‖Mnv‖ ≤ n−(2A+1)γ for some v ∈ Comp(a, b).

• FIncomp is the event that ‖Mnv‖ ≤ n−(2A+1)γ for some v ∈ Incomp(a, b).

Observe that if F holds, then at least one of FComp and FIncomp holds. Theorem
3.2 then follows immediately from the following two lemmas.
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Lemma 7.1 (Compressible vector bound). If β is sufficiently small, then

P(FComp ∧G) ≤ exp(−Ω(n)).

Lemma 7.2 (Incompressible vector bound). We have

P(FIncomp ∧G) ≤ n−A+o(1).

In these lemmas we allow the implied constants to depend on β.
The proof of Lemma 7.1 is simple and will be presented in the next section. The

proof of Lemma 7.2 is somewhat more involved and occupies the rest of the paper.

8. Treatment of compressible vectors

If FComp ∧G occurs, then by the definition of Comp(a, b), there are unit vectors

v, v′ such that ‖Mnv‖ ≤ n−(2A+1)γ and v′ has support on at most an coordinates
and ‖v − v′‖ ≤ b.

By the triangle inequality and (16) we have

‖Mnv
′‖ ≤ n−(2A+1)γ + ‖Mn‖‖v − v′‖

≤ n−(2A+1)γ + nγb

≤ 2βn1/2.

A set N of unit vectors in Cm is called a δ-net if for any unit vector v, there is
a vector w in N such that ‖v − w‖ ≤ δ. It is well known that for any 0 < δ < 1, a
δ-net of size (Cδ−1)m exists, for some constant C independent of δ and m.

Using this fact, we conclude that the set of unit vectors with at most an non-zero
coordinates admits a b-net N of size at most

|N | ≤
(
n

an

)
(Cb−1)an,

Thus, if FComp ∧G occurs, then there is a unit vector v′′ ∈ N such that

‖Mnv
′′‖ ≤ 2βn1/2 + ‖Mn‖b = 3βn1/2.

On the other hand, from Theorem 6.4 we see (for β ≤ c/3) that for any fixed v′′,

P(‖Mnv
′′‖ ≤ 3βn1/2) ≤ exp(−c′n),

where c and c′ are the constants in Theorem 6.4.
By the union bound, we conclude that

P(FComp ∧G) ≤
(
n

an

)
(b−1)an exp(−c′n).

But from (16), (17) we see that the right-hand side can be made less than
exp(−c′n/2), given that β is sufficiently small. This concludes the proof of Lemma
7.1.

9. Treatment of incompressible vectors

We now begin the proof of Lemma 7.2. We now fix β and allow all implied
constants to depend on β.

Let Xk be the kth row vector of Mn, and let distk be the distance from Xk to the
subspace spanned by X1, . . . , Xk−1, Xk+1, . . . , Xn. We need the following, which is
a slight extension of a lemma from [20].
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Lemma 9.1. For any ε > 0, and any event E, we have

P({‖Mv‖ ≤ εbn−1/2 for some v ∈ Incomp(a, b)}∧E) ≤ 1

an

n∑
k=1

P({distk ≤ ε}∧E).

Proof. See [20, Lemma 3.5]. The arbitrary event E was not present in that lemma,
but one easily verifies that the proof works perfectly well with this event in place.

�
Applying this to our current situation with

(18) ε :=
1

β
n−2Aγ ,

we obtain

P(FIncomp ∧G) � log n

n

n∑
k=1

P({distk ≤ ε} ∧G).

To prove Lemma 7.2, it therefore suffices (by symmetry) to show that

P({distn ≤ ε} ∧G) � n−A+α+o(1).

Notice that there is a unit vector X∗
n orthogonal to X1, . . . , Xn−1 such that

(19) distk = |Xn ·X∗
n|.

If there are many such X∗
n, choose one arbitrarily. However, note that we can

choose X∗
n to depend only on X1, . . . , Xn−1 and thus be independent of Xn.

Let ρ := n−A+α. Let X be the random vector of length n whose coordinates
are iid copies of x. From Definition 6.6 (and the observation that Xn has the same
distribution as X after translating by a deterministic vector (namely the nth row
of the deterministic matrix M), we have the conditional probability bound

P(distn ≤ ε|X∗
n �∈ Sε,ρ) ≤ ρ = n−A+α.

Thus it will suffice to establish the exponential bound

P({X∗
n ∈ Sε,ρ} ∧G) ≤ exp(−Ω(n)).

Let

(20) J := �2A�
be the integer part of 2A. Let α1 > 0 be a sufficiently small constant (independent
of n and γ, but depending on α,A, J) to be chosen later. Set

(21) εj := n(γ+α1)jε =
1

β
n(γ+α1)jn−2Aγ

and

(22) ρj := n(1/2−α1)jρ = n(1/2−α1)jn−A+α

for all 0 ≤ j ≤ J .
By the union bound, it will suffice to prove the following lemmas.

Lemma 9.2. If α1 is sufficiently small, then for any 0 ≤ j < J , we have

(23) P({X∗
n ∈ Sεj ,ρj

} ∧ {X∗
n �∈ Sεj+1,ρj+1

} ∧G) ≤ exp(−Ω(n)).

Lemma 9.3. If α1 is sufficiently small, then we have

P(X∗
n ∈ SεJ ,ρJ

) ≤ exp(−Ω(n)).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



SMOOTH ANALYSIS OF THE CONDITION NUMBER 2349

10. Proof of Lemma 9.2

Fix 0 ≤ j < J . Note that by (14), we have

ρj ≤ n(J−1)/2n−A+α ≤ n−1/2−{2A}/2+α ≤ n−1/2.

We can then use Theorem 6.8 to conclude the existence of a set N of unit vectors
such that every vector in Sεj ,ρj

lies within εj in l∞ norm to a vector in N , and
with the cardinality bound

(24) |N | ≤ n−(1/2−o(1))nρ−n
j .

Suppose that the event in Lemma 9.2 holds, then we can find u ∈ N such that
‖u − X∗

n‖l∞ ≤ εj , and thus ‖u − X∗
n‖ ≤ n1/2εj . On the other hand, since X∗

n is
orthogonal to X1, . . . , Xn−1 and ‖Mn‖ � nγ , we have

(

n−1∑
i=1

|Xi · u|2)1/2 = (

n−1∑
i=1

|Xi · (u−X∗
n)|2)1/2

= ‖M(u−X∗
n)‖

� nγn1/2εj

� n1/2n−α1εj+1.

On the other hand, from (23) and Definition 6.6 we have

(25) P(|X ·X∗
n − z| ≤ εj+1) ≤ ρj+1

for all z ∈ C, where X = (x1, . . . , xn) consists of iid copies of x.
To conclude the proof, we will need the following lemma.

Lemma 10.1. If w is any vector with ‖w‖l∞ ≤ 1, then

P(|X · w| ≥ nγ+α1) � n−A.

Proof. Write w = (w1, . . . , wn) and X = (x1, . . . , xn). Observe from (13) that
with probability O(n−A−1) = O(n−A), all the coefficients in X are going to be of
magnitude at most nγ . Thus it suffices to show that

P(|w1x̃1 + . . .+ wnx̃n| ≥ nγ+α1) � n−A

where x̃1, . . . , x̃n are iid with law equal to that of x conditioned to the event |x| �
nγ . As x has mean zero and bounded second moment, one verifies from (13)
and Cauchy-Schwarz that the mean of the x̃i is O(n−(A+2)/2). Thus if we let
x′
i := x̃i −E(x̃i), we see that it suffices to show that

P(|w1x
′
1 + . . .+ wnx

′
n| ≥

1

2
nγ+α1) � n−A.

We conclude the proof by the moment method, using the estimate

E(|w1x
′
1 + . . .+ wnx

′
n|2k) �k n2kγ

for any integer k ≥ 0. This is easily verified by a standard computation (using
the hypothesis γ ≥ 1/2), since all the x′

i have vanishing first moment, a second
moment of O(1), and a jth moment of Oj(n

(j−2)γ) for any j > 2. Now take k to
be a constant, sufficiently large compared to A/α1. �
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We are now ready to finish the proof of Lemma 9.2. From Lemma 10.1 and the
bound ‖u−X∗

n‖ ≤ εj we see that

P(|X · (X∗
n − u)| ≥ εj+1) ≤ n−A ≤ ρj+1;

combining this with (25) using the triangle inequality, we see that

(26) sup
z∈C

P(|X · u− z| ≤ εj+1) � ρj+1.

We can therefore bound the left-hand side of (23) by

∑
u∈N :(26) holds

P
(
(

n−1∑
i=1

|Xi · u|2)1/2 � n1/2n−α1εj+1

)
.

Now suppose that u ∈ N obeys (26). If we have
∑n−1

i=1 |Xi ·u|2)1/2 � n1/2n−α1εj+1,
then the event |Xi · u| ≤ εj+1 must hold for at least n−O(n1−2α1) values of i. On
the other hand, from (26) we see that each of these events |Xi · u| ≤ εj+1 only
occurs with probability O(ρj+1). We can thus bound

P(

n−1∑
i=1

|Xi · u|2)1/2 � n1/2n−α1εj+1) ≤
(

n

n−O(n1−2α1)

)
(O(ρj+1))

n−O(n1−2α1)

� no(n)ρnj+1.

Applying (24), we can thus bound the left-hand side of (23) by

� n−(1/2−o(1))nρ−n
j ρnj+1 = n−(α1−o(1))n

and the claim follows.

11. Proof of Lemma 9.3

Suppose that X∗
n lies in SεJ ,ρJ

. Then by Lemma 6.7, we have

X∗
n ⊂ Comp(O(

1

nρ2J
), O(

εJ
ρJ

)).

Note from (22) and (20) that

1

nρ2J
= n2A−J−1+2α1J−2α ≤ n−α1

if α1 is sufficiently small. Thus, by arguing as in Section 8, the set Comp(O( 1
nρ2

J
),

O( εJρJ
)) has a O( εJρJ

)-net N in l2 of cardinality

|N | �
(

n
1

nρ2
J

)
(O(

εJ
ρJ

))
1

nρ2J = exp(o(n)).

If we let u ∈ N be within O( εJρJ
) of X∗

n, then we have |Xi · u| � εJ
ρJ

for all

1 ≤ i ≤ n− 1. Thus we can bound

P(X∗
n ∈ SεJ ,ρJ

) ≤
∑
u∈N

P(|Xi · u| �
εJ
ρJ

for all 1 ≤ i ≤ n− 1).

Now observe from (21), (22), (20) and the hypothesis γ ≥ 1/2 that

εJ
ρJ

= n−α+2α1Jn−(2A−J)(γ−1/2) ≤ n−α/2,
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say, if α1 is sufficiently small. Thus by Corollary 6.3 (or by a minor modification
of Theorem 6.4) we see that

P(|Xi · u| �
εJ
ρJ

for all 1 ≤ i ≤ n− 1) � exp(−Ω(n))

for each u ∈ N , and the claim follows.
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