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Abstract. We provide an algebraic formulation of the moving frame method for
constructing local smooth invariants on a manifold under an action of a Lie group.
This formulation gives rise to algorithms for constructing rational and replacement
invariants. The latter are algebraic over the field of rational invariants and play a
role analogous to Cartan’s normalized invariants in the smooth theory. The algebraic
algorithms can be used for computing fundamental sets of differential invariants.

Introduction

Group actions are ubiquitous in mathematics and arise in diverse fields of science
and engineering, including physics, mechanics, and computer vision. A central
problem is to compute a generating set of invariants and the relations (syzygies)
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among them. Algebraic invariant theory studies polynomial or rational invariants of
algebraic group actions [1], [17], [21], [41]. A typical example is the discriminant
of a binary form as an invariant of an action of the special linear group. The
differential invariants appearing in differential geometry are smooth functions
on a jet bundle that are invariant under a prolonged action of a Lie group. A
typical example is the curvature of a plane curve, invariant under the action of
the group of the isometries on the plane. Motivated by a wealth of applications,1

both algebraic and differential invariant theories have become in recent years
the subject of computational mathematics [46], [12], [14], [10], [31]. Differential
invariants are intimately linked with physics and, more generally, with the study
of differential systems, while algebraic theories give a proper setting to symbolic
algorithms.

The ambition of our work is to provide algebraic foundations to the moving
frame construction of differential invariants. The present paper deals with non-
differential aspects of the moving frame construction so that we avoid the explicit
introduction of jet bundles. We provide a novel presentation of the moving frame
construction of Fels and Olver [12] for local smooth invariants (Section 1). It
applies to a more general class of actions. For this presentation we can provide
a parallel algebraic construction (Section 2) that produces algebraic invariants.
Note that classical differential invariants, like curvatures, are algebraic functions
and we use algebraic invariants accordingly. The parts concerning the smooth and
local construction on one hand and the algebraic and global construction on the
other hand can be read independently, one shedding light on the other. We then
show that the algebraic setting offers a computational solution to the geometric
construction (Section 3). Two geometrical examples illustrate the application of
our algebraic approach to the computation of the fundamental set of well-known
differential invariants (Section 4).

In the differential geometric approach we consider actions of Lie groups on
smooth manifolds. We assume the action to be semiregular, i.e., that all orbits
have the same dimension. We consider the class of locally smooth functions,
i.e., functions which are smooth on some open subset of the manifold. The local
invariants are locally smooth functions invariant with respect to transformations
by the elements of the group close enough to the identity.

In the algebraic setting we consider rational actions of algebraic groups on an
affine space. We consider rational and algebraic functions. Algebraic invariants
are understood as elements that are algebraic over the field of rational invariants.
To connect the smooth and the algebraic approaches we consider rational actions
of real algebraic groups.

In both settings we construct tuples of invariants that have replacement prop-
erties and known relations on their components. The replacement property means
that we can rewrite any other invariants in terms of the components of the tuple

1 Here are a few references in different application fields that can serve as pointers: [33], [34], [6],
[14], [30], [4], [43], [38], [10, Chap. 5].
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by a simple substitution of the coordinate functions by the corresponding element
of the tuple. This thus provides canonical representations for invariants. Both con-
structions rely on a choice of a cross-section to the orbits. The cross-section can
be chosen with ample freedom, and it determines the relations on the constructed
invariants. It is shown that invariants can be identified with the functions on the
cross-section. The invariantization process is based on this identification. It is a
projection from the set of functions to the set of invariant functions.

In the geometric approach (Section 1) we start by defining the invariantization
process from the choice of a cross-section. We show that the local invariants can be
identified with the functions on the cross-section. The invariantization of a function
is then the local invariant that has the same restriction to the cross-section as the
function. Invariantized coordinate functions are showed to have the replacement
property, and to contain a fundamental set of invariants.

In the algebraic setting (Section 2) we start by defining the replacement invari-
ants as tuples of algebraic invariants. They depend on the cross-section. They are
the zeros of the graph-section ideal, i.e., the ideal of the intersection of a generic
orbit with the cross-section. The graph-section ideal is proved to be prime when
considered over the field of rational invariants. We can then deduce that the field of
algebraic invariants is isomorphic to the field of algebraic functions on the cross-
section. The isomorphism is computable by algebraic elimination. This is the basis
of the invariantization process.

In Section 3 we show how algebraic invariantization, for which we provide an
algorithm, gives a computational solution to smooth invariantization in the case
of a rational action of a real algebraic group. This provides an explicit connection
between Cartan’s moving frame method for the construction of local invariants [5],
[20], [18], [12], and the algebraic theory for rational invariants and the algorithms
to compute them [42], [41], [32], [23].

We conclude the paper with two geometric examples (Section 4). They illustrate
how a fundamental set of differential invariants can be computed using the algebraic
algorithms presented in the paper. The actions of the Euclidean and affine groups
on plane curves are investigated through the prolongation of the action on the
plane to the jet bundle. The Euclidean and affine curvatures, which are algebraic
functions, naturally arise in the replacement invariants for those actions.

Background for the Paper

Building on works [20], [24], [18], it was clearly established in [12] that Cartan’s
moving frame construction relies on a local group-equivariant map from a jet
bundle to the group itself, and that Cartan’s normalization procedure corresponds
to choosing a local cross-section to the orbits.2 A moving frame map defines an
invariantization process. Invariantization of coordinate functions produces a set of

2 This equivariant map is called moving frame in [12], and is called moving frame map in this paper.
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normalized invariants, which contains a fundamental set. Moreover, any smooth
invariant can locally be written in terms of the normalized invariants by a simple
substitution. There are two main drawbacks associated with this construction. First,
the local freeness3 assumption on the group action is necessary for the existence
of the moving frame map. Although this assumption is always satisfied on an
open dense subset, when the action is prolonged to the jet bundle of sufficiently
high order, it becomes an obstacle when one is interested only in the differential
invariants of low order. Second, the proof of the existence of a local moving frame
map relies on the implicit function theorem and is nonconstructive. The moving
frame map might not be explicitly computable.

Both difficulties are circumvented in Section 1 by defining invariantization
as a projection from the set of smooth functions onto the equivalence classes of
functions with the same value on the cross-section. We give a constructive proof
for the existence of a local coordinate cross-section through every point, provided
the action is semiregular.4 We show that in the case of locally free actions our
definition of invariantization is equivalent to the definition in [12].

An application of the moving frame method to classical invariant theory [1],
[21], [46] was proposed in [37], [26], [3], [27]. In these works, however, the
geometric formulation of the method is used without adapting it to the algebraic
nature of the problem. A purely algebraic formulation of the moving frame method
opens new possibilities of its application in classical invariant theory.

Section 2 is an algebraic formulation of the moving frame construction. It can
also be seen as a constructive counterpart to results in [41]. It is closely related
to the constructions introduced in [23] to provide an algorithm for computing a
generating set of rational invariants. The cross-sections that we introduce corre-
spond to the quasi-sections in [41] and extend the notion of cross-section that
appears in [42]. We indeed associate to a cross-section a degree that is the num-
ber of points of intersection with a generic orbit. Popov and Vinberg [41] show
that the field of rational functions on the cross-section is an algebraic extension
of degree d of the field of rational invariants. The field of algebraic functions
on the cross-section is thus isomorphic to the field of algebraic invariants. We
retrieve this result through the use of the replacement invariants. The new invari-
antization process provides a computational counterpart to this isomorphism. The
replacement invariants furthermore provide a generating set of algebraic invari-
ants with known relations among them and a canonical representation of algebraic
invariants.

Differential invariants play a crucial role in solving a variety of problems in
geometry and differential equations [29], [39], [20], [13], [25], [36]. The present
paper is actually part of a bigger project, in the line of [30], [22], where the algebra
of differential invariants and its application to differential elimination of symmetric
differential systems is investigated.

3 Local freeness means that the dimension of each orbit equals the dimension of the group.
4 Semiregularity means that all orbits have the same dimension.
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Outline of the Paper

In Section 1.1 we give a definition of a local action of a Lie group on a smooth
manifold. In Section 1.2 we define local invariants and discuss the existence of a
fundamental set of those. In Section 1.3 we show that a local cross-section passing
through any given point can easily be constructed. In Section 1.4 we show that
given a cross-section one can define an invariantization process, that is, a projection
from the set of smooth functions to the set of local invariants. In Section 1.5 we
show that invariantization provides a set of normalized invariants from which we
extract a fundamental set of local invariants. In Section 1.6 we review the Fels–
Olver invariantization process for free actions that is based on the moving frame
map [12]. We show that our cross-section-based definition is equivalent.

In Section 2.1 we give a definition of a rational action of an algebraic group.
Section 2.2 discusses rational and algebraic invariants. In Section 2.3 we intro-
duce the graph of the action, the cross-section and the graph-section ideal. The
replacement invariants are defined, in Section 2.4, as the zeros of this ideal. In
Section 2.5 we prove that algebraic closure of the field of rational invariants is
isomorphic to the field of algebraic functions on the cross-section. In Section 2.6
we use the replacement invariants to define an algebraic invariantization map that
is computable by algebraic elimination.

In Section 3.1 we give an algebraic description of the moving frame map and
argue in favor of the cross-section-based approach to smooth invariantization of
Section 1.4 as an appropriate setting for algebraic algorithms. We prove that the
normalized invariants of Section 1.5 are local smooth representatives of the ele-
ments of the replacement tuple of Section 3.2 and that algebraic invariantization
provides a computational approach to smooth invariantization in Section 3.3.

In Section 4 we illustrate on classical examples how our algebraic construction
can be used to compute differential invariants.

1. Local Invariants

We consider a local action of a Lie group on a smooth manifold and define local
invariants. A fundamental set of invariants is defined as a minimal functionally
generating set of invariants whose existence classically follows from the Frobe-
nius theorem. We extend the notions of cross-section and invariantization of [12]
to semiregular action. By basing the definition of invariantization directly on the
cross-section alone we remove the necessity of a free action. Besides, that allows
a reformulation in the algebraic context in Section 2. The invariantization process
allows us to produce a set of normalized invariants which contains a fundamental
set. Normalized invariants have the replacement property: any invariant can be
written in terms of them by substitution of each coordinate function with the cor-
responding normalized invariant. We conclude this section by making an explicit
comparison with the Fels–Olver moving frame construction [12].
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In this section we consider real smooth manifolds. All statements and construc-
tions from this section are applicable to complex manifolds. In the latter case all
maps and functions are assumed to be meromorphic.

1.1. Local Action of a Lie Group on a Smooth Manifold

We consider a Lie group G, with identity denoted by e and dimension κ , and a
smooth manifold Z of dimension n. Points on G and Z are noted λ̄ = (λ̄1, . . . , λ̄κ)

and z̄ = (z̄1, . . . , z̄n) while λ = (λ1, . . . , λκ) and z = (z1, . . . , zn) denote the
coordinate functions. We first review the necessary facts and terminology from
the theory of Lie group actions on smooth manifolds. Our presentation is based
on [16], [35].

Definition 1.1. A local action of a Lie group G on a smooth manifold Z is a
smooth map g : # → Z where # ⊃ {e} × Z is an open subset of G × Z and g
satisfies the following two properties:

1. g(e, z̄) = z̄ for all z̄ ∈ Z .
2. g(µ̄, g(λ̄, z̄)) = g(µ̄·λ̄, z̄) for all z̄ ∈ Z and λ̄, µ̄ ∈ G s.t. (λ̄, z̄) and (µ̄·λ̄, z̄)

are in #.

The orbit of z̄ ∈ Z is the image Oz̄ of the smooth map gz̄ : G &→ Z defined by
gz̄(λ̄) = g(λ̄, z̄). The domain of gz̄ is an open subset of G containing e.

For every point z̄ ∈ Z the differential dgz̄ : TG|e → TZ|z̄ maps the tangent
space of G at e to the tangent space of Z at the point z̄. The tangent space TG|e can
be identified with the Lie algebra g of G. If v̂ ∈ g, then v(z̄) = dgz̄(v̂) is a smooth
vector field on Z , called the infinitesimal generator of the G-action corresponding
to v̂. The set of all infinitesimal generators for a G-action form a Lie algebra, such
that the map v̂ → v is a Lie algebra homomorphism.

By exp(εv, z̄) : R×Z → Z we denote the flow of v. It is defined as the integral
curve of the vector field v with initial condition z̄. Every point of the connected
component of the orbit O0

z̄ ' z̄ can be reached from z̄ by a composition of flows
of a finite number of infinitesimal generators.

Let v̂1, . . . , v̂κ be a basis of the Lie algebra of G. Then the infinitesimal gener-
ators v1, . . . , vκ span the tangent space to the orbits at each point of Z .

Definition 1.2. An action of a Lie groupG on a smooth manifoldZ is semiregular
if all orbits have the same dimension.

Throughout this section the action is assumed to be semiregular. The dimension
of the orbits is denoted by s.
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1.2. Local Invariants

We give definitions of local invariants and fundamental sets of those. We discuss
how the existence of a fundamental set of local invariants follows from the existence
of a flat coordinate system.

Definition 1.3. A smooth function f , defined on an open subset U ⊂ Z , is a
local invariant if v( f ) = 0 for any infinitesimal generator v of the G-action on U .

Equivalently, f (exp(εv, z̄)) = f (z̄) for all z̄ ∈ U , all infinitesimal generators
v, and all real ε sufficiently close to zero. If the group G is connected, the function
f is continuous on Z , and the condition of Definition 1.3 is satisfied at every point
of Z , then f is a global invariant on Z due to [35, Prop. 2.6]. In what follows we
neither assume f to be continuous outside U , nor G to be connected.

A collection of smooth functions f1, . . . , fl are functionally dependent on a
manifold Z if for each point z̄ ∈ Z there exists an open neighborhood U and a
nonzero differentiable function F in l variables such that F( f1, . . . , fl) = 0 on
U . From the implicit function theorem it follows that f1, . . . , fl are functionally
dependent on Z if and only if the rank of the corresponding Jacobian matrix is
less than l at each point of Z . We say that functions f1, . . . , fl are independent of
Z if they are not dependent when restricted to any open subset of Z . Equivalently,
the corresponding Jacobian is nonzero on Z except, possibly, on a discrete set of
points. As it is commented in [35, p. 85] functional dependence and functional
independence on Z do not exhaust the range of possibilities, except for analytic
functions. Throughout the section the term independent functions means function-
ally independent functions. Finally, we say that f1, . . . , fl are independent at a
point z̄ ∈ Z if the rank of the corresponding Jacobian matrix is maximal at z̄. In-
dependence at z̄ implies independence on some open neighborhood of this point.
If U is an open subset of Z and f1, . . . , fn are independent at each point of Z ,
then these functions provide a coordinate system on U .

Definition 1.4. A collection of local invariants on U forms a fundamental set if
they are functionally independent, and any local invariant on U can be expressed
as a smooth function of the invariants from this set.

If the action is semiregular and the orbits are of dimension s, a fundamental set
consists of n − s local invariants. The proof of existence of a fundamental set of
invariants relies on the following line of argument. The Lie algebra of infinitesimal
generators provides an integrable distribution5 of smooth vector fields onZ , whose
integral manifolds are connected components of the orbits. For a semiregular action

5 An integrable distribution is a collection of smooth vector fields, whose span over the ring of
smooth functions is closed with respect to the Lie bracket.
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this distribution is of constant rank s, equal to the dimension of the orbits. It
follows from the Frobenius theorem that on an open neighborhood U of each point
there exists a coordinate system x1, . . . , xs, y1, . . . , yn−s such that the connected
components of the orbits onU are level sets of the last n−s coordinates [44, p. 262]
and [35, Theorem 1.43]. Such a coordinate system is called flat, or straightening.
The coordinate functions y1, . . . , yn−s are thus local invariants. Using the fact that
they are part of a coordinate system, one shows that they form a fundamental set
(see, for instance, [35, Theorem 2.17]).

One can thus obtain a fundamental set by finding n − s independent solutions
for the system of linear, first-order partial differential equations vi ( f ) = 0, i =
1..κ , where v1, . . . , vκ is a basis of infinitesimal generators. The invariantization
process described in Section 1.4 provides an approach for obtaining a fundamental
set of invariants that does not require integration. Invariantization and, therefore,
fundamental sets of local invariants can effectively be computed either by the
algorithms of Section 2.6, in the case of a rational action of an algebraic group
(see Section 3), or by the moving frame method of [12], in the case of a locally
free action of a Lie group (see Section 1.6).

1.3. Local Cross-Section

We define local cross-sections to the orbits. We show that a local cross-section
passing through any given point can easily be constructed. As suggested in [12,
Sect. 4], the definition and results are generalized to semiregular actions.

Definition 1.5. An embedded submanifold P of Z is a local cross-section to the
orbits if there is an open set U of Z such that:

– P intersectsO0
z̄ ∩U at a unique point for all z̄ ∈ U , whereO0

z̄ is the connected
component of Oz̄ ∩ U , containing z̄;

– for all z̄ ∈ P∩U ,O0
z̄ andP are transversal and of complementary dimensions.

The second condition in the above definition is equivalent to the following
condition on tangent spaces: Tz̄Z = Tz̄P ⊕ Tz̄Oz̄ , for all z̄ ∈ P ∩ U .

An embedded submanifold of codimension s can be locally defined as the zero
set of s independent functions. Assume that h1(z), . . . , hs(z) define P on U . The
tangent space at a point ofP is the kernel of the Jacobian matrix Jh at this point. As
a basis of infinitesimal generators v1, . . . , vκ span the tangent space to the orbits
at each point, the submanifold P is a local cross-section if and only if the span of
v1, . . . , vκ has a trivial intersection with the kernel of Jh on P . Equivalently,

the rank of the s × κ matrix
(

vj (hi )
) j=1..κ

i=1..s = Jh · V equals s on P, (1)

where V is the n × κ matrix, whose i th column consists of the coefficients of
the infinitesimal generator vi in a local coordinate system. In the next theorem we
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prove the existence of a local cross-section through every point. The first paragraph
of the proof provides a simple practical algorithm to construct a coordinate local
cross-section through a point.

Theorem 1.6. Let G act semiregularly on Z . Through every point z̄ ∈ Z there
is a local cross-section that is defined as the level set of s coordinate functions.

Proof. Let V be the n×κ matrix of the coefficients of the infinitesimal generators
v1, . . . , vκ relative to a coordinate system z1, . . . , zn . The rank of V equals the
dimension of the orbits s. Thus there exist s rows of V that form an s ×κ submatrix
V̂ of rank s at the point z̄ and, therefore, it has rank s on an open neighborhoodU1 '
z̄. Assume that these rows correspond to coordinates zi1 , . . . , zis . Let (c1, . . . , cn)

be coordinates of the point z̄, then functions h1 = zi1 − ci1 , . . . , hs = zis − cis

satisfy condition (1). The common zero set P of these functions contains z̄.
It remains to prove that there exists a neighborhood U ' z̄ such that P in-

tersects each connected component of the orbits on U at a unique point. Let
x1, . . . , xs, y1, . . . , yn−s be a flat coordinate system in an open neighborhood
U2 ' z̄. Due to [35, Theorem 2.17] y1, . . . , yn−s are independent local invari-
ants. We will show that functions zi1 , . . . , zis , y1, . . . , yn−s provide a coordinate
system, an open set U = U1 ∩U2 containing z̄. Without loss of generality we may
assume that {zi1 , . . . , zis } = {z1, . . . , zs} are the first s coordinates. In terms of flat
coordinates zi = Fi (x, y), i = 1..s, where Fi are smooth functions on U2. Since
vi (yj ) = 0 for i = 1..κ, j = 1..n − s, then

(vj (zi ))
j=1..κ
i=1..s =

(

∂ Fi

∂xr

)r=1..s

i=1..s
· (vj (xr ))

j=1..κ
r=1..s . (2)

We note that (vi (zj ))
i=1..κ
j=1..s = V̂ is s ×κ matrix of rank s at each point of U . Matrix

(vj (xr ))
j=1..κ
r=1..s also has maximal rank s onU . Therefore the matrix (∂ Fi/∂xr )

r=1..s
i=1..s is

invertible on U . By looking at the rank of the corresponding Jacobian matrix in flat
coordinates, we conclude that functions z1, . . . , zs, y1, . . . , yn−s are independent
at each point of U , and therefore define a coordinate system on U .

By construction, all points on P have the same z-coordinates. Thus two distinct
points of P must differ by at least one of the y-coordinates. Since y coordinates
are constant on the connected components of the orbits on U , distinct points of P
belong to distinct connected components of the orbits.

1.4. Invariants as Smooth Functions on the Cross-Section

As introduced in [12], an invariantization process is a projection from the set of
smooth functions onU to the set of local invariants. A cross-section onU defines an
invariantization process: a local cross-section defines equivalence relationship on
the ring of smooth functions any class of which has a single representative that is a
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local invariant. The present definition of the invariantization process differs from
the one in [12] in that it depends directly on the cross-section and, consequently,
does not require the action to be free.

Definition 1.7. Let P be a local cross-section to the orbits on an open set U . Let
f be a smooth function on U . The invariantization ῑ f of f is the function on U
that is defined by ῑ f (z̄) = f (z̄0) for each z̄ ∈ U , where z̄0 = O0

z̄ ∩ P .

In other words, the invariantization of a function f is obtained by spreading the
values of f on P along the orbits. The next theorem shows that ῑ f is the unique
local invariant with the same values on P as f .

Theorem 1.8. Let a Lie group G act semiregularly on a manifold Z , and let P
be a local cross-section. Then ῑ f is the unique local invariant defined on U whose
restriction to P is equal to the restriction of f to P . In other words, ῑ f |P = f |P .

Proof. For any z̄ ∈ U and small enough ε the point exp(εv, z̄) belongs to the
same connected componentO0

z̄ . Let z̄0 = O0
z̄ ∩P . Then ῑ f (exp(εv, z̄)) = f (z̄0) =

ῑ f (z̄), and thus ῑ f is a local invariant. By definition ῑ f (z̄0) = f (z̄0) for all z̄0 ∈ P .
In order to show its smoothness we write ῑ f in terms of flat coordinates

x1, . . . , xs, y1, . . . , yn−s . By probably shrinking U , we may assume that P is given
by the zero-set of smooth independent functions h1(x1, . . . , xs, y1, . . . , yn−s), . . . ,

hs(x1, . . . , xs, y1, . . . , yn−s). From the transversality condition (1) and local in-
variance of y’s, it follows that the first s columns of the Jacobian matrix Jh form
a submatrix of rank s. Thus the cross-section P can be described as a graph
x1 = p1(y1, . . . , yn−s), . . . , xs = ps(y1, . . . , yn−s), where p1, . . . , ps are smooth
functions. Then the function

ῑ f (x1, . . . , xs, y1, . . . , yn−s)

= f (p1(y1, . . . , yn−s), . . . , ps(y1, . . . , yn−s) , y1, . . . , yn−s)

is smooth, as a composition of smooth functions.
To prove the uniqueness, assume that an invariant function q has the same

values on P as f , then the invariant function h = ῑ f − q has zero value on P . A
point z̄ ∈ U can be reached from z̄0 = P ∩ O0

z̄ by a composition of flows defined
by infinitesimal generators. Without loss of generality, we may assume that it can
be reached by a single flow z̄ = exp(εv, z̄0), where exp(εv, z̄0) ⊂ O0

z̄ for all
0 ≤ ε ≤ ε. From the invariance of h it follows that h(exp(εv, z̄0)) = h(z̄0) = 0.
Thus q(z) = ῑ f (z) on U .

Theorem 1.8 allows us to view the invariantization process as a projection from
the set of smooth functions on U to the equivalence classes of functions with the
same value on P . Each equivalence class contains a unique local invariant. The
algebraic counterpart of this point of view is described in Section 2.6.
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The invariantization of differential forms can be defined in a similar implicit
manner. It has been shown in [12], [28] that the essential information about the
differential ring of invariants and the structure of differential forms can be com-
puted from the infinitesimal generators of the action and the equations that define
the cross-section, without explicit formulas for invariants.

1.5. Normalized and Fundamental Invariants

The normalized invariants are defined in [12] as the invariantizations of the coordi-
nate functions. They are proved to have the replacement property: every invariant
can be rewritten in terms of them by substituting coordinates functions by the cor-
responding invariants. Since our definition of invariantization differs from [12] we
restate and prove the replacement theorem. We then show that a set of normalized
invariants contains a fundamental set of local invariants.

In the algebraic context the set of normalized invariants corresponds to a re-
placement invariant defined in Section 2.6. This correspondence is made precise
by Proposition 3.6.

All results of this subsection are stated under the following assumptions. The
manifold P is a local cross-section to the s-dimensional orbits of a semiregular
G-action on an open U ⊂ Z . The corresponding invariantization map is ῑ. The
set U is a single coordinate chart on Z with coordinate functions z1, . . . , zn . By
possibly shrinkingU we may assume thatP is the zero-set of s independent smooth
functions.

Theorem 1.9. If f (z1, . . . , zn) is a local invariant on U , then f (ῑz1, . . . , ῑzn) =
f (z1, . . . , zn).

Proof. Since ῑz1|P = z1|P , . . . , ῑzn|P = zn|P , then f (ῑz1, . . . , ῑzn)|P =
f (z1, . . . , zn)|P . Thus functions f (ῑz1, . . . , ῑzn) and f (z1, . . . , zn) are both lo-
cal invariants and have the same value on P . By Theorem 1.8 they coincide.

Lemma 1.10. LetP be a local cross-section onU , given as the zero-set of s inde-
pendent functions h1, . . . , hs . Then h1(ῑz1, . . . , ῑzn) = 0, . . . , hs(ῑz1, . . . , ῑzn) =
0 on U . If, for a differentiable n-variable function f , we have f (ῑz1, . . . , ῑzn) ≡ 0
on an open subset of U , then there exists an open set W ⊂ U such that W∩P .= ∅
and at each point of W ∩ P the functions f , h1, . . . , hs are not independent.

Proof. Since h(ῑz)|P = ῑh(z)|P and both functions are invariants, one has
h(ῑz) = ῑh(z) by Theorem 1.8. The latter is zero since h|P = 0. Assume now
that there exits a differentiable function f and an open subset of V ⊂ U such
that f (ῑz1, . . . , ῑzn) ≡ 0 on V . Then f (ῑz1, . . . , ῑzn) ≡ 0 at every point obtained
from point in V by the cation of an element in G. Thus there exists an open
W ⊃ V such that f (ῑz1, . . . , ῑzn) ≡ 0 on W and W ∩ P .= ∅. We conclude that
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f (z1, . . . , zn) ≡ 0 on P ∩W . In this case f cannot be independent of h1, . . . , hs

at any point of P ∩ W since, otherwise, this would imply that P is of dimension
less than n − s.

Theorem 1.11. Let P be a local cross-section on U . The set {ῑz1, . . . , ῑzn} of the
invariantizations of the coordinate functions z1, . . . , zn contains a fundamental
set of n − s local invariants on U .

Proof. Due to the implicit function theorem, after a possible shrinking U and
renumbering of the coordinate functions, we may assume that P is the zero-set of
the functions h1(z) = z1 − p1(zs+1, . . . , zn), . . . , hs(z) = zs − ps(zs+1, . . . , zn).
Therefore ῑz1 = p1(ῑzs+1, . . . , ῑzn), . . . , ῑzs = pk(ῑzs+1, . . . , ῑzn)by Theorem 1.8.
From Theorem 1.9 we can conclude that any local invariant can be written in terms
of ῑzs+1, . . . , ῑzn . For every differentiable nonzero (n − s)-variable function f , the
functions f (zs+1, . . . , zn), h1(z), . . . , hs(z) are independent at every point of U .
By Lemma 1.10, ῑzs+1, . . . , ῑzn are thus functionally independent on U .

Example 1.12 (Rotation). We consider the linear action of SO(2), the group of
2 × 2 orthogonal matrices with determinant 1, on R2. The action of an element of
the group is a rotation with the origin as center. The orbits are the circles centered at
the origin, and the origin itself. The action is thus semiregular onZ = R2\{(0, 0)}.

The positive z1-axis, P = {(z1, z2)|z2 = 0, z1 > 0}, is a local cross-section on
Z . The invariantization of the coordinate functions are the functions ῑz1 and ῑz2

that associate to a point (z̄1, z̄2) the coordinates of the intersection of its orbit with
the cross-section. Thus

ῑz1 : (z1, z2) &→
√

z2
1 + z2

2 and ῑz2 : (z1, z2) &→ 0.

By Theorem 1.11, all local invariants can be written in terms of
√

z2
1 + z2

2.

Example 1.13 (Translation + reflection). We next consider the direct product of
the additive group R with the two-element group {−1, 1}. This is a one-dimensional
Lie group with two connected components.

We take its action on the plane as translation parallel to the first coordinate axis
and reflection with respect to this axis. It is defined by

g : (R × {−1, 1}) × R
2 → R

2,

((λ1, λ2), (z1, z2)) &→ (z1 + λ1, λ2z2).

The action is semiregular on Z = R2. The z1-axis is an orbit and outside it the
orbits have two components consisting of two straight lines parallel to the z1-axis.

For any smooth function h : R → R the manifoldP = {(h(z2), z2) | z2 ∈ R} is
a local cross-section onZ: it intersects each connected component of an orbit once.
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More precisely, the point of intersection of the cross-section and the connected
component of the orbit containing (z̄1, z̄2) is (h(z̄2), z̄2). Therefore,

ῑz1 : (z1, z2) &→ h(z2) and ῑz2 : (z1, z2) &→ z2.

According to Theorem 1.9, any local invariant f : Z→R thus satisfies f (z1, z2)=
f (h(z2), z2). We can conclude here that f does not depend on z1. Note that z2 is
invariant under the action of the connected component of the group that contains
the identity and, therefore, is a local invariant of the group action. It is not a global
invariant, however, as it is not invariant under the action of the entire group.

The previous two examples illustrate that computing normalized invariants
amounts to finding the intersections point of a generic orbit with the cross-section.
The approach introduced in [12] and reproduced in the next section allows us to
do this in a systematic manner.

1.6. Moving Frame Map

We show that the invariantization map described in Section 2.6 extends the invari-
antization process described in [12] to the case of nonfree semiregular actions. The
latter is based on a localG-equivariant map ρ : U → G from an open subsetU ⊂ Z
to an open neighborhood of e ∈ G. If the action is locally free the existence of ρ

is proved by the implicit function theorem. This theorem is not constructive and,
therefore, the map might not be explicitly computable. We review the Fels–Olver
construction, and prove that in the case of locally free actions it is equivalent to
the one presented in Section 1.3.

Definition 1.14. An action of a Lie group G on a manifold Z is locally free if
for every point z̄ ∈ Z its isotropy group G z̄ = {λ̄ ∈ G | λ̄ · z̄ = z̄} is discrete.

Local freeness implies semiregularity of the action with the dimension of each
orbit being equal to the dimension of the group. Theorem 4.4 from [12] can be
restated as follows.

Theorem 1.15. A Lie group G acts locally freely on Z if and only if every point
of Z has an open neighborhood U such that there exists a map ρ : U → G that
makes the following diagram commute. Here the map µ̄ &→ µ̄ · λ̄−1 is chosen for
the action of G on itself, and λ̄ is taken in a suitable neighborhood (depending on
the point of U) of the identity in G,

Uρ

!!

λ̄ "" U
ρ

!!
G λ̄

"" G
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The map ρ is locally G-equivariant, that is, ρ(λ̄ · z̄) = ρ · λ̄−1 for λ̄ sufficiently
close to the identity, and is called a moving frame map. IfP is a local cross-section,
then the equation

ρ(z̄) · z̄ ∈ P (3)

uniquely defines ρ(z̄) in a sufficiently small neighborhood of the identity. In par-
ticular, ρ(z̄0) = e for all z̄0 ∈ P . Reciprocally, a moving frame map defines a local
cross-section to the orbits: P = {ρ(z̄) · z̄ | z̄ ∈ U}.

In local coordinates, condition (3) provides implicit equations for expressing
the group parameters in terms of the coordinate functions on the manifold. The
local existence of smooth solutions is guaranteed by the transversality condition
and the implicit function theorem when the group acts locally freely. Since the
implicit function theorem is not constructive, we might nonetheless not be able to
obtain explicit formulas for the moving frame map.

In [12, Def. 4.6] the invariantization of a function f on U is defined as the
function whose value at a point z̄ ∈ U is equal to f (ρ(z̄) · z̄). The next proposition
shows that this definition of invariantization based on a moving frame map is
equivalent to Definition 1.7 given in terms of a cross-section. The advantage of the
latter definition is that it is not restricted to locally free actions.

Proposition 1.16. Let ρ be a moving frame map on U . Then

ῑ f (z̄) = f (ρ(z̄) · z̄).

Proof. Local invariance of f (ρ(z) · z) follows from the local equivariance of ρ,
i.e., for λ̄ sufficiently close to the identity,

f (ρ(λ̄ · z̄) · (λ̄ · z̄)) = f (ρ(z̄)λ̄−1 · (λ̄ · z̄)) = f (ρ(z̄) · z̄).

Since ρ(z0) = e, then f (ρ(z̄0) · z̄0) = f (z̄0) for all z̄0 ∈ P . Thus f (ρ(z) · z) is
locally invariant and equals f , when restricted to P . The conclusion follows from
Theorem 1.8.

Example 1.17 (Rotation). We consider again the linear action of SO(2) de-
scribed in Example 1.12. A group element acts as a rotation in the plane with
the origin as center. The positive z1-axis, P = {(z̄1, z̄2) | z2 = 0, z1 > 0}, is
a local cross-section on Z = R2\{(0, 0)}. The associated moving frame map ρ

takes a point (z̄1, z̄2) to the element of the group whose action is the rotation that
brings (z̄1, z̄2) to the positive z1-axis. We described already in Example 1.12 the
resulting normalized invariants.

In general though, when the geometry of the orbits is not simple, one relies on
a local parametrization of the group. Condition (3) can then be expressed in terms
of equations which are meant to be solved for the group parameters.
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More precisely, if ϕ : # ⊂ G → Rs is a coordinate system on #, an open set
of G that contains e, we introduce, often tacitly,

ρ̃ = ϕ ◦ ρ : U → R
s,

where the open set U is contained in the domain of definition of ρ. If the local
cross-sectionP is defined onU as the zero-set of the independent smooth functions
h1, . . . , hs , then (3) translates into equations

h1(g(ϕ−1(ρ̃(z)), z)) = 0, . . . , hs(g(ϕ−1(ρ̃(z)), z)) = 0.

Example 1.18 (Rotation). We resume Example 1.12 using the usual local param-
etrization of SO(2),

ϕ−1 : ]−π, π [ → SO(2)\{−Id},

θ &→
(

cos θ −sin θ

sin θ cos θ

)

.

Then (3) becomes z1 sin θ + z2 cos θ = 0. Taking in account that z1 cos θ −
z2 sin θ > 0, we obtain

ρ̃(z1, z2) =



















































− tan−1

(

z2

z1

)

for z1 > 0,

−π/2 for z1 = 0, z2 > 0,

−π − tan−1

(

z2

z1

)

for z1 < 0, z2 > 0,

π/2 for z1 = 0, z2 < 0,

π − tan−1

(

z2

z1

)

for z1 < 0, z2 < 0.

In Section 3 we provide an algebraic approach to invariantization that applies to
rational actions. This example falls into this category if we consider the rational
parametrization of SO(2):

ϕ−1 : R → SO(2)\ {−Id} ,

t &→









1 − t2

1 + t2
− 2t

1 + t2

2t
1 + t2

1 − t2

1 + t2









.

Then

ρ̃(z1, z2) =











0 when z2 = 0 and z1 > 0,

z1 −
√

z2
1 + z2

2

z2
when z2 .= 0.
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In both cases the domain of definition of ρ̃ is Z\{(z1, 0) | z1 < 0} while the
domain of definition of ρ is Z . Its expression is

ρ(z1, z2) =









z1
√

z2
1 + z2

2

z2
√

z2
1 + z2

2

− z2
√

z2
1 + z2

2

z1
√

z2
1 + z2

2









.

From (ῑz1, ῑz2) = ρ(z) · z we retrieve

ῑz1 : (z1, z2) &→
√

z2
1 + z2

2 and ῑz2 : (z1, z2) &→ 0.

Example 1.19 (Scaling). We consider the scaling action of the multiplicative
group R∗ on R2,

g : R
∗ × R

2 → R
2,

(λ, z1, z2) &→ (λz1, λz2).

The orbits consist of the punctured straight lines through the origin and the origin
itself. The action is free on Z = R2\{(0, 0)}.

The manifold P = {(1, z2) | z2 ∈ R} ⊂ R2 intersects each orbit of U =
Z\{(0, z2) | z2 ∈ R} once. It is a local cross-section on U . Condition (3) becomes
λz1 = 1 and leads to the associated moving frame map

ρ : U → R
∗,

(z1, z2) &→ 1
z1

.

The normalized invariants, i.e., the invariantizations of the coordinate functions,
are thus

(ῑz1, ῑz2) = g (ρ(z1, z2), (z1, z2)) =
(

1,
z2

z1

)

.

The invariantization of a function f on U is defined by ῑ f (z1, z2) = f (1, z2/z1).
In agreement with Theorem 1.8, ῑ f is the unique smooth function that agrees with
f on P . In particular, for any local invariant f , f (z1, z2) = f (1, z2/z1).

If one is interested in having a local cross-section on the whole of Z we can
consider the unit circle P = {(z1, z2) ∈ Z | z2

1 + z2
2 = 1}. It intersects each orbit

of Z twice, but only once each connected component. Condition (3) becomes
λ2(z2

1 + z2
2) = 1. We have to choose the connected component of the identity in G

as the image of the moving frame map

ρ : Z → R
∗
>0,

(z1, z2) &→ 1
√

z2
1 + z2

2

.
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The resulting normalized invariants are defined everywhere on Z , yet are invariant
only under the action of R∗

>0, the connected component of identity in the group

(ῑz1, ῑz2) =
(

z1
√

z2
1 + z2

2

,
z2

√

z2
1 + z2

2

)

.

Example 1.20 (Translation + reflection). We resume Example 1.13 where we
considered the action of the direct product of the additive group R with the two-
element group {−1, 1} defined by

g : (R × {−1, 1}) × R
2 → R

2,

((λ1, λ2), (z1, z2)) &→ (z1 + λ1, λ2z2).

Outside the z1-axis, the orbits have two connected components. For any smooth
function h : R → R the manifold P = {(h(z2), z2) | z2 ∈ R} is a local cross-
section on Z .

Condition (3) becomes z1 +λ1 = h(λ2z2), and provides the moving frame map
defined by

ρ(z1, z2) = (h(z2) − z1, 1),

which takes its values in the connected component R × {1} of the identity in G.
By Proposition 1.16 the normalized invariants are

(ῑz1, ῑz2) = g(ρ(z1, z2), (z1, z2)) = (h(z2), z2).

In agreement with Theorem 1.8, ῑz1 = h(z2) and ῑz2 = z2 are the unique smooth
local invariants that agree with z1 and z2 on P .

The coordinate function z2 is a local invariant (Definition 1.3) and all local
invariants can be written as smooth functions of z2 (Theorem 1.9). Note though
that it is not invariant under the full group.

Thus the moving frame map offers an approach to invariantization that is con-
structive up to the resolution of the implicit equations given by (3). We pro-
vide an algebraic formulation of the moving frame map in Section 3.1. If one
can obtain the map ρ explicitly, the invariantization map can be computed using
Proposition 1.16. Even in this favorable case, the expression for ρ often involves
algebraic functions which can prove difficult to manipulate symbolically. The
purely algebraic approach proposed in Section 2.6 is more suitable for symbolic
computation.

2. Algebraic Invariants

In this section we provide a global algebraic counterpart to the local smooth con-
struction presented in Section 1. It can be seen also as a constructive alternative
to [41].
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To a cross-section we associate a graph-section ideal. It is the ideal of the
intersection of a generic orbit with the cross-section. As such it is given as an ideal
in the polynomial ring over the field of rational functions. We show that the field
of definition of the graph-section ideal is actually the field of rational invariants
and that the ideal is prime over this field.

The replacement invariants are defined as the zeros of the graph-section ideal.
A replacement invariant is a tuple of algebraic invariants in terms of which rational
and algebraic invariants can trivially be written. It consequently generates, over K,
a field extension of the field of rational invariants. The ideal of the cross-section is
the set of relations among the components of a replacement invariant. Accordingly,
the field of algebraic invariants is isomorphic to the field of algebraic functions on
the cross-section. The invariantization process introduced in this section makes the
isomorphism computable with an algorithm that is based on algebraic elimination.
In the next section we shall see that the replacement invariants are the analogues
of the normalized invariants while the algebraic invariantization provides a com-
putational solution to smooth invariantization.

We shall assume in this section that the base field K is of characteristic zero and
K̄ is its algebraic closure. The definitions we give attempt at being pragmatic from
a computational point of view, and ready for use for implementation in a computer
algebra system. In order to keep the presentations reasonably self-contained, we
included some proofs from [23].

2.1. Rational Action of an Algebraic Group

We consider an algebraic group that is defined as an algebraic varietyG in the affine
space K̄l . The group operation and the inverse are given by polynomial maps. The
neutral element is denoted by e. We shall consider an action of G on an affine space
Z = K̄n .

Throughout the section λ = (λ1, . . . , λl) and z = (z1, . . . , zn) denote indeter-
minates while λ̄ = (λ̄1, . . . , λ̄l) and z̄ = (z̄1, . . . , z̄n) denote points in G ⊂ K̄l

and Z = K̄n , respectively. The coordinate ring of Z and G are, respectively,
K[z1, . . . , zn] and K[λ1, . . . , λl]/G where G is a radical unmixed dimensional
ideal. By λ̄ · µ̄ we denote the image of (λ̄, µ̄) under the group operation while λ̄−1

denotes the image of λ̄ under the inversion map.
In [41] a rational action of an algebraic group G on Z is a homomorphism

from G to the group of birational automorphisms of Z such that there is a rational
mapping G × Z → Z that agrees with it on some dense open subset. On an open
dense set of Z such a homomorphism can be defined by a rational map. Because
this latter rational mapping defines the action uniquely, we choose a definition
for a rational action that is closer to algebraic computations. Our first condition
actually imposes that we consider good actions.

Definition 2.1. A rational action of an algebraic group G on the affine space
Z is a rational map g : G × Z → Z that satisfies the following two
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properties:

1. g(e, z̄) = z̄ for all z̄ ∈ Z .
2. g(µ̄, g(λ̄, z̄)) = g(µ̄ · λ̄, z̄), whenever both (λ̄, z̄) and (µ̄ · λ̄, z̄) are in the

domain of definition of g.

We may assume that the action is defined by rational functions with a common
denominator h. Let H = {1, h, h2, . . .} be the semigroup generated by h, then
H−1K[λ, z] denotes the localization of the polynomial ring at H ,

g(λ̄, z̄) = (g1(λ̄, z̄), . . . , gn(λ̄, z̄))

for g1, . . . , gn ∈ H−1
K[λ1, . . . , λl , z1, . . . , zn]. (4)

We make the following additional assumptions about the group action.

Assumption 2.2.

1. For all z̄ ∈ Z , h(λ, z̄) ∈ K[λ] is not a zero-divisor modulo G. This says that
the domain of definition of gz̄ : λ̄ &→ g(λ̄, z̄) contains a dense open set of G.

2. For all λ̄ ∈ Z , h(λ̄, z) ∈ K[z] is different from zero. In other words, for
every element λ̄ ∈ G there exists z̄ ∈ Z , such that (λ̄, z̄) is in the domain of
definition of g.

2.2. Rational and Algebraic Invariants

We base our approach on rational invariants. Algebraic invariants are elements
that are algebraic over the field of rational invariants. Such invariants arise in
differential geometry, as illustrated in Section 4.

A rational invariant is a rational function r : Z → Z which is constant along
an orbit: r(g(λ̄, z̄)) = r(z̄) where defined. We give an equivalent definition that is
closer to algebraic computation and following [11, Sect. 2.1].

Definition 2.3. A rational function r ∈K(z) is a rational invariant if r(g(λ, z)) =
r(z) mod G. In other words, if r = p/q , with p, q ∈ K[z] of degree d or less, r is
a rational invariant if

hd(λ, z)(q(g(λ, z))p(z) − p(g(λ, z))q(z)) ∈ G.

Basic results about rational invariants of a rational action are presented in [41].
The set of rational invariants forms a field that we denote by K(z)G . Its transcen-
dence degree over K is the codimension of the generic orbits of the rational action.
The number of generating rational invariants is thus at least the codimension of the
generic orbits. Though the emphasis of computational invariant theory has been
on polynomial invariants, rational invariants can also be interesting in application
as they separate generic orbits [42], [41].
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Definition 2.4. An algebraic invariant is an element of the algebraic closure of
K(z)G that we denote K(z)

G
.

We choose to write K(z)
G

and not K(z)G for aesthetic reasons, though the latter
can be considered as more appropriate.

In Section 2.4 we introduce replacement invariants as specific n-tuples of alge-
braic invariants. The rewriting of a rational or algebraic invariant in terms of them
is a simple replacement of the coordinate functions by the corresponding elements
of the tuple. The relationships on the components of a replacement invariants are
provided by the equations of the cross-section, defined in the next section. They
can thus be chosen with a lot of freedom.

2.3. Graph of the Action and Cross-Section

Central in the construction of [23], as well as in [32], [9], [42], [41], is the ideal

O = (G + (Z − g(λ, z))) ∩ K[z, Z ],

where Z = (Z1, . . . , Zn) is a new set of variables and (Z − g(λ, z)) stands for
the ideal (Z1 − g1(λ, z), . . . , Zn − gn(λ, z)) that is defined in H−1K[λ, z, Z ].
The ideal G + (Z − g(λ, z)) is also considered in H−1K[λ, z, Z ]. Note that
(G + (Z − g(λ, z)) ∩ K[λ, z, Z ] = G + (h Zi − hgi (λ, z)) : h∞. The variety of
O is the Zariski closure of the graph of the action6

O = {(z̄, z̄′) | ∃ λ̄ ∈ G s.t. z̄′ = g(λ̄, z̄)} ⊂ Z × Z.

The set O is the projection of the image of the rational map G ×Z → G ×Z ×Z
that associates (λ̄, z̄, g(λ̄, z̄)) to (λ̄, z̄). As the corresponding elimination ideal, O
is the ideal of O.

We mainly use the extension Oe of O in K(z)[Z ]. The ideal Oe is unmixed
dimensional [41, Lemma 2.2]. Its dimension s is the dimension of the generic
orbits.

Geometrically speaking, a cross-section of degree d is a variety that intersects
generic orbits in d simple points. We introduce a definition in terms of ideals as it
provides an algebraic way to test if a variety is a cross-section.

Definition 2.5. A prime ideal P in K[Z ] of codimension s defines a cross-section
to the orbits of the rational action g : G × Z → Z if the graph-section ideal
I e = Oe + P of K(z)[Z ] is radical and zero dimensional. If d is the dimension
of K(z)[Z ]/I e as a K(z)-vector space, we say that P defines a cross-section of
degree d .

6 By the standard definition the graph of a map ϕ : A → B is a subset of A × B and, therefore,
the graph of the map g belongs to G ×Z ×Z . We choose, however, to follow the terminology of [41]
and use the term the graph of the action for the projection of the graph of g to Z × Z .
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The cross-section is the variety P of P . It intersects generic orbits transversally
in d simple points [23, Prop. 3.2]. By the Noether normalization theorem, we
can always choose a generic affine space of codimension s as a cross-section [23,
Theorem 3.3].

Theorem 2.6. To each point (ai j )1≤i≤s,0≤ j≤n outside an algebraic subset of
Ks(n+1) we can associate a linear cross-section to the orbits defined by

P =
(

ai0 −
n

∑

j=1

ai j Z j | 1 ≤ i ≤ s

)

.

Let us note here an algorithmic way to check that P defines a cross-section. Test-
ing transversality beforehand, as explained in Section 1.3, is nonetheless worth-
while. An ideal of K(z)[Z ] is zero dimensional iff its Gröbner basis has an element
whose leading term is Zdi

i for all 1 ≤ i ≤ n [2, Theorem 6.54]. Besides, the Sei-
denberg criterion [2] provides a test for a zero-dimensional ideal to be radical. The
degree of the cross-section is then the finite number of terms that are not multiples
of the leading terms of the elements of the Gröbner basis.

The key observation for our algebraic construction is the following theorem.
The part concerning Oe can be considered as a constructive version of [41, Lemma
2.4]: there exists a basis of Oe that consists of polynomials in K(z)G[Z ].

Theorem 2.7. The reduced Gröbner basis of the graph ideal Oe and the graph-
section ideal I e with respect to any term ordering on Z consists of polynomials in
K(z)G[Z ].

Proof. We first prove that if q(z, Z) belongs to O , then q(g(λ̄, z), Z) belongs
to Oe for all λ̄ ∈ G. A point (z̄, z̄′) ∈ O if there exists µ̄ ∈ G s.t. z̄′ = g(µ̄, z̄).
Then, for a generic λ̄ ∈ G, z̄′ = g(µ̄ · λ̄−1, g(λ̄, z̄)). Therefore (g(λ̄, z̄), z̄′) ∈
O. Thus, if q(z, Z) ∈ O , then q(g(λ̄, z̄), z̄′) = 0 for all (z̄, z̄′) in O. By the
Hilbert Nullstellensatz the numerator of q(g(λ̄, z), Z) belongs to O and therefore
q(g(λ̄, z), Z) ∈ Oe.

Let Q = {q1, . . . , qκ} be the reduced Gröbner basis of Oe for a given term
order on Z . From what precedes, qi (g(λ̄, z), Z) belongs to Oe. It has the same
support7 as qi . As qi (g(λ̄, z), Z) and qi (z, Z) have the same leading monomial,
qi (g(λ̄, z), Z) − qi (z, Z) is in normal form with respect to Q. As this difference
belongs to Oe, it must be 0. The coefficients of qi are therefore invariant.

The union of a reduced Gröbner basis of Oe and P forms a generating set for
I e = Oe + P . The coefficients of a basis for P are in K, while the coefficients
of a reduced Gröbner basis for Oe belong to K(z)G . Since the coefficients of a
generating set for I e belong to K(z)G , so do the coefficients of the reduced Gröbner
basis with respect to any term ordering.

7 The support here is the set of terms in Z with nonzero coefficients.
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The result was proved in [23, Theorems 2.13 and 3.5]. We repeated the proof
here so that the paper is self-contained. We furthermore show in [23] that the coef-
ficients of a reduced Gröbner basis of I e, or Oe, form a generating set for K(z)G .
A simple algorithm to rewrite any rational invariants in terms of this generating
set is described there as well.

Example 2.8 (Scaling). The multiplicative group, already considered in Exam-
ple 1.19, is an algebraic group defined by the ideal

G = (1 − λ1λ2) ⊂ K[λ1, λ2].

The neutral element is (1, 1) and (µ̄1, µ̄2)·(λ̄1, λ̄2)
−1 = (µ̄1λ̄2, µ̄2λ̄1). We consider

the scaling action of this group on K̄2. It is given by the following polynomials of
K[λ1, λ2, z1, z2],

g1 = λ1z1, g2 = λ1z2.

A reduced Gröbner basis of Oe is {Z2 − (z2/z1)Z1} and we can check that z2/z1

is a rational invariant (Theorem 2.7).
The ideal P = (Z1 − 1) defines a section of degree 1: a reduced Gröbner basis

of I e = Oe + P is given by {Z1 − 1, Z2 − z2/z1}. We can see that Theorem 2.7
is verified.

The unit circle defined by P = (Z2
1 + Z2

2 − 1) is a cross-section of degree 2:
a reduced Gröbner basis of I e = Oe + P is given by {Z2

1 − z2
1/(z

2
1 + z2

2), Z2 −
(z2/z1)Z1}. Theorem 2.7 is still verified.

Example 2.9 (Rotation). The special orthogonal group, already considered in
Example 1.17, is an algebraic group defined by the ideal

G = (λ2
1 + λ2

2 − 1) ⊂ K[λ1, λ2].

The neutral element is e = (1, 0) and (µ̄1, µ̄2)·(λ̄1, λ̄2)
−1 = (µ̄1λ̄1+µ̄2λ̄2, µ̄2λ̄1−

µ̄1λ̄2).

Its linear action on K̄2 is given by the following polynomials of K[λ1, λ2, z1, z2]:

g1 = λ1z1 − λ2z2, g2 = λ2z1 + λ1z2.

A reduced Gröbner basis of Oe is Q = {Z2
1 + Z2

2 − (z2
1 + z2

2)}. The ideal P = (Z2)

defines a cross-section of degree 2: the reduced Gröbner basis of I e w.r.t. any term
order is {Z2, Z2

1 − (z2
1 + z2

2)}. Theorem 2.7 is verified.

Example 2.10 (Translation + reflection). We consider the algebraic group K ×
{−1, 1}. It is defined by

G = (λ2
2 − 1) ⊂ K[λ1, λ2].

This group has two components: G = (λ2 − 1) ∩ (λ2 + 1). The neutral element is
(0, 1) while (µ̄1, µ̄2) · (λ̄1, λ̄2)

−1 = (µ̄1 − λ̄1, µ̄2λ̄2).
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We consider the action of G on K̄2 as translation parallel to the first coordinate
axis and reflection w.r.t. this axis. It is defined by the following polynomials of
K[λ1, λ2, z1, z2]:

g1 = z1 + λ1, g2 = λ2z2.

A reduced Gröbner basis of Oe is Q = {Z2
2 − z2

2}. The ideal P = (Z1 − Z2)

defines a cross-section of degree 2: A reduced Gröbner basis of I e is given by
{Z1 − Z2, Z2

2 − z2
2}.

This example is to be compared with Example 1.20. In contrast with the local
construction illustrated there, we produce here rational functions that are invariant
with respect to the entire group.

2.4. Replacement Invariants

Given a cross-section P of degree d we introduce d distinct n-tuples of elements
that are algebraic over the field of rational invariants. Each n-tuple has an important
replacement property: any rational invariant can be rewritten in terms of its com-
ponents by a simple substitution of the variables by the corresponding elements
from the tuple.

A reduced Gröbner basis Q of I e = Oe + P is contained in K(z)G[Z ] (The-
orem 2.7) and therefore is a reduced Gröbner basis of I G = I e ∩ K(z)G[Z ].
The dimension of K(z)G[Z ]/I G as a K(z)G-vector space is therefore equal to the
dimension d of K(z)[Z ]/I e as a K(z)-vector space. Consequently, the ideal I G

has d distinct zeros whose components belong to K(z)
G

[11, Prop. 2.15]. We call
such a zero a K(z)

G
-zero of I G . A K(z)

G
-zero of I G is a K(z)

G
-zero of I e and

conversely.

Definition 2.11. A replacement invariant is a K(z)
G

-zero of I G = I e∩K(z)G[Z ],
i.e., a n-tuple ξ = (ξ1, . . . , ξn) of algebraic invariants that forms a zero of I e.

Thus d replacement invariants ξ (1), . . . , ξ (d) are associated to a cross-section of
degree d . The name is owed to the next theorem which can be compared with the
Thomas replacement theorem discussed in [12, p. 38] and revisited in this paper
as Theorem 1.9.

Theorem 2.12. Let ξ = (ξ1, . . . , ξn) be a replacement invariant. If r ∈ K(z)G

then r(z1, . . . , zn) = r(ξ1, . . . , ξn) in K(z)
G

.

Proof. Write r = p/q with p, q relatively prime. By [23, Lemma 2.14],
p(z)q(Z) − q(z)p(Z) ∈ Oe ⊂ I e and, therefore, p(Z) − (p(z)/q(z))q(Z) =
p(Z) − r(z)q(Z) ∈ I e. Since ξ is a zero of I e, we have p(ξ) − r(z)q(ξ) = 0.
By [23, Lemma 3.6] p(Z), q(Z) cannot belong to P and therefore cannot be zero
divisors modulo I e. Thus q(ξ) .= 0 and the conclusion follows.
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When the cross-section is of degree 1, there is a unique replacement invariant.
The dimension of K(z)[Z ]/I e as a K(z) vector space is 1 so that, independently
of the chosen term order, the reduced Gröbner basis of I e is given then by {Zi −
ri (z) | 1 ≤ i ≤ n}, where the ri ∈ K(z)G according to Theorem 2.7. The
unique replacement invariant is thus (r1, . . . , rn). Theorem 2.12 implies then that
K(z)G = K(r1, . . . , rn). A generalization of this fact appears in [23, Theorem
3.6]: K(z)G is generated by the coefficients of the Gröbner basis of Oe or I e.

Example 2.13 (Scaling). Consider the group action from Example 2.8. The cross-
section defined there by P = (Z1 − 1) is of degree 1. Since I e = (Z1 − 1, Z2 −
z2/z1), the unique replacement invariant associated to P is ξ = (1, z2/z1) and,
therefore, K(z)G = K(z2/z1).

Example 2.14 (Rotation). Consider the group action from Example 2.9. The
cross-section defined there by P = (Z2) is of degree 2. Since I e = (Z2, Z2

1 −
(z2

1 + z2
2)), the two replacement invariants associated to P are ξ (±) = (0, ±ρ),

where ρ is algebraic over K(z)G and defined by ρ2 = (z2
1 + z2

2).

Example 2.15 (Translation + reflection). Consider the group action from Ex-
ample 2.10. The cross-section defined there by P = (Z1 − Z2) is of degree 2.
Since I e = (Z1 − Z2, Z2

2 − z2
2), the two replacement invariants are ξ (1) = (z2, z2)

and ξ (2) = (−z2, −z2). Though rational functions, their components are not ratio-
nal invariants but only algebraic invariants.

As an introduction to the next section, note that I e = (Z1 − z2, Z2 − z2) ∩
(Z1 + z2, Z2 + z2) is a reducible ideal of K(z)[Z ], while I G = I e ∩ K(z)G[Z ] is
a prime ideal of K(z)G[Z ].

2.5. Algebraic Invariants as Functions on the Cross-Section

Let P be a cross-section of degree d defined by a prime ideal P of K[Z ]. The field
of rational functions on P is denoted by K(P). It is the fraction field of the integral
domain K[Z ]/P = K[P]. We use the replacement invariants to show that K(P)

is an algebraic extension of degree d of the field of rational invariants K(z)G .
The field K(ξ), for any replacement invariant ξ , is an algebraic extension of

K(z)G . Indeed, K(z)G ⊂ K(ξ) and ξ is algebraic over K(z)G . This leads to the
following results.

Lemma 2.16. I G = I e ∩ K(z)G[Z ] is a prime ideal of K(z)G[Z ].

Proof. Let I (1) and I (2) be prime divisors of I G in K(z)G[Z ] and consider re-
placement invariants ξ (1) and ξ (2) that are K(z)

G
-zeros of I (1) and I (2), respec-

tively. Due to Theorem 2.12, K(ξ (i)) = K(z)G(ξ (i)). There is therefore a K(z)G-
isomorphism K(z)G[Z ]/I (i) ∼= K(ξ (i)) for i = 1 or 2. On the other hand, we have
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K(ξ (i)) ∼= K(P) since P is the ideal of all relationships on the components of ξ (i)

over K [23, Prop. 3.4]. Thus

K(z)G[Z ]/I (1) ∼= K(ξ (1)) ∼= K(P) ∼= K(ξ (2)) ∼= K(z)G[Z ]/I (2).

We have an isomorphism between K(z)G[Z ]/I (1) and K(z)G[Z ]/I (2) that leaves
K(z)G fixed and maps the class of Z modulo I (1) to the class of Z modulo I (2).
Therefore I (1) = I (2) so that I G is prime.

Theorem 2.17. The field K(P) is an algebraic extension of K(z)G of degree d,
the degree of the cross-section P .

Proof. For any replacement invariant ξ we have K(z)G[Z ]/I G ∼= K(ξ) ∼= K(P).
Since the dimension of K(z)G[Z ]/I G as a K(z)G-vector space is d , the field K(P)

is an algebraic extension of K(z)G of degree d .

In particular, if P is a cross-section of degree 1 we have K(P) ∼= K(z)G . In
all cases we have the isomorphism K(P) ∼= K(z)

G
obtained in [41, Sect. 2.5] by

different means.

2.6. Algebraic Invariantization

In this section we introduce invariantization as a projection from the ring of uni-
variate polynomials over K[z] to the ring of univariate polynomials over K(z)G .
It depends on the choice of a cross-section and is computable by algebraic elimi-
nation. As this projection extends to univariate polynomials over K(P) it can be
understood as the computable counterpart to the isomorphism K(P) ∼= K(z)

G
that

follows from Theorem 2.17.
The ideal of the cross-section P is taken alternatively in K[z] and in K[Z ].

To avoid confusion we shall use in this section Pz and PZ to distinguish the two
cases. The localization of K[z] at Pz is denoted by K[z]P . By [23, Lemma 3.6],
K(z)G ⊂ K[z]P .

The first approach to algebraic invariantization that [12] suggests is to consider
a replacement invariant ξ associated to P and the following chain of homomor-
phisms:

K[z]P
π−→ K(P)

ϕξ−→ K(z)
G
,

r(z) &−→ r(z) + Pz &−→ r(ξ).
(5)

The restriction of ιξ = ϕξ ◦ π : K[z]P → K(z)
G

to K(z)G is the identity map by
Theorem 2.12. We call the image of a rational function r(z) ∈ K[z]P under ιξ its
ξ -invariantization.
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If P is a cross-section of degree d there are d distinct associated replacement
invariants ξ (1), . . . , ξ (d). The image ιξ (r(z)) = r(ξ) depends on the chosen re-
placement invariant ξ . This is not the case of the minimal polynomial of r(ξ) over
K(z)G which depends only on P , as we shall see below. We therefore define the
P-invariantization as a map taking a univariate polynomial over K[z]P to a uni-
variate polynomial over K(z)G . This second approach corresponds to the definition
of smooth invariantization given in Section 1.4, as is detailed in Section 3.

Definition 2.18. The P-invariantization ια of a monic univariate polynomial
α ∈ K[z]P [ζ ] is the squarefree part of

∏d
i=1 α(ξ (i), ζ ), where ξ (1), . . . , ξ (d) are

the d replacement invariants associated to the cross-section P .

Readers familiar with computer algebra techniques can see that ια belongs
to K(z)G[ζ ] with the following line of argument. The replacement invariants
ξ (1), . . . , ξ (d) are the d distinct zeros of the zero-dimensional prime ideal I G

of K(z)G[Z ]. By a transcription of the primitive element theorem, see, for in-
stance, [19, Prop. 4.2.2(3)], they are thus the images by a polynomial map ψ :
θ &→ (ψ1(θ), . . . , ψn(θ)) over K(z)G of the roots θ (1), . . . , θ (d) ∈ K(z)

G
of an

irreducible univariate polynomial of degree d with coefficients in K(z)G . The
coefficients of the polynomial

d
∏

i=1

α(ξ (i), ζ ) =
d

∏

i=1

α(ψ(θ (i)), ζ )

are elements of the field extension K(z)G(θ (1), . . . , θ (d)) of K(z)G that are invari-
ant under all permutations of the θ (i). By [47, Sect. 8.1] or [15, Theorem 8.15],
that polynomial belongs to K(z)G[ζ ] and thus so does its squarefree part ια [47,
Sect. 8.1].

For a Galois theory-oriented reader the direct proof is provided below. By
definition ια belongs to the extension K(ξ (1), . . . , ξ (d)), which we denote by Kξ .
Due to Theorem 2.12, Kξ = K(z)G(ξ (1), . . . , ξ (d)). In order to prove that ια ∈
K(z)G[ζ ], we will show that this polynomial is preserved by the Galois group of
the extension Kξ ⊃ K(z)G . We need the following proposition.

Proposition 2.19. Let {ξ (1), . . . , ξ (d)} be the set of replacement invariants corre-
sponding to the cross-section P of degree d . Then the field Kξ = K(ξ (1), . . . , ξ (d))

is a splitting field of a univariate polynomial β(z, ζ ) ∈ K(z)G[ζ ] of degree d. The
Galois group of the extension Kξ ⊃ K(z)G permutes the n-tuples ξ (1), . . . , ξ (d).

Proof. Due to the replacement Theorem 2.12 one has the equality K(ξ (1)) =
K(z)G(ξ (1)). From Corollary 2.17 it follows that K(z)G(ξ (1)) is an extension of
degree d of K(z)G for i = 1..d . Since K is assumed to be of characteristic zero,
the components ξ

(1)
1 , . . . , ξ (1)

n of n-tuple ξ (1) are separable over K(z)G . Hence
there exists a primitive element θ1 ∈ K(ξ (1)), such that K(ξ (1)) = K(z)G(ξ (1)) =
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K(z)G(θ1), where θ1 is a root of an irreducible univariate polynomial β(z, ζ ) ∈
K(z)G[ζ ] of degree d [7, Theorem 5.4.1].

Let σj i : K(ξ (i)) → K(ξ ( j)) be the K(z)G-isomorphism induced by exchanging
ξ (i) and ξ ( j). Then θj = σj1(θ1) is a primitive element of the extension K(ξ ( j)) ⊃
K(z)G . Indeed, since θ1 is the primitive element of K(z)G(ξ (1)) for each i =
1..n, there exists a polynomial ψi over K(z)G such that ξ

(1)
i = ψi (θ1). Since

σj1 is a K(z)G-isomorphism, it follows that ξ
( j)
i = σj1(ξ

(1)
i ) = σj1(ψi (θ1)) =

ψi (σj1(θ1)) = ψi (θj ) for i = 1..n. Thus θj is a primitive element of K(ξ ( j)) ⊃
K(z)G , and so Kξ = K(z)G(θ1, . . . , θd).

In addition, we proved that n-tuples ξ (1), . . . , ξ (d) are images of θ1, . . . , θd

under the polynomial map ψ = (ψ1, . . . , ψn) : K(z)
G → [K(z)

G
]n , where

the coefficients of the univariate polynomials ψ1, . . . , ψn are in K(z)G . Since
ξ (1), . . . , ξ (d) are distinct tuples, then θ1, . . . , θd are distinct elements of K(z)

G
. We

will now show that θ1, . . . , θd are roots of the minimal polynomial β ∈ K(z)G[ζ ]
that defines θ1.

Indeed, since the field K(z)G is fixed under σj1 for j = 1..d, then so is the
polynomial β. Thus θj = σj1(θ1) are roots of the polynomial β. It follows that Kξ =
K(z)G(θ1, . . . , θd) is the splitting field of an irreducible univariate polynomial
β ∈ K(z)G[ζ ] of degree d .

The elements of the Gal(Kξ/K(z)G) permute the roots θ1, . . . , θd of the poly-
nomial β and, therefore, it permutes the tuples ξ ( j) = ψ(θj ) for all j =
1..d .

Corollary 2.20. Let α(z, ζ ) ∈ K[z]P be a univariate polynomial over K[z]P .
Then its P-invariantization ια is a polynomial over K(z)G .

Proof. The Galois group of the extension Kξ ⊃ K(z)G induces permutations
of the n-tuples ξ (1), . . . , ξ (d). Thus the polynomial p(ζ ) =

∏d
i=1 α(ξ (i), ζ ) ∈

Kξ [ζ ] is fixed under Gal(Kξ/K(z)G). Hence its coefficients belong to K(z)G . By
definition ια is the square-free part of p(ζ ) and, hence, it is also fixed under the
Galois group, since it has the same roots in Kξ as p(ζ ) itself [7, Prop. 5.3.8], and
the Galois group permutes these roots. Thus its coefficients of ια are in K(z)G .

The following properties follow directly from the definition of the map ι:

1. A K(z)
G

-zero of ιβ is a K(z)
G

-zero of a β(ξ (i), ζ ) and conversely.
2. If β ∈ K(z)G[ζ ], then ιβ = β since β(ξ (i), ζ ) = β(z, ζ ) by Theorem 2.12.
3. If α ≡ β mod Pz , then ια = ιβ since the elements of Pz vanish on all ξ (i).

The last property shows that ι induces a map ϕ from the set of monic polynomials
of K(P)[ζ ] to the set of monic polynomials of K(z)G[ζ ] s.t. ι = ϕ ◦ π .

From the first property it follows that β(ξ (i), ζ ) divides ιβ(z, ζ ) in K(ξ (i))[ζ ] ⊃
K(z)G[ζ ] when β(ξ (i), ζ ) is squarefree. Since K(P) ∼= K(ξ (i)) this amounts to
the following proposition that will be used in Section 3.3.
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Proposition 2.21. Let β be a monic polynomial of K[z]P [ζ ]. If β is squarefree
when considered in K(P)[ζ ], then it divides ιβ(z, ζ ) in K(P)[ζ ], i.e., there exists
q(z, ζ ) ∈ K[z]P [ζ ] s.t. ιβ(z, ζ ) ≡ q(z, ζ )β(z, ζ ) mod Pz .

Also we recognize in the definition of the invariantization map the norm of a
polynomial in an algebraic extension [15, Sect. 8.8]. We reformulate the results
extending those of that text, namely:

– ιβ can be computed by algebraic elimination.
– if β(ξ (i), ζ ) is the minimal polynomial over K(ξ (i)) ⊂ K(z)

G
of an element

in K(z)
G

, then ιβ is the minimal polynomial of this element over K(z)G .

The algebraic elimination to compute ιβ can be performed by several tech-
niques. For a strict generalization of [15, Sect. 8.8] one could introduce a resultant
formula, as developed in [8]. We propose here a formulation in terms of elimination
ideals.

Proposition 2.22. Consider a monic polynomial β in K[z]P [ζ ]. ItsP-invarianti-
zation ιβ is the squarefree part of the monic generator of (I G +α(Z , ζ ))∩K(z)G[ζ ]
where α(z, ζ ) ∈ K[z][ζ ] is the numerator of β.

Proof. The leading coefficient of α(Z , ζ ) ∈ K[Z ][ζ ] does not belong to PZ and,
therefore, it does not belong to I G . It follows that (I G +α(Z , ζ ))∩K(z)G[ζ ] .= (0)

since I G is zero dimensional.
Let γ (z, ζ ) be the monic generator of (I G + α(Z , ζ )) ∩ K(z)G[ζ ]. We first

prove that ιβ divides the squarefree part of γ (z, ζ ). The fact that γ (z, ζ ) be-
longs to I G + α(Z , ζ ) can be written as γ (z, ζ ) ≡ q(z, Z , ζ )α(Z , ζ ) mod I G

where q(z, Z , ζ ) ∈ K(z)G[Z , ζ ]. Substituting ξ (i) for Z we have γ (z, ζ ) =
q ′(z, ξ (i), ζ )β(ξ (i), ζ ) where q(z, ξ (i), ζ ) and q ′(z, ξ (i), ζ ) differ by the factor
in K[ξ (i)] that distinguishes α(ξ (i), ζ ) from β(ξ (i), ζ ). Therefore all the factors
β(ξ (i), ζ ) of ιβ divide γ (z, ζ ). Since ιβ is the squarefree product of β(ξ (i), ζ ) it
divides the squarefree part of γ (z, ζ ).

Conversely, we prove that the squarefree part of γ (z, ζ ) divides ιβ. The K(z)
G

-
zeros of α(Z , ζ )+ I G are the (n +1)-tuples (ξ (i), fi, j ), where fi, j , 1 ≤ j ≤ deg β,

are the roots of β(ξ (i), ζ ). Since γ (z, ζ ) belongs to α(Z , ζ )+ I G its set of K(z)
G

-
roots includes all the fi, j . Thus γ and ιβ have the same set of roots. Therefore the
squarefree part of γ divides ιβ.

Note that the monic generator of (I G + α(Z , ζ )) ∩ K(z)G[ζ ] is the monic
generator of (I e + α(Z , ζ )) ∩ K(z)[ζ ]. Indeed, this latter is an element of the
reduced Gröbner basis of (α(Z , ζ ) + I e) w.r.t. a term order that eliminates Z . It
follows from Proposition 2.7 that it belongs to K(z)G[ζ ]. Therefore computations
over K(z) lead to the correct result over K(z)G .
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The last proposition provides the computable counterpart of the isomorphism
K(P) ∼= K(z)

G
, elements of K(P) or K(z)

G
being represented by irreducible

monic polynomials over K(P) or K(z)G , respectively.

Proposition 2.23. Let α be a monic polynomial of K[z]P [ζ ]. The polynomial
ια ∈ K(z)G[ζ ] is irreducible if and only if α is a power of an irreducible polynomial
when considered in K(P)[ζ ].

Proof. Note that ι(β γ ), for β, γ ∈ K[z]P [ζ ], is the squarefree part of the product
ιβ ιγ . So if α considered in K(P)[ζ ] is the product of two relatively prime factors,
then ια cannot be irreducible.

We can replace α by its squarefree part when considered in K(P)[ζ ] without loss
of generality and thus assume for the converse implication thatα(z, ζ ) is irreducible
there. Let ᾱ ∈ K[z][ζ ] be obtained from α by cleaning up the denominators. Then
ᾱ(Z , ζ ) is irreducible modulo I G so that (ᾱ(Z , ζ ) + I G) is prime. The monic
generator ια of (α(Z , ζ ) + I G) ∩ K(z)[ζ ] is thus irreducible.

The following example illustrates various properties of the P-invariantization
map ι.

Example 2.24 (Scaling). We return to the scaling action of Example 2.8 with
the unit circle as cross-section of degree 2. For PZ = (Z2

1 + Z2
2 − 1) we have

I e = (Z2
1 − z2

1/(z
2
1 + z2

2), Z2 − (z2/z1)Z1) so that the two replacement invariants
are

ξ (±) =
(

±z1
√

z2
1 + z2

2

,
±z2

√

z2
1 + z2

2

)

.

The invariantization of α = ζ − z1 is ια = ζ 2 − z2
1/(z

2
1 + z2

2). We have ια =
(ζ + z1)α + [z2

1/(z
2
1 + z2

2)](z
2
1 + z2

2 − 1) ≡ (ζ + z1)α mod Pz . We obtained ια by
computing the reduced Gröbner basis of the ideal (ζ − Z1, Z2

1 −z2
1/(z

2
1 + z2

2), Z2 −
(z2/z1)Z1) with a term order that eliminates Z1 and Z2. Note that, although α

defines a polynomial function, its invariantization defines two algebraic invariants
±z1/

√

z2
1 + z2

2.
The invariantization of β = ζ 3 + ζ 2 + z2ζ + 1 is ιβ = ζ 6 + 2 ζ 5 + ζ 4 + 2 ζ 3 +

[(z2
2 + 2z2

1)/(z
2
1 + z2

2)] ζ 2 + 1. We have ιβ ≡ (ζ 3 + ζ 2 − z2ζ + 1)β mod Pz .
In the next two instances the monic polynomial is equal modulo Pz to a poly-

nomial in K(z)
G

[ζ ]. As a consequence, the invariantization equals the original
polynomial modulo Pz .

The polynomial γ = ζ − z2
1 is equal to its P-invariantization ιγ = ζ −

z2
1/(z

2
1 + z2

2) ≡ γ mod Pz .
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The irreducible polynomial δ = ζ 2 − [(z2
1 + z2

2 − 1)/z2
2]ζ − z2

1/z2
2 becomes a

reducible modulo Pz : δ ≡ ζ 2 − z2
1/z2

2 mod Pz . Its invariantization is thus reducible:
ιδ = (ζ − z1/z2)(ζ + z1/z2) ≡ δ mod Pz .

3. Algebraic Approach to Smooth Constructions

We establish a connection between the smooth and the algebraic constructions.
We show that the normalized invariants (Section 1.5) can be viewed as smooth
representatives of the replacement invariants (Section 2.4), and that algebraic in-
variantization (Section 2.6) provides a constructive approach to smooth invarianti-
zation (Section 1.3). We start nonetheless by providing an algebraic formulation of
a moving frame map of Section 1.6 so as to point out the computational advantages
of our new algebraic approach.

To be at the intersection of the hypotheses of the smooth and the algebraic
settings we consider a real algebraic group, that is, the set of real points of an
algebraic group defined8 over R. It is a real Lie group [45, Chap. 3, Sect. 2.1.2].
Lie groups appearing in applications often satisfy this property.

The local action is given by a rational map that satisfies Asumption 2.2. This
guarantees semiregularity of the action on an open set Z of Rn as the orbits of
nonmaximal dimension are contained in an algebraic set defined by minors of the
matrix V of (1), in Section 1.3.

It follows from Theorem 1.6 that, through every point of Z , there exist local
cross-sections defined by linear equations over R. Conversely, let P be an ideal
defined over R that defines a cross-section (Definition 2.5) and whose real and
complex varieties have the same dimension. Then, for any point z̄ ∈ Z ∩P where
the matrix (1) is of maximal rank, there is a neighborhood U on which P defines
a local cross-section, and such points are dense in P .

3.1. The Moving Frame Map and Ideal

In Section 1.6 we discussed how the condition ρ(z̄) · z̄ ∈ P leads to the moving
frame map ρ : Z → G that underlies the Fels–Olver construction. In this section
we define a moving frame ideal, which is an algebraic counterpart of the moving
frame map, and explain the advantage of an approach based on cross-sections.

In the algebraic setting the condition ρ(z̄) · z̄ ∈ P is described by the ideal
M = (Z − g(λ, z) + G + PZ ) ∩ K[z, λ]. Indeed, if (z̄, λ̄) is a zero of M , in an
appropriate open set of Z ×G, then λ̄ · z̄ ∈ P . The action is locally free if and only
if the extension Me ∈ R(z)[λ] is zero dimensional. In this case, the smooth zero
F : U → G of Me, that is, the identity of the group when restricted to P , provides
a moving frame map ρ on U .

8 This implicitly means that we know the ideal G (Section 2.1) from a set of generators with
coefficients in R.
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Example 3.1 (Scaling). We return to the action of the multiplicative group R∗

of Example 1.19. The multiplicative group R∗ corresponds to the algebraic group
G ⊂ R2 defined by the ideal G = (λ1λ2 − 1), which insures that λ1 .= 0. The
corresponding algebraic action is described by the ideal J = (Z1 − λ1z1, Z2 −
λ1z2, λ1λ2 − 1).

In Example 2.8 we first chose an algebraic cross-section of degree 1 defined by
the ideal PZ = (Z1 −1). The unique zero of the corresponding moving frame ideal
Me = (λ1 −1/z1, λ2 − z1) defines the moving frame map ρ(z1, z2) = (1/z1, z1) :
Z → G. Note that on P the map ρ produces the identity of the group (1, 1). The
map ρ can be used to invariantize any function as described in Section 1.4. If f (z)
is a locally smooth function on Z , then ῑ f (z) = f (g(ρ(z), z)). For instance, the
invariantization of the coordinate functions (z1, z2) produces normalized invariants
((1/z1)z1, (1/z1)z2) = (1, z1/z2).

In Example 2.8 we also considered a circular cross-section of degree 2 de-
fined by the ideal PZ = (Z2

1 + Z2
2 − 1). The corresponding moving frame

ideal Me = (λ1 − [1/(z2
1 + z2

2)]λ2, λ
2
2 − (z2

1 + z2
2)) has two zeros ρ±(z1, z2) =

(±1/
√

z2
1 + z2

2, ±
√

z2
1 + z2

2). The condition that ρ produces identity of the group
at the points ofP leads to the choice: ρ(z1, z2) = (1/(z2

1 + z2
2),

√

z2
1 + z2

2). The in-
variantization of the coordinate functions g(ρ(z1, z2), z1, z2) produces normalized
invariants (z1/

√

z2
1 + z2

2, z2/
√

z2
1 + z2

2).

Example 3.2 (Rotation). We return to the SO(2)-action considered in Exam-
ple 1.17. This action is free on R2\{(0, 0)}.

In Example 2.14 we defined the corresponding algebraic action by the ideal
J = (Z1 − λ1z1 + λ2z2, Z2 − λ2z1 − λ1z2, λ

2
1 + λ2

2 − 1) and chose the algebraic
cross-section P defined by Z1 = 0. The corresponding moving frame ideal

Me =
(

λ1 − z2

z1
λ2, λ

2
2 − z2

1

(z2
1 + z2

2)

)

has two zeros so that the moving frame map is

ρ±(z1, z2) =
(

± z2
√

z2
1 + z2

2

, ± z1
√

z2
1 + z2

2

)

.

The cross-section P defines a local cross-section on two open subsets:

U (+) = R
2\{(0, z2) | z2 ≤ 0} and U (−) = R

2\{(0, z2) | z2 ≥ 0}.

Since ρ(+)|P∩U (+) = (1, 0) is the identity of the group, the moving frame map
ρ = ρ(+) on U (+). Similarly, ρ(−)|P∩U (−) = (1, 0) so that the moving frame map
ρ = ρ(−) on U (−).

The invariantization g(ρ(z1, z2), z1, z2)) of the coordinate functions (z1, z2)

produces normalized invariants (0,
√

z2
1+z2

2) onU (+), and (0, −
√

z2
1+z2

2) onU (−).
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Example 3.3 (Translation + reflection). The action of the Lie group G = R ×
{−1, 1} defined in Example 1.20 by

g : G × R
2 → R

2,

((λ1, λ2), (z1, z2)) &→ (z1 + λ1, λ2z2),

where λ1 ∈ R and λ2 = ±1, is locally free on R2.
In Example 2.15 we chose the algebraic cross-section P defined by P =

(Z2 − Z1). The corresponding moving frame ideal Me = (λ1 − z2λ2 + z1, λ
2
2 − 1)

has two zeros ρ±(z1, z2) = (−z1 ±z2, ±1). The condition that ρ produces identity
of the group at the points ofP leads to the choice ρ(z1, z2) = (−z1+z2, 1). The in-
variantization of the coordinate functions g(ρ(z1, z2), z1, z2) produces normalized
invariants (z2, z2).

We note that in all of the above examples we considered a one-parameter
locally free action, for which a local moving frame map ρ can be easily ex-
plicitly defined, and then the invariantization map and the normalized invariants
can be easily computed. The expressions for ρ often involve radicals, which
provides a problem when one intends to use them to compute invariantization
symbolically. Moreover, for nonlocally free actions, or even for more compli-
cated locally free actions, finding a smooth representative for zeros of the Me

might be hard or impossible. Therefore it is computationally preferable, instead
of working with ideal M = ((Z − g(λ, z)) + G + PZ ) ∩ R[z, λ], to use the
ideal I = ((Z − g(λ, z)) + G + PZ ) ∩ R[z, Z ], whose extension I e ∈ R(z)[Z ]
leads to replacement invariants of Section 2.4, and the invariantization process
and the algebraic invariantization process of Section 2.6. The theorems of the
next section formalize the correspondence between the smooth and the algebraic
invariantization.

3.2. Normalized and Replacement Invariants

Rational invariants are obviously local invariants. We show that so are smooth
representatives of algebraic invariants. The following definition formalizes the
notion of a smooth representative of an algebraic function.

Definition 3.4. A smooth map F : U ⊂ Z → Rk is a smooth zero of a set of
polynomials {p1, . . . , pκ} ⊂ R(z)[ζ1, . . . , ζk] if the coefficients of the pi are well
defined on U and pi (z̄, F(z̄)) = 0 for all z̄ ∈ U . In this case we also say that F is
a smooth zero of the ideal (p1, . . . , pκ).

Proposition 3.5. Assume F : U → Rk is a smooth zero of {p1, . . . , pκ} ⊂
R(z)G[ζ1, . . . , ζk]. If (p1, . . . , pκ) is a zero-dimensional ideal, then the compo-
nents of F are local invariants.
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Proof. Let p ∈ R(z)G[ζ ], i.e., p(z, ζ ) =
∑

α∈Nn aα(z)ζ α , where aα(z) ∈ R(z)G .
Assume that p(z̄, F(z̄)) = 0 for all z̄ ∈ U . For any z̄ ∈ U and an infinitesimal
generator v there exists ε > 0, such that exp(εv, z̄) ∈ U whenever |ε| < ε.
Then p(exp(εv, z̄), F(exp(εv, z̄))) =

∑

α∈Nn aα(exp(εv, z̄))F(exp(εv, z̄))α = 0.
Since the coefficients aα are invariant

∑

α∈Nn aα(z̄)F(exp(εv, z̄))α = 0 for all
z̄ ∈ U and small enough ε. Thus for a fixed point z̄ all the values F(exp(εv, z̄)) for
all sufficiently small ε are the common roots of the set of polynomials {p1, . . . , pκ}.
Since by the assumption the number of roots is finite, we conclude that
F(exp(εv, z̄)) = F(exp(0v, z̄)) = F(z̄) and thus the components of F(z) are
local invariants.

The replacement invariants are the R(z)
G

-zeros of the zero-dimensional ideal
I G = (G + (Z −g(λ, z))+P)∩R(z)G[Z ]. According to the previous proposition
the smooth zeros of this ideal are local invariants. Such zeros exist: we show that
the tuple of normalized invariants (Section 1.5) is one of those.

Theorem 3.6. Let P be an algebraic cross-section which, when restricted to
an open set U , defines a local cross-section. The tuple of normalized invariants
ῑz = (ῑz1, . . . , ῑzn) is the smooth zero of the ideal I G whose components agree
with the coordinate functions on P ∩ U .

Proof. Let z̄ ∈ U be an arbitrary point, and let z̄0 be the point of intersection of
P with the connected component of Oz̄ ∩ U , containing z̄. Then there exists λ̄ in
the connected component of the identity of G, such that z̄0 = g(λ̄z̄) so that (z̄, z̄0)

is a zero of the ideal I = O + P . By definition ῑz(z̄) = z̄0 and therefore (z̄, ῑz(z̄))
is a zero of the ideal I for all z̄ ∈ U . Equivalently, ῑz is a smooth zero of I G . By
Theorem 1.8 it is the unique tuple of local invariants that agree with the coordinate
functions on P ∩ U .

Therefore the components of a replacement invariant not only generate algebraic
invariants but the components of its smooth representative also generate local
invariants.

Example 3.7 (Rotation). We return to Example 3.2, that extends Examples 1.17,
2.9, and 2.14, to illustrate the relation between the replacement and normalized
invariants.

The replacement invariants associated to the cross-section P = {(z1, z2) | z2 =
0} are the R(z)

G
-zeros of the ideal I G = (Z2, Z2

1 − (z2
1 + z2

2)).
The smooth maps F (±) : R2\{(0, 0)} → R2 s.t. F (±)(z1, z2) = (0, ±

√

z2
1 + z2

2)

are smooth zeros of I G . Their components are thus local invariants.
The manifold P defines a local cross-section on

U (+) = R
2\{(0, z2) | z2 < 0} or U (−) = R

2\{(0, z2) | z2 > 0}.
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As F (+)|P∩U (+) = (z1, z2), the tuple of normalized invariants are (0,
√

z2
1 + z2

2) on
U (+). Similarly, as F (−)|P∩U (−) = (z1, z2), the tuples of normalized invariants are
(0, −

√

z2
1 + z2

2) on U (−).

Example 3.8 (Translation + reflection). We return to Example 3.3 that draws on
Examples 1.20 and 2.15,

g : R × {−1, 1} × R
2 → R

2,

(λ1, λ2, z1, z2) &→ (z1 + λ1, λ2 z2).

with the cross-section defined by z2 = z1. In Example 2.15 we found two re-
placement invariants associated to P: ξ (±) = (±z2, ±z2). They both correspond
to smooth maps F (±) : R2 → R2 the components of which are local invariants.

The manifold P is a local cross-section on U = R2. Only (z2, z2) coincides
with the coordinate functions on P . The normalized invariants are thus (z2, z2).

3.3. Smooth and Algebraic Invariantization

In this section we link the smooth invariantization introduced in Section 1.4 and
the algebraic invariantization introduced in Section 2.6. Recall that the algebraic
invariantization is a map that associates a univariate polynomial over R(z)G to a
univariate polynomial over K[z]P (Definition 2.18).

Theorem 3.9. Let P be a cross-section which, when restricted to an open set U ,
defines a local cross-section. Let f : U → R be a smooth zero of a univariate
monic squarefree polynomial β ∈ K(z)[ζ ]. The smooth invariantization ῑ f of f
is a smooth zero of the algebraic P-invariantization ιβ ∈ R(z)G[ζ ] of β.

Proof. The polynomial ιβ(z, ζ ) =
∑k

i=1 bi (z)ζ i , where bi ∈ K(z)G . Any point
z̄ ∈ U can obtained from the point z̄0 ∈ P by a composition of flows along
infinitesimal generators of the group action. The argument will not change if we
assume that z̄ = exp(εv, z̄0) is obtained by the flow along a single vector field.
Then from the invariance of bi (z) and the local invariance of ῑ f (z) it follows that,
for all z̄ ∈ U ,

ιβ(z̄, ῑ f (z̄)) =
k

∑

i=1

bi (exp(εv, z̄0)) f (exp(εv, z̄0))
i

=
k

∑

i=1

bi (z̄0)ῑ f (z̄0)
i = ιβ (z̄0, ῑ f (z0)) ,

where z̄0 ∈ P ∩U . From Proposition 2.21 it follows that ιβ is divisible by β when
restricted to P . Thus ιβ(z̄0, f (z̄0)) = 0, ∀z̄0 ∈ P ∩U , since β(z̄, f (z̄)) ≡ 0 on U .
It follows that ῑ f (z) is a smooth zero of a polynomial ῑβ(z, ζ ) ∈ K(z)G[ζ ].
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In particular, if r(z) is a rational function that is well defined on U , then its
smooth invariantization ῑr(z) is a smooth zero of theP-invariantization ι(ζ −r(z))
of the polynomial ζ − r(z). To determine the right one we only need to check that
its restriction to P ∩ U coincides with r(z).

4. Two Geometric Examples

We take two classical examples in differential geometry to illustrate the major
points of the algebraic construction we offer. We aim here at being pedagogical by
reviewing well-known cases and we reserve novel and challenging computations
for future work. We first treat the action of the Euclidean group E(2) = 0(2)!R2

on the second-order jets of plane curves and then the action of the special affine
group S A(2) = SL(2) ! R2 on the fourth-order jets of plane curves.

Example 4.1 (E(2) action on curves in R2). The group E(2) can be defined al-
gebraically by G = (α2 + β2 − 1, ε2 − 1) ⊂ K[α, β, a, b, ε]. The neutral el-
ement is (1, 0, 0, 0, 1), the group operation (α′, β ′, a′, b′, ε′) · (α, β, a, b, ε) =
(αα′ − ββ ′, βα′ + αβ ′, a + αa′ − βb′, b + αa′ + αb′, ε ε′), and the inverse map
(α, β, a, b, ε)−1 = (α, −β, −α a − bβ, β a − αb, ε).

The variables x, y0, y1, y2 stand for the independent variable, the dependent
variable, its first and second derivatives, respectively.

The rational action on R4 we consider is given by the rational functions:

g1 = αx − βy0 + a, g2 = εβx + εαy0 + b,

g3 = ε
β + αy1

α − βy1
, g4 = ε

y2

(α − βy1)3
.

We consider the cross-section defined by P = (X, Y0, Y1). The reduced Gröbner
basis of the graph-section ideal I e = Oe + P is then

{

X, Y0, Y1, Y 2
2 − y2

2

(1 + y2
1)

3

}

.

The only nontrivial coefficient, y2
2(1 + y2

1)
−3 is a rational invariant (Theorem 2.7).

We actually recognize the square of the curvature. The curvature itself, like many
other classical differential invariants, is an algebraic function. It appears as a com-
ponent of a replacement invariant. Indeed, the two replacement invariants associ-
ated to the cross-section are the tuples ξ (±) = (0, 0, 0, ±κ) where κ is the algebraic
function defined by

κ2 = y2
2

(1 + y2
1)

3
.

For any rational invariant r we have the following equalities (Theorem 2.12):

r(x, y0, y1, y2) = r(0, 0, 0, κ) = r(0, 0, 0, −κ).



490 E. Hubert and I. A. Kogan

Let U = {((x, y0, y1, y2) ∈ R4 | y2 > 0}. The algebraic cross-section contains
the local cross-section P = {(x, y0, y1, y2) ∈ R4 | x = y0 = y1 = 0, y2 > 0} for
U . The corresponding normalized invariants are

ῑx = 0, ῑy0 = 0, ῑy1 = 0, ῑy2 = y2

(1 + y2
1)

3/2
,

(Theorem 3.6). Thus, for any local invariant f : U → R, we have (Theorem 1.9)

f (x, y0, y1, y2) = f
(

0, 0, 0,
y2

(1 + y2
1)

3/2

)

.

Example 4.2 (S A(2) action on curves in R2). The group S A(2) is defined by
the ideal G = (αδ − βγ − 1) ⊂ K[α, β, γ , δ, a, b]. The neutral element is
(1, 0, 0, 1, 0, 0), the group operation (α′, β ′, γ ′δ′, a′, b′) · (α, β, γ , δ, a, b) =
(α′α + β ′γ , α′β + β ′δ, γ ′α + δ′γ , γ ′β + δ′δ, α′a + β ′b + a′, γ ′a + δ′b + b′), and
the inverse map (α, β, γ , δ, a, b)−1 = (δ, −β, −γ , α, bβ − aδ, aγ − bα).

The variables x, y0, y1, y2, y2, y4 stand for the independent variable, the depen-
dent variable, and up to the fourth-order derivatives of the dependent variable y0

with respect to x .
The rational action on R6 we consider is given by the rational functions:

g1 = αx + βy0 + a, g2 = γ x + βy0 + b,

g3 = δy1 + γ

βy1 + α
, g4 = y2

(βy1 + α)3
, g5 = αy3 + β(y3 y1 − 3y2

2)

(βy1 + α)5 ,

g6 = β2(15y3
2 − 10y1 y2 y3 + y2

1 y4) + αβ(2y1 y4 − 10y2 y3) + α2 y4

(βy1 + α)7 .

We consider the cross-section defined by P = (X, Y0, Y1, Y2 −1, Y3). The reduced
Gröbner basis of the graph-section ideal I e = Oe + P is then

{X, Y0, Y1, Y2 − 1, Y3, Y 3
4 − r} where r = (3y4 y2 − 5y2

3)
3

27y8
2

.

The only nontrivial coefficient, r , is a rational invariant (Theorem 2.7). We
recognize that r = κ3

a , where κa is the affine curvature

κa =
(y4 y2 − 5

3 y2
3)

y8/3
2

,

a differential invariant that plays a central role in plane affine geometry. The affine
curvature is an algebraic function. The three replacement invariants associated
to the cross-section are the tuples ξ (i) = (0, 0, 0, 1, 0, σiκa), 1 ≤ i ≤ 3, where
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σi ∈ C are three distinct cubic roots of 1. For any rational invariant q we have the
following equalities (Theorem 2.12):

q(x, y0, y1, y2, y3, y4) = q(0, 0, 0, 1, 0, σiκa).

The normalized invariant is the only real replacement invariant:

ῑx = 0, ῑy0 = 0, ῑy1 = 0, ῑy2 = 1, ῑy3 = 0, ῑy4 =
(y4 y2 − 5

3 y2
3)

y8/3
2

.

Thus, for any local invariant f : U → R, we have (Theorem 1.9)

f (x, y0, y1, y2, y3, y4) = f

(

0, 0, 0, 1, 0,
(y4 y2 − 5

3 y2
3)

y8/3
2

)

.
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