
REVISTA MATEMÁTICA de la
Universidad Complutense de Madrid
Volumen 9, número 1: 1996

Smooth and Analytic Solut¡ons
for Analytic Linear Systems

F. ACQUISTAPACE, F. BROGLIA and A. TOGNOLI

ABSTRACT. We give sorne approximation theorerns in the Whitney topol-
ogy for a general class of analytic libre bundíes. This leade to a clasnification
theorem which generalizes the classical ones.

INTRODUCTION

Approximation theorems have been a fundamental tool to prove
relevant results in real geometry, as, for instance, Nash conjecture ([TS])
and classification theorems for real analytic bundies ((Ti], [T2], [T3]).
They assume a particnlarly expressive form in tIte case of vector bundies.

In this paper we give approximation theorems for sections of a
more general class of vector bundies over a coherent real analytic spalze:
namely vector bundies that, in general, are not locally trivial.
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In fact tIte results are obtained for coherent sheaves and we come
back to bundies via duality theory (§6).

First we define the Whitney topology on tIte set of sections of a
coherent sheaf Y (§1); then (§2 and §3) tItat is dense in the set of sections
of tIte sheaf Y ® tx is the sheaf of germs of smooth functions.

As an application we get approximation for smooth solutions of
analytic linear systems: more precisely we prove that if an analytic
linear system >~ ahk(z)yk = gdz), defined on an open set u c ian
admits a C~ solution ~, then in any neighbourhood ~ of ~ in tIte
Whitney topology of C~(U)~ diere exists an analytic solution of the
system.

Approximation theorems can be stated also for sheaf homomor-
phisms. We prove tItat the set of isomorphisms between two coherent
sheaves Y and Q is open iii 1-iom (Y, Q), so, again by duality, we get a
Crauert-like theorem for generalized vector bundíes.

Finally in §5 we consider the same problems in tIte algebraic context
and we obtain similar results with sorne obvious modifications.

1. THE WHITNEY TOPOLOGY FOR SECTIONS OF A
SHEAF

Let X be a paracompact, locally compact space and Fr {Yu,rVl
be a sheaf of real vector spaces; so, for any A c X, the set J’(A,Y) has
a structure of real vector space and tIte restriction maps are linear.

Definitian 1.1. A ¿ocal systern of serninorms £ in Y is giver¿ by
the follotning dala:

(1) A locally finite open Covedng U = {UAJAEA of X by retatively
compací orn sets.

(2) For any cornpact set 1< c UA, for any orn neighbourhood U ofK
and any natuml number p, a seminorm ¡¡%~ (depending on A)
defined on F(U, Y) with tire following properties:

a) II 71 e F(UI,Y), ~Y2e r(U
2,Y) and r~’ ~ rU272 ¡oran open

neighbourhood U of 1<, tiren for any p

II~~Ii%,~ = 172117< _ — ¡Ir_ j’1IIKA
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b) If K G U>. fl U>.’, for cacir integer p diere exist tino positive
numbers a and ¡3 such that for eacir ~e r(U, Y)

n
e) If K = u 1<, is a decornposition of K as fin ite union of compact

i= 1
sds, tiren for eacir y E 1’(U, Y) and eacir p

In particular if K C K’ G U>. tiren Ih’II%,>. < Ib’II7<>,>.
d) If UD TI>. tiren sup IbiI7<,>. <oc, for any yE r(U,Y).

1< CU~
K compact

Let now K be any compact set in X and suppose K fl U>. = Ql if A
is different from >.j,. ..,Aq-

Definition 1.2. Foa’ any y E I’(U,Y) uÑir K c U inc define

¡7117< = sup IIyI¡7<>.~
qHCU~.flK

U comp.ct

Property d) of Definition 1.1 ensures that IliiI7< < oc.

flefinitian 1.3. Let U c X be an open set. Tire weak topology
defined by tire Local system of seminorms £ for 1}U,Y) is tire topology
iraving tire farnily

= {y E r(U,Y) ¡ ¡y¡¡% <~ K compact set, KG U}

as a fundamental system of neighbouriroods of O.

Remark 1.4. TIte restriction maps are continuous with respect
to the weak topology.

Now we are reaíly to define tIte Withney topology, as usual, as a limit
of the weak topology.
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Consider a local system £ of seminorms on tIte sIteaf Y. Let U CE X be
an open set.
Take:

(1) An exhanstive sequence of compact sets

o

K = {Ki}ieN K~ cK~± í UKi = U,
(2) A sequence M = {m~}~EN of natural numbers,
(3) A sequence ~ = {Ei} lEN of positive nnmbers.

Then:

Definition 1.5. A fundamental system of neighbouriroods of O E
r(U,Y) for tire Wiritney topology on f(U, Y) is given by tire sets

= {y E r(U,F) ¡ Vn sup ~y¡¡P <£n}

Remarks 1.6.

1. TIte weak topology can be given by acountable family of seminorms,
namely ¡¡ ¡¡~¿ for any exhaustive sequence of compact sets. Ilence
the weak topology is induced by a metric. This is not true for the
Whitney topology because tIte family UQMC is not countable and
does not have any countable cofinal subfamily.

2. If X is compact then tIte weai< and tIte Whitney topologies coincide.

Deñnition 1.7. Tino local systems of seminorms over X

£ = {{U>.}, II II%>.} and £‘ = {{U~.}, Ii
are said to be equivalent if for eacir cornpact K CE X and any p there
exist tino positive numbers a, ¡3 sucir tirat

a(jIyII7<)r =(¡¡y¡¡7<Yc’ =¡3Ú1y¡I7<>c
for cacir y c F(U,Y), with KG U.
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Lemma 1.8. IfÉ and 0 are equivalent, they induce tire same ineak
topology and tire same Whitney topology on r(U,Y), for any open set
Ucx.

Proof. It is clear by the delinitions. U

In the following we shall amit tIte restriction maps when there is no
risk of confusian.

Examples.

(1) If U rs R” is an open set, we have the classical seminorms for
functions in Cco(U) or in Cw(U)

ILf(zí,.. .,zn)I¡7< = sup [suP ¡f(z)¡, ~ 85f(x
1,...,x~) 1

84’,.. ,OxÑ’

whicIt give to C~(U) and CW(U) tIte usual compact open topology
(or weak topology) and WItitney (or strong) topology.

(2) Let (X,Ox) be a reduced real coherent analytic space. We can
find a locally limite open covering {Ux} of X such that for each A
there exists an isomorphism j>. U,, —* Xx, wItere Xx is a closed
real analytic subset of an open set fi>. in ]RnA. The isomorphism ix
induces a surjective map Ir>. CW(fix) —~ r(U>., Ox) which is the
composition of j’ witIt the quotient map. So for eacIt K rs U>. and
each fe r(U,,,Ox) we can define

= mf II9II~«x)
gE,r’(I)

By this local system of seminorms we can define tIte weak and the
strong topology on r(U,O~) for any open set U CE X.
If X is not coherent we can extend any analytic function on a local
model to a C~ function on fi>. and tIten use C~ seminorms.

(3) Let (X,Ox) be a reduced complex analytic space and Y be a co-
herent sheaf of Ox-modules. TIten we can find an open covering
{U>.} of X by holomorphically convex open sets and for eacIt A a
resolution of Y on U,,
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It induces a surjective map

for each open Stein set U CE U,,. Hence for any compact set K rs U
we can define

jjy¡~j< = mf { sup(l’yij +... + YqI)}
0Q?)=-y

With this local system of seminorms the weak topology gives to
r(U,Y) a structure of Frechét space (see [G.R] Chap. VII).

(4) Let now (X, Ox) be areduced coherent real analytic space and Y be
a coherent sheaf of Ox-modules. We can take tIte same definition as
before; namely, if {Ux} is an open covering of X such that on each
U,, we have a resolution of Y, we can define br K rs U>. compact,
p E IN and yE r(K,Y)

IyII% = __ <mf ¡¡It ¡7< + . . . +

(5) In tIte same situation as (4) we can define

= Y ®Ox Lx

where 8x is the sheaf of germs of C~-functions on X t Since Y
is coherent, tIte stalk Y~, is generated by a limite number of global

* A map p : X —+ IR is C~ it for any r E X tbere exist a neighbourbood TV,,
of 2¾an embedding TV,, .~. IR~’ as a locally closed analytic set and extends to a
smooth function on some neighbourhood of VV,, in 1R~’. if is the set of sucb extensions
we can define, br a compact set K CE W,,,

IIs’II7< = ini I¡p~<0E8
9
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sections (theorem A). llence we can construct an open covering
U = {U,,} and for each A we can find fi,... ,f~>.> in I}X,Y) such
that they generate Y,, as Ox,,,-module for each x E U>.. Let y
be an element in r(U,,,Y00). TIten we can write (not in a unique
way) y = S~~>.~> a~L>. with a~ E C~(U>.). In fact this can be done
locally by definition of Y~ and then can be globalized by using a
C~ partition of unity. For K CE U>. and p E Ti we can define

q< A>

i=1

(TIte mfis taken on all the system of coefficients &í,... ,aq<x) de-
scribing y with respect to the chosen generators f’,..., fq~>.>)• This
is a local system of seminorms: we shall always use this one to de-
fine the weak and tIte Whitney topology on P(U,YXO, ifwe do not
specify any more.

Remark 1.9. The morphisms between coherent sheaves of 0x-
modules induce continuous maps between tIte spaces of sections, (see
[GR] for tIte complex case: tIte sane proof works in the real one).

2. A WHITNEY APPROXIMATION THEOREM

This section is devoted to the proof of a WItitney - like approxi-
mation theorem for smooth functions defined on a real analytic space
X.

If X is coherent we sItalí get in the next section a similar result for
sections of any coherent sheaf of Ox-moduls.

Our proof is similar to tIte classical one that can be found in [W],
[N], [T6], [TS]. Under tIte hypothesis: X is an analytic submanifold of
iR? and Y a subsIteaf of O. Theorem 2.9 is proved in [BKSI, where the
Whitney topology is called Very Stmng Topology.

We sItalí nse tIte following standard notations for x E &n (or Cn),
a C~ function on IR” (or(U”), a = (aí,. . .,an), fi = (Pi,. ..,13n) in

rin:
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a! = aí a,.!(~) = ~ (if fJj =a5 for j = 1,.

= max~¡x~¡ ¡¡x¡¡ = (2Iz~I2)~
OX XX Ox ‘Os?”

Let (X, Ox) be a real analytic space, not necessarily coherent; we sup-
pose that (X, Ox) is the real part of a reduced complex analytic space
(X, Ox).

This means that there exists a complex analytic space (X,01)
which is defined over IR, and an antiinvolution a X —* 1 such that
(X,Ox) is isomorpItic to the real analytic space X’ = {z EX : a(x) =
x} endowed with the structure sheaf

0x consisting of ah a-invariant
germs.

In this situation X has in X an invariant neigItbourhood U = a(U)
whichis a Stein space. So, in the following, weshahl assume tItat (1, Og)
is a reduced Stein space defined over IR. In tIte case when the real part is
coIterent we can assume that (1, 0x) is its complexification (see [TiO]
and [Tu]).

Consider three compact sets
o o

H
1 rsH2rs 112 rsH3CE

11a CE X

Definition 2.1. A comnplez neigirbourhood Uí of ff
1 Ls called a

vertical neigirbourirood, tela tively to H2, 113, if for any C~ function
so: X—*IRsucirtiratsupp~rsHa,p¡H2 rO andanyt>Oand
p c Pi, tirere ezists an analytic function y on X sucir tirat:

(2) y Ls tire restriction of a irolomorpiric funetion G : X —. (U sucir thai
¡G(z)¡ < E for z E Uí

Remark 2.2. In the aboye situation, if H1 rs Ú{ CE Úí, Ú ~S also
a vertical neighbourbood.
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Lemma 2.3. Let (Ñ,Ot), H~, i = 1,2,3. U1 as before. Let
¡ (í’,Ov) —> (X,O~), be a complez analytic map. Assurne ¡ and
(Í’,Ov) are defined overlR,(Y,Oy) Ls tire tire real pan of(Y,Ov) and
consider f = f[y. Assurae there Ls an open subset Y’ rs Y sucir tirat f
defines mi isornorphism betineen Y’ and a closed analytic subset X’ —

f(Y’) of an open set W D 113 of X. Define H — f’ (It fl X’) fon
i=1 ,2,3. Tiren f’(Úi) is a vertical neigirbounirood of Ifl relative to
~

Froof. Let so: Y —* IR be a C~ function such that supp so CE H~,
and soIH; 2 0. Clearly the function 4’ = so o f

1 : X’ —* IR can be
extended to a C~’ function on X (denoted also by 4’) such that supp 4’
CE H~ and 4’¡H

2 0. If O: X —~ IR is an analytic approximation of 4’
anA its holomorpbic extension 0 is small on ¿Y1, tIten Gof approximates
so and is “small” on f—’(Ú~). U

Now we define vertical neighbourhoods for IR”, considered as tIte
real pafl of(flU

Lemnia 2.4. Let fi be art open set iii IR”. Let ¡~, i = 1,2,3, be
o

tirree cornpact subsets of fi sucir tirat 11, rsH~+í fon i = 1,2. Define
fi = d(111,fi —112). Tiren for any a 6 (0,1) tire set:

Ú0={zEC~ : foranyyEIR~—H2, ¡7Z(z—y)¡ >aó}

is a vertical neighbounirood of Hí relative to 112,113, (inhere 7Z( ) rneans
tire real pant of Q).

Proof. Let ~o: fi —* IR be a C~ function such that WIH2 O and
snpp so CE H~. For any A E (O,+oo), we define

Ix(so)fr) = cA
4~ ¡ ~(y)exp {—A¡Ix — yi¡2}dy (1)

where a. JRflexp (—j¡x2¡¡)dx = 1, that is e = ir4”.

We have

IxQp)(x) = cA4” ¡ ‘p(x — y)exp{—AI¡~¡¡2}dy (2)
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and hence, for any a e 1V’

D0(I>.(so))Gr) = cAkn JRIDOsoXZ — y)exp~A¡¡y¡¡2}áy —

= cA4n ¡ (D0so)(y)exp{..41ix — y¡¡2dy}

From (2) and (3) we deduce:

Da(Ix(so))(z) — Da(so)(x) =

(4)
cA ~ J ((naso)(y) — (130~)(x))exp{—A¡Iz — y¡¡2}dy

and

lDa(I>(so))(z) — Da(so)(x)I =

= cA4n ,/ ((D”so)(y) — (D0so)(x)) exp{—A¡¡x — y112}dy+ (5)

+ cA4” JIx—
31 ((n

0so)(y) — (D0so~z))exp{—A¡jx — y1I2}dy

Relation (5) proves that for any p e Ti we have

hm II’x(so) — soII~ = 0 (6)

In fact for any E > O we may suppose 6 small enougIt to ensure that the
first integral in (5) is less than ~. (We use the fact that so has compact
support and hence D0so is uniformely continuous).
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Given tIte positive number 6, we may find A E IR. big enough to
ensure that the second integral in (5) has absolute value less than ~
(because of the nature of tIte “bump function” exp{—A¡¡x — y¡j2}).

So tx(so) approximates so in tIte compact-open topology.

Coming back to tIte definition of Ix(so), we remark that the vari-
able x occours only in exp{—A¡¡x — yJ¡2} whicIt is holomorpItic on (U”.

Moreover so has compact support, Itence we deduce tItat the function

I,,(so)(z) = cAF’ j ~(y)exp{—A¡¡z — y¡¡2}dy (7)

is holomorphic for any 2 EC”, and in particular is analytic on fi.

To complete tIte proof it is enougIt to verify the following: if so¡H, =

0, tIten for any E > O, a E (0,1) there exists a A
0 such that ifA > A0,

we have:

l(Ix(so))(z)I < E (8)
for any 2 6 TIa

Fix a 6(0,1): thereexists a >0 sucIt that for z E It, if
d((7Z(z), Hí) < a, tIten so(7?.(z)) = O.

TItis implies that for x E </-, n IR.”, we can evaluate (Ix(so))(x) by
the formula

(Ix(so))(x) = cA
4” íupp pn{~~x—ytI>a} soWexp{—AMz — y¡¡2}dy (9)

and, as remarked before, for any E, ifA is big enough, tIten l(Ixso)IÁ)l CE.

Finally note tItat, since in (7) tIte variable z occours only in an
exponential function, only its real part is significant for the norm of
Ix(so)(x); we use here tIte fact that iea+ibi = leal).

TIte last remark ensures that the inequa]ity IIx(so)(z)l < E Itolds for
any z E U

0 and this completes tIte proof. U

Now we generalize Lemma 2.4 to real analytic subsets of IR”.
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Let X CE fi CE IR.” be a real analytic set in tIte open set O of IR”.
We sItail suppose X to be tIte real part of a complex space Ñ CE Ii CE (U”
defined over IR.

Under tItese ItypotItesis we have:

Lemnia 2.5. La fi1, 1 = 1,2,3 be three compact subsets of X such
o o

tirat H~ CEH1+í,H1 = It, 6 = d(111,X —112), a 6 (0,1) and

Úa={xEÑ: ¡7Z(z—w)¡>afiforanyineX—H2}

Tiren, fon any a E (0,1), U~, isa ventical neigirbourirood of u, relatively
to 112, H~.

Proaf. For i = 1,2,3, let us define:
o

A1 = { x FIR” —(X— Hi): tItereexists yE H~ such that

where d is tIte usual metric in Itt”. It is easy to veri~’ tItat:
o

(1) A, is open and A~ OX =H~.

In fact A1 is union of tIte baus B(y, b) with radius Py = d(y,8H~)
o o

for y EH.. TIte condition A~ o X =IL follows from tIte definition
of A~.

(2) Ai is compact and Am X = H~.
o

TItis equality is an easy consequence of tIte Itypotesis H~ =
11m~ TIte

compactness follows from tIte fact tItat A
1 is closed and bounded.

(3) A~ rs A~+1, i = 1,2.
o

TItis inclusion is a consequence of tIte hypotItesis 11, CEHm+1; it
o

implies that d(y,OHm) <d(y,811~+í) if y EH..

Let now so: X -~ IR be a C
0’ function sucIt tItat supp so CE H~, soIH = 0

and lix a c (0,1). We claim tItat tItere exists a C~ extension $
IR.” —* IR of so such tItat supp 4’ CE A

3, and tIA2 0.

TIte existence of sucIt a 4’ can be proved using a partion of unity or
as a particular case of the WItitney extension theorem (see [W]).
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Take a’ E (0,1) aud let 6’ be tIte distance d(OAi,A2); from Lemma
2.4 we get tItat tIte set:

= {z eC” : R(x—y) >a’6’foranyye IR”—X}

is a vertical neighbourhood of A1 relatively to A2, A3.
TItis implies tItat for any e > 0, p E Pi and a’ E (0,1) tItere exists

an analytic approxirnation G: IR” —* IR sucIt that:

a) ¡¡G—$I¡~ <E

b) G is tIte restriction of a holomorpItic function O: <U” -. (U such that
¡G(z)¡<eifzeÁr.

It is easy to verify tliat we can cItoose a’ in sucIt a way that
¿Ya CE Á?’ and Itence ÚJg gives the approximation of so : so U0 is a
vertical neighbourhood for H~, relative to 112, H~. U

Definition 2.6. ifH~, i = 1,2,3, are compact sets satisfying tire
conditions of ¡emma 2.5 tire neighbotíniroods ¿Y~ of ¡fi defined aboye sirall
be called tire canonical ventical neighbot¿riroods of H~.

Vertical neigItbourhoods can be defined also for real analytic spaces
wItich are not subsets of sorne IR”.

Let (X, Ox) be a real analytic space and assume it is tIte real part
of a Stein space (X,01).

Let {Kn}neN be a sequence of compact sets in X witIt tIte following
properties:

o o

(1) K~ = K~ and K,.~1D I<n for any n.
(2) UKnX

n

For any p E Pi consider the cornpact sets K~, K~± í,K,,+4; tItey sItalí
play tIte same role as ifí, 112, H~ before. We wisIt to prove tIte following

Lenima 2.7. For any p E U tItere exists a vertical neigItbourItood
k~ofK~ inX, witIt respect to K~+í, K~+4 in such a way tItat Ñ,,+i 9
.k~ for any p E Pi.
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ProaL From tIte general theory of analytic spaces we can easily
deduce that for eacIt p E Pi tItere exists a holomorphic map f~, : X —* (U””
such that

(1) Ip is defined over IR,

(2) Ip defines art ísomorphism between an open neighbonrhood TI, of
K,+4 in X and a complex analytic snbset 1k> = I,(ú,) of an open
set fi, of(U””,

(3) for any p, ¿Y,+i 9 ¿Yp,

(4) d(j,(8K,),I,(81<,±1))= 6> 0.

In fact, from [N]we know that for any compact set 11 CE X tItere exists a
Itolomorphic map 9: X —~ (U” for sorne u E Ti, whicIt is an isomorphism
onto its image wIten restricted to a suitable open neighbourItood of 11.

If 11 rs X, it is easy to verify tItat 9 can be cItosen defined over IR,
Finally condition (4) is obtained by multiplying f, by a suitable positive
constant.

now 1’ a
Define 4, = tu,.. .,qj : 1 (“,+.+nq Denote by ¿Yí tIte

canonical vertical neigItbourhoods in Ví = A(¿Yí) of 1I~ = fí(Ki) witIt
respect to TE2 = 11(1<2) aud H~ = fí(Ks) and define 1<f = ff

1(T12)
using Lemma 2.3. it 15 easy to see tItat, for any a E (0,1), Kf is a
vertical neigItbourItood of K~ in X with respect to K

2 , 1<~.

Now we define tIte vertical neigItbourhoods of 1<2 relative to 1<3, K8.

Consider tIte map 42 = (fi,): X .... (U”1+”2; 92 is an isomorphism
on a neighbourhood of 1<6 in X, U2 D ¿Y~ and 14 = 42(U2) is a complex
analytic sllbset of an open set SI2 of (U”1±”2, Take tIte compact sets

= 92(1<2), ff
2 — 92(1<3), 14 = 92(1<6) and let U~ be tIte canonical

vertical neighbourItoods of 14 witIt respect to 14, 11~ in 14 =

Define K% = W’(U~): as we remarked before, for any a E (0,1),
Ñ% is a vertical neigItbourItood of 1<2, with respect to K~, 1<6, in X.

In a similar way we define tIte k~’, Ii’?,... as vertical neigItbour-

Itoods of K~, 1<4 To complete tIte proof we have to verify tItat

~ k~. (*)
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It is enougIt to verity (*) for p = 1, tIte general case follows from tIte
same argument. Recail that:

¿Ya {zEf(Ú): R(x—w)¡>aó

for any toE 11(Ú1 n (X —

Úg={xe.~(u2): 7Z(z—w)¡>afi

for any toE g2(U2 fl (X — K3))}

and Kg = f;-’(LTfl, ~? = W’(úfl.
We can easily remark tIte following:

a) if x,ye X tIten d(fi(x),fi(y)) =d(~(z),~2(v)) and
l1Z(fí(x) — f’(y))I =I1Z(~Gr) — g2(xl))I.

b) ifz 61<2 tIten d(~2(x),42(8K2)) =d(42fr),Ñ2(8Ka)).

From tIte hypothesis 6 = d(i1(8K1),j2(8K2)) = d(f2(814), (OKa)) and
these two remarks, (*) follows. U

Note tItat Lemma 2.7 is trivial for X = IR”: in this case we Itave
tIte canonical vertical neighbourhaods.

Definition 2.8. A sequence {j4}pEN of neigirbouriroods of com-
pact seIs as in Lemnia 2.7 .shall be called a consistent sequence of ventical
neigirbouniroods.

Theorem 2.9. Leí (X, Ox) be tire real paft of a complez space
(X,01). Denote by

tx tire sireaf of genms of C~ functions on X.
Tiren, fon any open set U CE X, r(U,Ox) Ls dense in r(U,Ex) fon tire
Whitney iopology and hence fon tire weak iopology.

Proof. Consider a sequence {Kfl}flEN of compact sets in X sucIt
o o

that, Kn±íDK~, UKn = X, 1<n = 1<,,.
n

Let {Én} EN be a consistent sequence of vertical neigbourhoods
as defined in Lemma 2.7; we tecali that for eacIt p, k,, is a vertical
neigItbourhood of 1<,, witIt respect to 1<~~í,1<p+4~
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By a partition of unity we may construct asequence of C~’ functions
so,: X .-. 11, p> O sucIt tItat

a) supp sop CE 1<,+2

b) so,(x) = O in a neighbourItood of 1<p—1

o

c) so,(x) = 1 in a neighbourItood of L~ = 1<,+í— 1<,.
Take a C00 function y: X —* IR, cItoose a sequence {c,,} of positive

numbers and a sequence {m,} of natural numbers: we Itave to find an
analytic function 9: X —+ IR such that for any p =O one Itas

We can assume m,+í =m~ for any p =0. Define, for p> O

= 1 + llso,lI~~
2 (2)

and choose positive numbers 6, in sucIt a way tItat

r’cs, 1
26,+i =6,and ~VplV

1q±1 =¡Ep. (3)
Now consider tIte compact sets

= 112 = Ql, H~ = 1<2.

By definition of a vertical neighbourhood we can find a holomorpItic
function go : X -. <U, defined over IR, such that

Ligo — soo~ll~ = 119o — yll7~ =liso — sooyll~ < 4.
Using tIte fact that A?,, is a vertical neighbourhood of 1<, with respect to
1<,+i, K,+4, we may find inductively a sequence of Itolomorphic func-
tions {g~} on X, defined over IR, sucIt tItat:

— so~(y — ~o — ~í — — ~~—~)il7~;+,< 6, (4)

jgp(z)¡ < ¿Sp if 2 6 (5)

(Condition (5)is empty for p < 3). From tIte conditions on so, we deduce
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y,

¡¡y — Z~~ilT: <¿Sr (6)
1=0

< ~v (7)
Jf in (4) we replace p by p + 1, we obtain

y, y,

li~+~llT; =llsoy,+íO’ — Z~~)ll%,’ + Il~,+’ — sop+~(y —

s=O 1=0

p

=llsop+ílI~~. ¡¡y— Z~t~L, + &-J-1 =M,+16, + ~,+í

(8)

But (7) applled to g,+í gives

since m, =my,+i. Finally, from (8) and (9), we deduce

Ilu~+íII~~, =M,+í6,+26,+í =26,M,+1
and hence

¡íZ~~íí~:+, =llZgilI~+, =~¡lg~l¡~~.=2~6.M,1~ < 1~
1>~ i=p i=p ‘=P

(10)
Relations (6) and (10) prove tItat tIte series E 9i converges on X to a
C~ function g wIticIt approximates y as wanted.

Moreover condition (5) proves tItat tIte series E Pi in fact converges
as a series of Itolomorphic functions on tIte union U 1<,, CE X.

p
Since tIte space of holomorpItic functions on a complex space is com-

plete (see (GR]), tIte function g = 2 Pi 15 the restriction of a ItolomorpItic
function, and hence it is analytic. TIte tlieorem is proved. U
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Remark 2.10. Theorem 2.9 Itolds when (X, Ox) is tIte real part of
a complex space. No Itypothesis on tIte coherence or on tIte dimensions
of tIte Zariski tangent spaces are necessary.

3. APPROXIMATION FOR SECTIONS OF A SHEAF

In tIte following (X, Ox) will be a real coherent reduced analytic
space; no Itypothesis on tIte dimensions of tIte Zariski tangent spaces are
required.

Theorem 3.1. Let (X,Ox) be a coirerent real analytic space, con-
siden a cohenent sireaf Y of 0x -modules and denote by Y~~0 tire sireaf
Y®ox tx• Fon any open set U CE X, ]}U,Y) Ls devise &~ r(U,Yfl fon
tire Whitney topology, irence also fon tire weak topology.

Proof. Let (Ñ,O~) be a complexification of (X,Ox). By a
tIteorem of II. Cartan, tItere exists a neighbourItood (Itence a Stein
neigItbourhood) of X in X and a coherent sIteal Y on it, such that
Flx = Y®o~ Oj~. (see [Ca] for tIte case X CE IR”; tIte proof is tIte same
in tIte general case). So in tIte following we sItail suppose (1, Ox) to be
a Stein space and Y defined over X.

o
Take a sequence {Kn}nEN of compact sets such tItat 1<,, = 1<,.,

o
K~ CEK,.+

1, u 1<,, = X and Iet {K,.} be a consistent sequence of vertical
neighbourhoods in X. More precisely we assume that for any p 1<, is a
vertical neigItbourhood of 1<,, with respect to J4+í, 1<,+4.

We know from Cartan’s tIteorem A, that for anyp E Pi there exists a
limite set of global sections of Y, say y~’,. . . , y~, such tItat they generate
tIte stalk Y,,, for any z in an open neighbourhood Ji,, of 1<,, in 1.

We can assume 4’lx E F(X,Y) for 1 = 1,..., it,, andforanyp.

Take now a C~ global section a E r(X,F~). Using a suitable

partition of unity, we can flnd C~ functions {&~}i,jErq on X such that
(1)foranyjsupp¿4rsK~+2—K5..ífori=1,...,n~,

~o n~
(2) a(x) = 2 2 a~(z)y~(z)

j=1
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(TIte family { supp a~} is locally finite, so(2) makes sense). II we denote
4,,= S~’1 a~y we can write a = 2%~ 4ú.

We Itave tIte following remarks.

(1) lake y,, ... , yq E r(X, Y) and a sequence of sections of F~
q

= 2 a~yi. TIten, by using norms on r(X,Y) as in exemple (4)
1=1

of section 1, it is not difficult to prove tItat llm ¡¡a’ — a~I¡7~ = O
n —.00

q
implies Hm ¡¡4’~ — >j aúyJ¡7~ = O.

fl 00

(2) Remark (1) implies that it is possible to approximate on compact
sets sections of ~OC> by sections of Y. Moreover if vertical neigh-
bourhoods are defined and tIte original section Itas the required
properties, tIte section of Y extends to a section of Y which Itas
small norm oit tIte corresponding vertical neigItbourhoods.

(3) TIte space r(U,F) is a complete space (Example (3) of Section 1).

Now we can repeat tIte proof of TIteorem 2.9 almost word by word. It is
enough to replace so~(y —Yo — — gy,~) by tIte section 4’,, and to use
seminorms for sections instead of seminorms for functions. This proves
tIte theorem. U

Consider now a closed coIterent subspace Y CE X. TIte structural
sheaf Oy is defined by the exact sequence of coIterent sheaves:

o -~ 3v —> o~ —~ O~ —* a
II Y is a coherent sheaf of Ox-modules we can define tIte restriction of
Y to Y in tIte following way:

Definition 3.2. Y¡y = O>’ ®O~

From the aboye exact sequence we deduce tIte exacteness of the
sequence

J>’®0x Y—*F
wItere y is tIte restriction map; its kernel is the image in Y of tIte sheal
.7>’ ®Ox Y (tIte sheaf of germs of sections vanisIting at Y). In tItis
situation we can give a sort of relative version of Theorem 3.1.
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Let g be an element un r(Y,F¡>j. Denote by r(X,F)9 tIte set of
sections wItich extend g to X. TItis set is not empty because of Cartan’s
TIteorem B. Denote in tIte same way by F(X, Y

00)
9 tIte extensions of y

to X in Y~. TIten we Itave:

Thearem 3.3. LeL Y be a closed coherent analtic subset of tire
cohenent analytic space X andg E F(Y, FI>’); then r(X,Y)9 Ls devise in
F(X, Y

00 )~ fon tire Whitney topology.

Proof. Let so be an element in r(X, Y00)
9. Given a neighbourItood

B4, in tIte Whitney topology we Itave to find he B~, n r(X,F)2.
Let G be an element in r(X,F)2. TIten (so — G)ly = O and so

replacing so by ip—a we can suppose pto be tIte zero-section of r(Y, FI y).

By considering tIte exact sequence:

Jv®oxF00=*Y00~%Ov®oxF004O
we see tItat so is un tIte image of .Jy ®o,< Y

00 = (Ji’ ®Vx Y) ®Ox ex.
Let 4, E F(X,Jy ® Ffl be a preimage of so- By Theorem 3.1 4’
can be approximated in tIte Whitney topology by a section 1 of
r(X, .9V ®c’x Y). TIten ¡3(f) approximates so because /31s continuous
and ¡3(f)Iy = O.

Suppose now to Itave a sIteaf Itomomorphism between two coherent
analytic sheaves of Ox-modules a: Y —>

TIten one Itas an exact sequence

O —. ker a —* Y -~ Q
Since tx is fiat over 0x we get an exact sequence

O—*(kera)00--*F00-4 Q~

Remark 3.4. Any exact sequence of Ox-modules is also locally
an exact sequence of O,-modules, because X is locally isomorphic to
an analytic subset of sorne IR”. For X CE IR”,Ex is a faithfully fiat On~
module (see [M] Cor.1.12 pg 88); so, by definition of tx, a is surjective
if and only ifa00 is surjective and a(F) = a00(Y) flQ.
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Remark 3.5. If tIte sheaf Y is ox, tIten tIte sheaf J~ =

3V ®Ox tx ~j>’ . & is tIte sIteaf of germs of C”’ functions vanishing
at Y, because Y is coIterent. ([M] pg.95)

Theorem 3.6. Let X be a coherent analytic space, let Y,Q be
coirenent sheaves of Ox-modules and a Y —* Q be a sheaf homomon-
pirism; supposeg E r(X,g) be such that g = a”’(q) initir ‘~ E r(X,Yfl.
Tiren in eacir neigirbounirood of ‘~ fon tire Whitney topology thene exísts
1 e r(X, Y) sucl¡ tirat c4f) =

Moreover if Y CE X is a closed coherent subspace and ii¡y is in
r(Y,Flq, we can find f such that f¡>’ =

Proof. By Remark 3.4 g = a”’(’7) is tIte image of sorne element
ir e r(X,F). TIten ~ — h E ker a”’ and, if i¡y is analytic, tIte same is
true for ‘7— irj>’.

So we can apply Theorem 3.3 to tIte sheaf ker a and ¡md irí E
r(X,ker a) very close to ~— h and such tItat, iríjy = u— h¡y. Hence
f = h+ir1 is very close to’7, ~41)= g and, if’7J>’ is analytic, f¡y =
u

As an application of these results we obtain sorne approximation
theorems for solutions of analytic linear systems.

Lot U be aix open set in IR” and X CE U be a coherent analytic set.
Consider an analytic linear system on U:

ahk(Z)y/, = Ph h = 1,... ,p (*)

where ahk,gh E CW(U) = F(U,O). TIten we hayo tIte following:

Thenrem 3.7. If (*) iras a C”’ solution, j.c. diere ezists so =

(sol,-. - ,‘p~) E C”’(U)~ sucir tirat
4

E ahk(z)sok=gh(x) ir=1,...,p
k= 1

tiren fon cacir neigirbounirood B~,, of so in tire product Wirátney topology of
C

00(U)~, tirene exist a solution f = (fi,.. .,f~) E C”}U)~ of (9 that
belongs to B,~.
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Moneoven ine irave:

(1) ífX CE U is a cohenent analytíc set avid soklx E F(X,Ox) fon any
le, tiren we can take

fkIX=sokIX fork=1,...,q

(2) iffor sorne 1=q, sou~ . . ~soíE CW(U) tiren inc can talee f’ =

soí,.. .,f~ = soí}

Prnof. Consider tIte sheaf Itomomorphism a : —* O’ defined
by tIte matrix (añk).

If each 9h is tIte zero function tIte first statement is TIteorem 3.1
applled to ker a.

We have (91,... ,g,) = a00(soí,. ..,soj; by Remark 3.4, tIten (91,
,g,) E r(U,Im a). So tIte first statement and (1) are consequence of

Theorom 3.6.

lo prove (2) consider

= ~
k=1

TItis 15 aix element lix [(U, O), so we Itave a system of the same type as
(*) given by

E ahkyk=ghgh h=1,...,p (**)

and for any solution (4’í+í,. -. ,4’q) of (**), (soí,.. . ,soí,4,í+í,.. . ,4’~) is
a solution of (*). So we reduce to tIte first statement. U

Remark 3.8. In Theorem 3.7 we can suppose (same proof) that
U is any open set of a coherent real analytic space.
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4. APPROXIMATION FOR SHEAF HOMOMORPHISMS

Let X be a coIterent analytic space. If Y and Q are coIterent sIteaves
of Ox-modules, we know that tIte sIteaf 1-tom(F, Q) is also a coher-
ent sIteal (see [5]). Next proposition gives tIte relations between
floin (F,q) ®oxíx = Uom (Y,Q)”’ and Uom (Y”’,g”’)

Praposition 4.1. 7tomg~(F”’,Q”’) ~ 7fomo~ (Y,Q)00

Praof. It is enough to prove tIte statement locally, since we Itave a
natural map:

Step 1. Tire tiresis is tnue fon Y = O7<andQ=O3<.
lix fact a sheaf Itomomorphism between 07< and 03< is given by a

p x q matrix whose entries are analytic functions on X.

A similar result is true for 1-tomes (S~ ~k)-Lix otIter words we Itave:

Uomv~(O7<,O3~,) ~ O7<X47fom¿x(E~,Ek) gpXq

— gpXq
0pXq ®o,. Cx—

Step 2. Tire thesis Ls tnue for Y = 07< andgeneralQ.
Take a local resolution of O:

and apply tIte functor flom(O7<, —). EacIt Itomomorphism 07< —+ O
can be lifted (see Proposition 6 of Chap. VIII un [G.Rjj) to a morpItism
07< —* 03<, Itence we get aix exact sequence

7-iom(O7<,O~) -~ Uom(07<,O%) -. flom(O7<,O) -*0

Tensoring with
tx; we get:

(flom(O7<,0{))”’ —* (7-tom(O7<,O3<))”’ -4 (Uorn(O7<,O))”’ —* O
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Doing tIte sanie but un opposite order (using again that Itomomorphisms
can be lifted), from

--4 -4 gO
0 -4 0

we get

Uom(E7<,E.~) —. flom(E~<,4) —* 1tom(E~,Q”’) —*0

TIte natural map flom(O7<,OR’) ® 8x —~ 1iom(E~-,E~) gives tIte fol-
lowing commutative diagram:

flom(O7<,0{)®Ex —* flom(O7<,O3<)®Ex —* llorn(O7<,Q)®Ex —~ O
1 1’ 1~

TIte first two vertical rows are isomorpItisms by step 1, so tIte tItird one
is aix isomorphism too.

Step 3. Tire general case.

Take a local resolution for Y

Apply Uom(—,Q):

Uom(O~,Q) — Uom(03<,Q) — flom(F,Q) — 0

Tensoring with 8x yields

Uom(O~,Q)”’ — Hom(0<,Q)”’ — Uom(Y,Q)”’ ÷- O

Doing tIte same in opposite order yields

Uom(82,Y”’) — 7tom(E~,F”’) — ?iom(Y”’,Q”’) —0
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Rut tIte natural maps:

Uom(O~,F)”’ — Uom(62,Y00) and

Uom(O<,F)”’ -* Uom(tj~,F”’)

are isomorpItisms, Itence Uom(F, g)00 —* Hom(F’”, O”’) is aix isomor-
phism too. U

Now we want to study tIte set of isomorpItisms un ltom(Y, Q). U
a is such aix isomorpItism, tIten we Itave aix isomorphism 7tom(F, O) —*

flom(Y, Y), obtained by composition with a1, which is also aix iso-
morpItism. So we can assume Y = O.

For each x E X we can consider a minimal resolution of Y in a
small neighbourItood U of x

O~§hO~,4FiU-*O

TItis means:

(1) F~ is an Ox,x-module generated by p sections (aí,.. .,a,) and it
cannot be generated by p — 1 sections

(2) tIte kernel of a : O~ —* Y is a subsIteaf of O’ generated by n
p-tuples of analytic functions.

Ifa: Y —* Fis a given isomorphism, tIten (a(a
1) = b1,... , a(a,) = b,)

is another system of generators of F~. TIten we Itave:

Lemnia 4.2. a can be lifíed lo a rnonpirisrn &: OP —* OP (nol in
a unique inay) and any lifting Ls art isornorphisrn on a neigirbourhood of
2:.

TIte proof is a consequence of tIte following more general fact.

Lemnia 4.3. Leí (A, m) be a local ring avid let M be art A-module
of finite type. Leí p be tire minirnal number of elernents in M generating
M oven A. Tiren any A-hornornonpirism f M —* M can be lifíed to
a irornomonphisrn f : A’ —* ~ Moreoven zf f Ls arz isornorphisrn any
lifting f Ls art isomorpirism.
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Pronf. M is isomorpItic to APIN, wItere N is a submodule and
N CE mA’, since p is minimal. If (vi,... ,v,) is a system of generators
for M over A, f can be expressed (not in a uniqile way) as a rnatrix E
with entries un A; E : A~ .—* A’ lifts f. If both E and O lift 1 tIten
tIte columns of tIte difference E — O are elements of N. In particular
if E = (fis) and O = (gis), tIten ~ — Yij E m for any i,j. So, if f is
invertible and h = f’, E lifts f and 11 lifts ir, we Itave foh = id, Itence
F• H = (6~ + m15) witIt m15 E m. TItis implies tItat botIt det E and
det 11 are units un A: un particular E is an isomorphism. u

Lemma 4.4. Suppose a : Y —* Y Ls a sireaf isomonpirisrn. For
eacir point x in X tirene exist a cornpact neigirbounirood 11,, of z and a
positive constaní E,, sucir tirat, if /3 : Y —* Y verifies 11/3 — al Ik~ tiren
/3 Ls ay isomorpirisrn on a neigirbounirood of 11,,,.

Proaf. Let 6 be a lifting of a on a neigItbourItood U,, of x. By
Lemma 4.2 we can suppose & to be an isomorphism on U,,. Define

= jdet(a~5(x))¡

We can fund a compact neighbourhood 11,, of z sucIt that for each y E 11,,,
one Itas

¡det(ai5(y))i =

TIten for each matrix of analytic functions (b15(y)) sufficiently near to
(a15(y)) we have

¡det(bq(y)) — det(a15(y))¡ <
4

for each y c 11,,. TItis means that tItere exists e,, such tliat, if
¡/3—aj¡% <e,,, tIten /3 Itas alifting (b15(y)) sucIt that jdet(b15(y))¡ >

for eacIt y E H,,; so (bi5(y)), and Itence /3, is aix isomorpItism over a
neigItbourItood of H,,. U

Carollary 4.5. For any compact K rs X there exists a neighbour-
Itood

V(K,c) = {/3 E ]i’(X,1-tom(F,F))¡ ¡¡/3 — aj¡% <E}
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such that any /3 E V(1<, e) is aix isomorpItism on a neighbourItood of 1<.

Proof. Cover 1< by a finite number of 11,, and take e = min{E~}
U

Finally we Itave:

Theorem 4.6. Leí X be a coirenent real analytic space and Y, Q be
tino coirenent sireaves of 0x -modules. Tiren tire set

Iso(Y,Q) = {/3 e r(X,nom(F,Q))i/3 is aix isomorphism}

zs un open set fon tire Whitney topology.

Proof. As before we can suppose Y = g. Let a be an isomorpItism.
We Itave to sItow tItat Iso(F) contalns a neighbourhood of a.

Let {1<i}i~yg be an exItaustive sequence of compact sets. Define E~
as follows:

- Co is such that if ¡¡/3 — a 11%~ < E
0 tIten /3 is an isomorpItism on a

neighbourhood of
1<a~

- Sí is sucIt that if ¡¡/3 — aj¡0 . < e
1 tIten /3 is aix isomorphism on

1<, -Ko
o

a neighbourhood of K~— 1<~.

and so on.

TIten {Ki,ei}iEN defines a neigItbourhood of a un tIte Whitney
topology, namely tIte set of /3’s such that for any

For any /3 un such a neighbourItood, /3 is an isomorpItism on a neigh-
o

bourItood of
1<o and on a neighbourItood of J<~— K~í for eacIt i. If alí

tIte E~ are small enough /3 is injective, Itence /3 E Iso(F).

Theorem 4.7. Tire set of isornorpirisnis in r(X,nom(Y”’,Qfl)
zs an open set fon tire Whitney topology:
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Proof. TIte proofs of Lemma’s 4.2 and 4.4, Corollary 4.5 and TIte-
orem 4.6 can be repeated, aimost without changes, witIt Y”’ instead of
Y. a

Corollary 4.8. Let so: Y”’ —* Q00 be an isomorphim, tIten tItere
exists aix isomorphism f: Y —* Q sucIt that f”’ is an isomorpbism and
arbitrarily close to so

Proof. It is aix application of Theorem 3.1 together with Proposi-
tion 4.1 and TIteorems 4.6 and 4.7 below. U

5. TRE ALGEBRAIC CASE

Let X CE IR” be a real algebraic set. Denote by lZx tIte sheaf of
germs of regular functions on X and by 0x tIte structural sheaf of X
as real analytic set.

Definition 5.1. Let 1 be a complezification of X as art afflne
variety: me say tirat X is alrnost regular if fon eacir x e X tire gerrn X,,
cozncides initir tire analytic complezification of tire genrn X,,.

Definition 52. A sireaf Y of Rx-rnodules Ls called A-coherent if
it admits a resolution:

7Z7< —* —* Y -. 0

Consider tire natural injection X —* Spec r(X, lZx): oye can sirow
([T9]) tirat a sirealY is A-coirenent if and only if it eztends, of course in
a unz que muy, to a coherent sheaf Y oven Spec r(X, lZx); tus eztenszon
Y sirail irave an irnportant míe in miral follotns.

Definition 5.3. Art A-cohenent sireaf Y Ls called B-coirerent ifany
y e F(X,F) extends to F( Spec F(X,lZx),É)

Fon art A-coirerent sheaf of lZx-rnodules Y denote by Y0 tire sireaf
F®R~ Ox-

Remark 5.4. If X is almost regular un particular it is coIterent as
analytic space ([T7]); un tItis case 0x is a faitItfully fIat lZx-module (see
[S]Cor.1 pg 11).
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If U CE X is an open set, we can endow r(u,Y) with a local system
of seminorms by considering tIte usual weak topology on 7Z(U) as in
Examples 2) and 3) in §1. TIten we Itave:

TIteorem 5.5. Let X be a real affine algebraic set and Y CE X be
art almost regulan algebraic subset. Let Y be a A-coirenent sireaf, tiren
P(U, Y) Ls dense in 1}U,Y) 18 dense in I}U, Y0) in tire ineale topology.

Moreover zf f E r(X,Y0) avid f¡>’ = 9 E 1’(Y,Y¡y), tiren tire set
I}X, 7)9 of regulan sectiovis eztending 9 U devise in tire corresponding
set r(X, Y0)

2.

lPraaf. It is tIte same as tIte proofs of TIteorems 3.1 and 3.3 using
Stone-Weierstrass instead of WItitney approximation theorem. Remark
5.4 and tIte fact that Y is A-coherent give us tIte necessary ingredients
to repeat tIte proofs. U

Now consider a sheaf homomorphism a : Y —. g between twa
A-coherent sheaves of lZx-modules. We can define et : F~ . Qo by
tensorizing with tIte sheaf ox• By Remark 54 we have

a
0(Y0) ng = a(Y)

and Itence tIte following result:

TIteorem 5.6. Let U be a Zanislel open set in IR”. Consider tire
linear system

ahk(fn)ljk = Ph ir = 1,... ,p (*)

inhene ahk(x) avid gh(x) are regular functions on U for ir = 1,... ,p avid
k= 1,... ,q. Tiren any differentiab¿e solution (fi,.. .,fq) of(*) can be
appnozirnated ivi tire meale topology by a regular solution (y’,...

Moneo ver:
(1) If fon art almosí regulan algebraic set X rs U tve have fklx E

r(X,lzx) for le — 1 .,q, ine can talee gí,• ••,Yq in sucir a inay
tiratgkI~ = fklx fork=1,...,q

(2) If tire first 1 < q componenis fr,... ,f¡ are regular, tiren me can talee
gi,... ,gí = fí.
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Proof. By Theorem 3.7 we may suppose (fi,..., fq) 18 an analytic
solution of (*). As we remarked before, tIte matrix (a¡g) defines aix exact
sequence of coIterent sheaves

O —* kera —* 7Z~I -% 74,

Im a
.1~
O

where ker a and Im a are A-coIterent because tItey admit a complexifi-
cation. Consider tIte corresponding exact sequence obtained by applying
®RuO. We can apply Theorem 5.5to ker a and ker a0. So any analytic
solution of tIte homogeneous system Itas a regular approximation.

For the general case we can use tIte fact that ao(YO) n g =
and we Itave surjectivity for sections because 74, is R-coherent and so
also Im a is B-coIterent, being a subsheaf of £~.

So if (fi,..., .4) is aix analytic solution of (*) we Itave (91,... ,g,,) =
ao(fí,.. . ,fq) and Itence (91,... ,g,) = a(irx,. .. ,Ii~) with irí,... ,h

4 E
F(U,lZt), because

0x is faithfully fIat on lZx, (see Remark 5.4).

So (fi — irí,... ,f~ — hí) eker & and we conclude as before.

If fi,... ,f¡ are regular, tIten (f¡+í,.. .,f~) isa solution of tIte sys-
tem

q>3 ahk2lk=gh—Zahkfk h=1,...,p (**)
k=l+1 k=1

and tIten Itas a regular approximation: this proves that (2) may be
satisfied -

For tIte assertion (1) we can use a more direct argument instead of
repeating tIte proof of Theorem 3.7.

Suppose fkI~ to be regular for each k and let E,. be a regular func-
tion oit U which extends ft¡x~ TIten 1k — E,. is an analytic function
vanishing on X. Since X is almost regular, if pi,- - . ,~ are generators
for tIte ideal 1(X) CE Ru, we can write:
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2,

5=1

TIten by applying a0 to tIte vector (fi — E
1,... ,fq — E4)) we fund tItat

tIte set {/3sk} ,=~ is an analytic solution of tIte system:

k=1 ,...,q

4v 4

>ZZah¡<p,/3sk=gh—ZahkEk h=1,...,p
__ k=1

Hence tIte ~ can be approximated un tIte weak topology by regular
functions b5,. such tItat tIte set {b5,.} is a regular solution of *** *).

Consider for le = 1,... ,q tIte regular function G& = 2—1 b5,.p5; it
vanisItes on X , approximates f,. — E,. and by construction

4 q
>3ahkGk=gh—>3ahkE¡, h=1,...,p
k=i k=1

so (Gi + Fi,.. .,G4 + E4) is tIte required approximation of (fi,... ,f4)
U

6. ALGEBRAIC ANO ANALYTIC VECTOR BUNDLES

Before giving sorne consequences of tIte theorems un §3 and §4 let
us recail shortly sorne definitions and results about generalized vector
bundies and about duality between tItem and tIte coherent sIteaves. We
refer to [Fi], [F2] and [P] for tIte complex case and to [Ct] and [T9] for
tIte real analytic and algebraic case respectively. A complete survey on
this subject sItail appear un [T12].

Let 1K be tIte fieldff nr It, and (X,Ox) be aix analytic set in Etm.
If 11< = IR assume X to be coherent.

Given a matrix a(z) = (a~s(z))~1,... witIt entries in r(X, Ox), we
can think of it as a map:
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X x ]K” —* X x 1K~

(x4) —4(x,a(x)t)

Definition 6.1. A linean analytic bundie is tire set

E = ker a = {(x,t) EX x ]KPIt E ker a(x)}.

Let irF be tIte projection E —* X. A rnorpirLsm of linear analytic bundies
E CE X x 1K”, & CE X x E~ is aix analytic map ~‘: E —* G such tItat:

(1) TIte diagrain

E —~ G
Ir¡; 1- 1’ Wc

X -——-—-~ X
commutes

(2) For any z E X, so1,,~’fr) : ir~’(x) —* ir¿’(x) is linear.

Denote by £(X) tIte category of generalized analytic bundíes over
X. More generally we could define aix abstract notion of analytic linear
bundie as a triple (E, ir, X) locally isomorphic to a linear bundle as un
Definition 6.1.

Remark 6.2. If a(x) has constant rank we Itave tIte usual notion
of locally trivial vector bundíe.

A matrix (b~5(x)) with entries un F(X, Ox) defines also a morphism
/3 07< —4 03<. Its cokernel Y is a coherent sIteaf over X.

Proposition &3. Tirere is a «duality” associating lo eacir linear
analytic bundie E = ker a tire coirerení sireaf Y = cokerta. If 13(E) Ls
tire sireaf associated to tire presheaf

X 9 U -4 1-tom(EIu,U >< 1K)

tIten 13(E) = coker
ta
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Similar results, witIt a few changes, are true in tIte real algebraic
case: ín tItis case one can sItow tItat tIte dua]ity is well defined between
tIte category of B-coherent sIteaves and a subcategory of £(X). Detajís
can be found un (Ct] aud [19].

Now we can apply tIte results of §3 and §4.

lix tIte following by analytic (C”’) sections of Y we sItail mean sec-
tions of 13(E) (13(E)00).

Let Y be a coherent analytic subset of X: we can consider smootIt
sections of 13(E) wanishing on Y; again by Maigrange theorem these are
precisely tIte sections in tIte image of .700 ® 13(E). TIten we Itave:

Theorem 6.4. Leí X be a coherení real avialytic space, Y be a
coherení subspace and E be a linear analytic bundle; leí a be a srnootir
section of E miricir is analytic on Y.

Tiren in eacir neigirbourirood of a fon tire Whitney topology, one can
fivid oit analytic section s sucir ural = al>’

TIteorem 6.5. Leí X be a compací real affine vaniety, Y be art
almosí regulan subvariety and E be a linear algebrale bundle; leí o- be a
srnootir section ofE miricir is regular on Y.

Tiren in eacir neigirbourirood ola in tire ineak topology, oye can find
a regular section s sucir thai si>’ = a

1>’.

Remark 6.6. Tlieorems 6.4 and 6.5 are generalizations of tIte
restilts about approximation of sections un a locally trivial analytic or
algebraic vector bundle. (see [Rl!], [BT2], [BT3])

Finally, by duallty, Corollary 4.8 gives a classification tIteorem for
linear analytic bundíes, which extends tIte classical results for tIte com-
plex case (see [Gí], [G2], [Ga]) and for tIte real case ( see [Ti], [12],
[Ta]).

Theorem 6.7. Leí E, G be linear analytic bundíes oven tire coirerent
set X CE IR”. Leí so : E —* (3 be a srnootir isornorpirism, i.e. diere Ls a
conimnutative diagrara
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E —* O
,rF ¡ ,rG

id
X —. X

wirere so Ls tire restniction of a C”’ map fnorn ittn x IR~ lo un x 11V> iniricir
zs tnvertible and linear on tire fibres. Tiren tirere exísts 1 : E —* (3 inhicir
ts ay analytic bundle isornorpirism and Ls arbitranily clase lo so~
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