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Abstract A subbundle of variable dimension inside the tangent bundle of a smooth man-
ifold is called a smooth distribution if it is the pointwise span of a family of smooth vector
fields. We prove that all such distributions are finitely generated, meaning that the family
may be taken to be a finite collection. Further, we show that the space of smooth sections
of such distributions need not be finitely generated as a module over the smooth functions.
Our results are valid in greater generality, where the tangent bundle may be replaced by an
arbitrary vector bundle.
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1 Introduction

Let M be a smooth manifold, and let L be a distribution on M , i.e., a subbundle of the tangent
bundle T M . The well-known Frobenius theorem states that L determines a foliation of M if
and only if L is involutive. Recall that the hypotheses of the Frobenius theorem require that
the dimension of the subspace L p is a constant function of p ∈ M .
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In many fields, for example control theory and Poisson geometry, one encounters general-
ized distributions, where the subspace L p can have different dimensions at different points.
We call a distribution of constant rank a regular distribution. Sussmann [7] and Stefan [6]
extended the Frobenius theorem to generalized distributions (see Michor [4, Chap. 1, Sect. 3]
for a nice exposition). Sussmann and Stefan considered a distribution L to be smooth if for
each p ∈ M , there are locally defined vector fields that are sections of L whose values at p
span L p .

On the other hand, in the theory of exterior differential systems one encounters generalized
distributions that are defined as the kernels of families of one-forms. We call such a distribu-
tion cosmooth. The subspaces of the cotangent spaces spanned by these one-forms determine
a generalized subbundle of the cotangent bundle. This motivates studying generalized sub-
bundles of arbitrary vector bundles.

If E is a vector bundle over M , a generalized subbundle G of E is an assignment p �→ G p

of a subspace G p of the fiber E p of E over p, for each point p ∈ M . The interesting cases are
where G is smooth or cosmooth. A section s of E is said to be a section of G if s(p) ∈ G p

for all p ∈ M .
The book [1] by Bullo and Lewis has an interesting discussion of generalized distributions

and generalized subbundles; their book was an inspiration for this article.
If F is a smooth k-dimensional subbundle of E in the usual sense, then every point has

a neighborhood U on which there are k smooth sections s1, s2, . . . , sk whose values form a
basis for Fp at every point p ∈ U . Every smooth section of F over U can be written as a
combination of the sections s1, . . . , sk with smooth coefficients. To put it in other words, the
set of smooth sections of F over U is a module over the ring of smooth functions on U ; this
module is finitely generated with generators s1, . . . , sk .

In the case of a generalized subbundle G, we can find sections of G on an open set U that
form a basis at each point only if the dimension of G is constant on U . We can generalize
what happens in the regular case in two directions.

First, following the terminology in Bullo and Lewis [1], we say that a generalized subbun-
dle G of E is finitely generated over an open set U if there are smooth sections s1, s2, . . . sk

of G over U so that the values s1(p), s2(p), . . . , sk(p) span G p for each p ∈ U . We say that
s1, . . . , sk are generators for G over U . One can ask if such generators always exist, either
locally or globally.

Second, we can consider the set of sections of G over U as a module over the ring of
smooth functions on U and ask if there are sections s1, . . . , sk as above that form a finite
set of generators for this module. If the s1, . . . , sk generate the module, Bullo and Lewis [1]
call them nondegenerate generators for G over U . One can ask if the module of sections is
finitely generated, either globally, i.e., when U = M , or locally, i.e., for some neighborhood
U of each point.

Bullo and Lewis [1] have a discussion that shows that every point of a real analytic
generalized subbundle has a neighborhood U on which there are nondegenerate generators.
This follows from the fact that the ring of convergent power series is Noetherian.

In this article, we study these questions in the smooth case. For the first question, we show
that every generalized subbundle of a vector bundle is globally finitely generated, that is, there
are finitely many globally defined sections whose values span the generalized subbundle at
each point. Other researchers have conjectured that this result is not true, even locally (see,
for example, Bullo and Lewis [1, p. 125]).

We obtain a negative answer to the second question. We give an example which shows
that the module of sections of a generalized subbundle (even a tangent distribution) need not
be finitely generated, even locally.
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2 Precise formulations

Let M be a manifold. We will assume that all of our manifolds and maps are smooth.
If V is a vector space, we denote the space of smooth functions M → V by C∞(M; V ).

In case V = R, we write this space as C∞(M).
The space of smooth sections of a vector bundle E over an open set U is denoted�(U ; E),

and the space of smooth globally defined sections of E is denoted �(E). A local section of
E is a smooth section of E defined on some open set. We denote by �loc(E) the set of local
sections of E . Thus, �loc(E) is the union of the spaces �(U ; E) as U ranges over all open
sets. If s ∈ �loc(E), we denote the domain of s by dom(s).

A generalized subbundle G of E is an assignment of a subspace G p ⊆ E p for each point
p ∈ M . We do not assume the subspaces G p vary continuously with p or have constant
dimension.

If U ⊆ M , we say a local section s of E over U belongs to G or is a section of G if
s(p) ∈ G p for all p ∈ U . The set of sections of E over U that belong to G is denoted by
�(U ; G). The set of local sections of E that belong to G on their domains is denoted�loc(G).

Given a generalized subbundle G, there need not be any nonzero smooth sections of G.
The following condition on G insures a supply of sections of G.

Definition 2.1 A generalized subbundle G of a vector bundle E is smooth if for every point
p we can find a family of sections s1, . . . , sk ∈ �loc(G) which contain p in the intersection
of their domains such that

G p = span {s1(p), . . . , sk(p)} .
The next proposition gives an equivalent definition of smoothness; the elementary proof

is omitted.

Proposition 2.2 A generalized subbundle of G of a vector bundle E is smooth if and only if
for every point p and every v ∈ G p there is some section s ∈ �loc(G) such that s(p) = v.

Definition 2.3 If F ⊆ �loc(E), we define a generalized subbundle Span(F) of E by

Span(F)p = span {s(p) : s ∈ F, p ∈ dom(s)} .
We follow the convention that if V is a vector space, the span of ∅ ⊆ V is {0} ⊆ V . Thus,

if p is not in the domain of any element of F , then Span(F)p = {0}.
For any family F ⊆ �loc(E), the subbundle Span(F) is smooth by definition. Note that

a generalized subbundle G is smooth if and only if G = Span(�loc(G)).
The following observation will be important. Let G be smooth. For any point p, we can find

sections s1 . . . sk of G defined on some open neighborhood U of p such that s1(p), . . . , sk(p)
form a basis of G p . These sections will remain linearly independent on some open neigh-
borhood V ⊆ U of p. Because these sections belong to G, at a point q ∈ V other than p, the
set {s1(q), . . . , sk(q)} is a linearly independent set in Gq . Thus, dim(Gq) ≥ k = dim(G p).
This implies that dim(p) = dim(G p) is a lower semicontinuous function of p ∈ M .

We say that p ∈ M is a regular point of G if dim is constant on a neighborhood of p. The
set of regular points is open and dense, as is well known.

Definition 2.4 If F is a family of local sections of the dual bundle E∗, we define a generalized
subbundle Ker(F) of E by

Ker(F)p = {v ∈ E p : s(p)(v) = 0 for all s ∈ F with p ∈ dom(s)}.
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Note that we can always add the globally defined zero section of E∗ to F without changing
Ker(F).

Definition 2.5 A generalized subbundle G of E is cosmooth if G = Ker(F) for some family
F ⊆ �loc(E∗).

Definition 2.6 If F is a generalized subbundle of E∗, we define a generalized subbundle F⊥
of E by

F⊥
p = {

v ∈ E p : λ(v) = 0 for all λ ∈ Fp
}
.

Observe that Ker(F) = (Span(F))⊥.

Theorem 2.7 A generalized subbundle G of E is cosmooth if and only if G = F⊥ for some
smooth generalized subbundle F of E∗.

Proof Suppose G is cosmooth, so that G = Ker(F) = (Span(F))⊥ for some family F of
local sections of E∗. Since Span(F) is by definition a smooth generalized subbundle of E∗,
the conclusion follows.

Conversely, suppose that G = F⊥ for some smooth generalized subbundle F of E∗. Let
F = �loc(F). We claim that F⊥ = Ker(F).

Let v ∈ F⊥
p . If s ∈ F and p ∈ dom(F), then s(p)∈ Fp and s(p)(v)= 0. Thus, v ∈ Ker(F),

and we conclude F⊥ ⊆ Ker(F).
Next, take v ∈ Ker(F)p . Let λ ∈ Fp . Since F is smooth, Proposition 2.2 shows there is

an s ∈ �loc(F) with s(p) = λ. Then λ(v) = s(p)(v) = 0, and thus, v ∈ F⊥
p . Therefore,

Ker(F) ⊆ F⊥.

If F is a smooth generalized subbundle of E∗, then the function p �→ dim(Fp) is lower
semicontinuous. The dimension of F⊥

p is dim(E p) − dim(Fp). Hence the function p �→
dim(F⊥

p ) is upper semicontinuous. Thus, a cosmooth generalized subbundle need not be
smooth.

Example 2.8 Let E and F be vector bundles over M and let ϕ : E → F be a vector bundle
map. It is well known that if ϕ has constant rank, the image and kernel of ϕ are regular sub-
bundles. If ϕ does not have constant rank, the image of ϕ is a smooth generalized subbundle
of F and the kernel of ϕ is a cosmooth generalized subbundle of E .

Definition 2.9 Let E be a vector bundle over a manifold M and let G be a generalized sub-
bundle of E . If U ⊆ M is an open set, we say G is finitely generated over U (or, is finitely
spanned over U ) if there are a finite number of sections s1, . . . , sk ∈ �(U ; G) so that, for all
p ∈ U ,

G p = span {s1(p), . . . , sk(p)} .
We say that s1, . . . , sk generate G over U . If we can take U = M , we say that G is globally
finitely generated.

3 Fréchet spaces of smooth functions

We now introduce the function spaces we need. We denote by |·| the Euclidean norm on any
of the spaces R

n .
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If f : R
n → R

m is a bounded function, let

‖ f ‖ = sup
{| f (x)| : x ∈ R

n}

be the supremum norm.
We say that f : R

n → R
m is in BC∞(Rn; R

m) if f is C∞ and f and all of its partial
derivatives are bounded on R

n . If f is such a function, we can define seminorms pk for
k = 0, 1, 2, . . . by

pk( f ) = max

{ ∥
∥
∥
∥
∂ |α| f

∂xα

∥
∥
∥
∥ : |α| = k

}
,

where the maximum is taken over all multi-indices α of order k. We combine the pk’s to
form seminorms ‖·‖k by

‖ f ‖k =
k∑

j=0

p j ( f ).

Thus, ‖ f ‖k ≤ ‖ f ‖k+1. Note that these seminorms are actually norms.
These norms‖·‖k (or, equivalently, the seminorms pk) induce a topology on BC∞(Rn; R

m)

which makes BC∞(Rn; R
m) into a Fréchet space.

Recall that a sequence { fi }∞i=1 in BC∞(Rn; R
m) is Cauchy if it is Cauchy with respect to the

norm ‖·‖k for each k. Therefore, to show that a series
∑∞

i=0 fi converges in BC∞(Rn; R
m),

it suffices to show that each of the series
∞∑

i=1

‖ fi‖k, k = 0, 1, 2, . . . ,

converges. If
∑∞

i=1 fi converges in BC∞(Rn; R
m) then f := ∑∞

i=1 fi can be evaluated
pointwise, because convergence in BC∞(Rn; R

m) implies pointwise convergence.

4 The main theorem

Theorem 4.1 Let M be a connected manifold and let E be a vector bundle over M. Let G
be a smooth generalized subbundle of E. Then G is globally finitely generated.

As we will see, it is possible to give an explicit upper bound on the number of global
sections needed to generate G under appropriate assumptions. The remainder of this sec-
tion contains the proof of this theorem. Before we begin the proof, we note this important
corollary.

Corollary 4.2 Let M and E be as in Theorem 4.1. If G is a cosmooth generalized subbundle
of E, then there are finitely many globally defined sections s1, . . . , sk of E∗ such that for
each p ∈ M,

G p = {
v ∈ E p : s1(p)(v) = 0, . . . , sk(p)(v) = 0

}
.

In other words, G is defined as the kernel of a finite collection of global sections of E∗.

We now prove Theorem 4.1. Let M be a connected manifold and let E be a vector bundle
over M . The fiber dimension of E will be denoted by rk(E). Let G be a smooth generalized
subbundle of E .
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We begin by making two reductions in the problem. First, we invoke the theorem that
every vector bundle over a connected manifold is isomorphic to a subbundle of a trivial
bundle. Thus, for our problem, we may assume that E is a subbundle of a trivial bundle
�m(M) = M × R

m for some integer m. This theorem, without an estimate on m, is well
known in the case where M is compact. The proof in the noncompact case, which gives an
estimate of m, uses topological dimension theory. A reference for this material is Greub et
al. [3, p. 77], but we will need to use a more refined treatment of the dimension theory, as in
Munkres [5] or Engelking [2]. The main point for our purposes is that an upper bound for m
is rk(E)(dim(M)+ 1).

Our generalized subbundle G ⊆ E is now contained in �m(M) and is smooth when
considered as a generalized subbundle of�m(M). Thus, to prove the theorem, it will suffice
to consider a smooth generalized subbundle G of a trivial bundle �m(M). We identify each
subspace G p with a subspace of R

m and identify sections of �m(M), and hence sections of
G, with R

m-valued functions. We will switch between these points of view as convenient.
Next, we can properly embed M in R

n for some n. This is not really necessary for our proof
to work, but it makes dealing with the functions spaces involved simpler. If f : U → R

m is
a smooth function defined on an open subset U of M , we can find a smooth extension of f
to a function f̃ : Ũ → R

m , where Ũ is an open subset of R
n such that Ũ ∩ M = U . This

can be done by a partition of unity argument, but perhaps the fastest proof is to note that the
tubular neighborhood theorem says there is an open set O in R

n containing M and a smooth
retraction r : O → M (i.e., r(p) = p for p ∈ M). We define Ũ = r−1(U ) and f̃ = f ◦ r .

Because G is smooth, it is the span of the family F = �loc(G) of local sections of
�m(M). Considering the elements of F to be locally defined vector-valued functions on M ,
we can extend them to locally defined vector-valued functions on R

n . This gives us a family
F̃ = { f̃ : f ∈ F} of locally defined vector-valued functions whose restriction to M is F .

Considering F̃ as a subset of �loc(�
m(Rn)), we define a generalized subbundle G̃ of

�m(Rn) by G̃ = Span(F̃). For each p ∈ M, G̃ p = G p , and thus, the restriction of G̃ to M
is G.

Given a set of global generators for G̃, the restriction of these generators to M determines
a set of global generators for G. Thus, to prove Theorem 4.1, it suffices to prove the following
proposition.

Proposition 4.3 If G is a smooth generalized subbundle of the trivial bundle �m(Rn), then
G is globally finitely generated.

The proof of this proposition will occupy most of the rest of this section. To begin, we
adopt some notation and terminology.

If B is a Euclidean ball in R
n , we denote by 2B the ball with the same center and twice the

radius. Let B denote the set of all balls of rational radius centered at points that have rational
coordinates; B is a countable basis for the topology of R

n .
For 0 ≤ d ≤ m, let

�d = {
p ∈ R

n : dim(G p) = d
}
.

Fix d ≥ 1 such that �d �= ∅. Our goal now is to construct finitely many globally defined
sections which span G at each point of�d . Note that spanning is automatic for points in�0.

The usual Euclidean metric on R
m induces a metric on the bundle �m(Rn); we use this

metric throughout the rest of the proof. For each p ∈ R
n , let Q p denote the orthogonal

projection operator on �m(Rn)p whose image is G p .
Let p be a point of �d . We can find sections s1, . . . , sd of G defined on some open

neighborhood of p such that s1(p), . . . , sd(p) is a basis of G p . These sections are linearly
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independent on some open neighborhood U of p. At each point q ∈ U , define Dq ⊆ Gq

to be the span of s1(q), . . . , sd(q). For each q ∈ U , let P(q) be the orthogonal projection
operator on�m(Rn)q whose image is Dq . At any point q in U ∩�d , we have Dq = Gq , and
so P(q) = Qq at such points.

We can think of P as a vector bundle mapping of �m(U ) to itself, or as a section of the
bundle Hom(�m(U ),�m(U )), whose fiber at q is the vector space Hom(�m(U )q ,�m(U )q)
of linear maps �m(U )q → �m(U )q . Because �m(U ) is a trivial bundle, P can be thought
of as a map U → Hom(Rm,Rm). The mapping q �→ P(q) is smooth. Indeed, if we think
of P(q) as a linear map on R

m , its matrix with respect to the standard basis can be explicitly
constructed by applying the Gram-Schmidt process to the vectors s1(q), . . . , sd(q), which
shows that the matrix entries are smooth functions of q .

The following lemma summarizes the discussion above.

Lemma 4.4 For each p ∈ �d , choose a ball B ∈ B such that p ∈ B and 2B ⊆ U. There
exists a smooth vector bundle map P of �m(2B) to itself with the following properties: For
each q ∈ 2B,

(1) P(q) is an orthogonal projection operator.
(2) im(P(q)), the image of P(q), is contained in Gq .
(3) im(P(q)) has dimension d.
(4) If q ∈ 2B ∩�d then im(P(q)) = Gq and so P(q) = Qq.

Since B is countable, the lemma shows that we can find a countable collection of balls
{B}i∈I that covers �d , where for each ball Bi there is a vector bundle map Pi over 2Bi with
the properties in the lemma. There may be many such vector bundle maps over a given ball
2Bi ; we only need one, so we just pick one arbitrarily.

Let e1, . . . , em denote the standard basis of R
m . Let E1, . . . , Em be the corresponding

constant sections of �m(Rn).
For each i ∈ I , choose a smooth bump function ψi on R

n so that 0 ≤ ψi ≤ 1, ψi = 1 on
Bi and supp(ψi ) ⊂ 2Bi .

On 2Bi we define smooth sections Pi Eα of G by p �→ Pi (p)Eα(p) for α = 1, . . . ,m.
Multiplying by ψi we get sections ψi Pi Eα such that supp(ψi Pi Eα) ⊂ 2Bi . We extend the
section ψi Pi Eα smoothly to R

n by defining it to be zero outside 2Bi . We use the same
notation for the extended sections. We also adopt the notational convention that

0 · (undefined) = 0 (4.1)

in this context, as many authors do implicitly.
Let us deal first with the case where our collection of balls {Bi }i∈I is countably infinite,

in which case we can assume the index set I is the natural numbers.
Since ψi has compact support, ψi and its derivatives are bounded, so ψi ∈ BC∞(Rn; R).

Similarly, the sections ψi Pi Eα have compact support, so we can view them as vector-valued
functions in BC∞(Rn; R

m).
For each i , we can find a constant ci > 0 so that

ci‖ψi‖i ≤ 1

2i
,

ci‖ψi Pi Eα‖i ≤ 1

2i
, α = 1, . . . ,m.

Note that the order of the seminorm is the same as the index here.
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Now define functions ϕi = ciψi , so we can rewrite the inequalities above as

‖ϕi‖i ≤ 1

2i
,

‖ϕi Pi Eα‖i ≤ 1

2i
, α = 1, . . . ,m.

We now attempt to define a smooth function ϕ and smooth sections Sα of G by

ϕ =
∞∑

i=1

ϕi ,

Sα =
∞∑

i=1

ϕi Pi Eα.

To do this, we must show these series are convergent in the appropriate function spaces.
To show that the series

∑
i ϕi is convergent in BC∞(Rn; R), it suffices to show that the

series
∞∑

i=1

‖ϕi‖k (4.2)

converges for each k. To show that the series (4.2) converges, it suffices to show for fixed k
that the tail

∞∑

i=k

‖ϕi‖k

of the series converges. Since the norms ‖·‖ j are increasing in j , we have

∞∑

i=k

‖ϕi‖k ≤
∞∑

i=k

‖ϕi‖i ≤
∞∑

i=k

1

2i
= 2−k+1.

We conclude that the series
∑

i ϕi converges in BC∞(Rn; R), so ϕ = ∑
i ϕi is a smooth

function. As previously mentioned, we can evaluate this series pointwise, so at any point
p ∈ M we have

ϕ(p) =
∞∑

i=1

ϕi (p). (4.3)

It follows that ϕ > 0 on�d , since a point p ∈ �p is in one of the balls B j and ϕ j = c jψ j =
c j > 0 on B j . Since all of the terms in the sum (4.3) are nonnegative, we conclude that
ϕ(p) ≥ c j > 0.

Similarly, we can show that the series
∑

i ϕi Pi Eα is convergent in BC∞(Rn; R
m). As

above, the sum

∞∑

i=1

‖ϕi Pi Eα‖k

converges since we have

∞∑

i=k

‖ϕi Pi Eα‖k ≤
∞∑

i=k

‖ϕi Pi Eα‖i ≤
∞∑

i=k

1

2i
= 2−k+1.
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Thus, we have smooth vector-valued functions, or to look at it another way, sections of the
trivial bundle, defined by

Sα =
∞∑

i=1

ϕi Pi Eα.

We can evaluate this sum pointwise and write

Sα(p) =
∞∑

i=1

ϕi (p)Pi (p)Eα(p),

using the convention (4.1). Since the image of each Pi is in G, the sum on the right-hand
side of the equation above is a convergent series in the closed subspace G p ⊆ �m(Rn)p , so
Sα(p) ∈ G p . Thus, Sα is a section of G.

We now claim that if p ∈ �d , then the sections Sα(p) span G p . Recall from Lemma 4.4
that if p ∈ 2Bi then im(Pi (p)) = G p and Pi (p) = Q p . We then have

Sα(p) =
∞∑

i=1

ϕi (p)Pi (p)Eα(p)

=
∞∑

i=1

ϕi (p)Q p Eα(p)

=
∞∑

i=1

Q p[ϕi (p)Eα(p)] = Q p[ϕ(p)Eα(p)].

For each p, {E1(p), . . . , Em(p)} is a basis of �m(Rn)p . Since ϕ(p) �= 0,

ϕ(p)E1(p), . . . , ϕ(p)Em(p)

also form a basis. Thus,

{Q pϕ(p)E1(p), . . . , Q pϕ(p)Em(p)}
spans G p , and thus, the vectors Sα(p) span G p .

This completes the construction of a finite number of generators for G|�d
in the case

where we have a countably infinite collection of balls. In the case where our collection of
balls {Bi }i∈I is finite, we can dispense with the convergence questions and just define

ϕ =
∑

i∈I

ψi

Sα =
∑

i∈I

ψi Pi Eα,

where these are finite sums. A similar analysis shows that the sections Sα span G p at every
p ∈ �d .

Finally, to complete the proof of Proposition 4.3, we apply this construction for each d
such that �d �= ∅. For each such integer d , we get m sections. Putting all these sections
together we get a finite set of globally defined sections that span G at each point, i.e., a finite
set of global generators for G ��.

To finish this section, we discuss the number of sections this construction yields and the
case of disconnected manifolds.
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If we denote by maxdim(G) the maximum dimension of the fibers of G, the above con-
struction will yield m sections for every integer d, 1 ≤ d ≤ maxdim(G) such that �d �= ∅,
and so a maximum of m maxdim(G) sections. If desired, we can get exactly m maxdim(G)
sections by adding in m copies of the zero section for each d such that �d = ∅.

Recall that our original vector bundle E is isomorphic to a subbundle of the trivial bundle
�m(M). As mentioned above, an upper estimate on m is (dim(M) + 1) rk(E). In the case
where E = T M , we can get a better estimate. By the hard Whitney embedding theorem, M
can be embedded in R

n where n = 2 dim(M). Then T M is isomorphic to a subbundle of the
restriction of T R

n to M . Since T R
n is canonically trivial, we see that T M is isomorphic to

a subbundle of a trivial bundle of fiber dimension n, so we can take m = n = 2 dim(M) in
this case.

Different authors use slightly different definitions of manifolds and vector bundles. One
can define a manifold so that the dimension is allowed to be different at different points. In
this case, the dimension is locally constant, and so must be constant on components. With this
definition, a manifold M that is not connected can have components of different dimensions.
If the number of components is infinite, it is conceivable the dimensions of the components
could be unbounded, although one might be hesitant to use the word “manifold” in that case.

Similarly, one can give a definition of the concept of a vector bundle E over a manifold
M that allows the fiber dimension to vary with the point. The local triviality condition makes
the fiber dimension locally constant, and so constant on the components of M . This point of
view is taken in some of the foundational literature behind this article, such as Swan [8]. If
M has infinitely many components, E could have fibers of arbitrarily large dimension.

For each component C of M , we can find an mC so that EC = E |C is isomorphic to a sub-
bundle of�mC (C). If we have an upper bound on the dimension of the components of M and
on the dimension of the fibers of E , we can get an upper bound m on mC . Then, for each C, EC

is isomorphic to a subbundle of �m(C). Since we have an upper bound of the dimension of
the fibers of E , there is an upper bound on the dimension of the fibers of G. As above, we can
construct on each C a finite set of global generators SC

j for j = 1, . . . ,m maxdim(G). We

can then define global sections S j , j = 1, . . . ,m maxdim(G) by defining S j (p) = SC
j (p),

where C is the component containing p. Thus, we will still have a finite number of global
generators in this case.

5 Modules of sections

Let E be a vector bundle over M of fiber dimension k. For any open set U ⊆ M , the space
�(U ; E) of sections of E over U is a module over the ring C∞(U ) of smooth functions
on U . Every point p ∈ M has a neighborhood U on which there are sections s1, . . . , sk

such that s1(q), . . . , sk(q) form a basis of Eq for all q ∈ U . Thus, for an arbitrary section
s ∈ �(U ; E), we have s(q) = f1(q)s1(q)+ . . .+ fk(q)sk(q) for some uniquely determined
functions f1, . . . , fk . The definition of vector bundle shows that these functions are smooth.
As elements of the module �(U ; E) we have s = f1s1 + . . . + fksk , so s1, . . . , sk is set of
generators for �(U ; E).

The space �(E) of global sections of E is a module over the ring C∞(M) of smooth
functions on M . This module is also finitely generated. This fact is part of the proof that E
is isomorphic to a subbundle of a trivial bundle; see Greub et al. [p. 77][3] and Swan [8].

One can ask the same questions about the modules of sections of a generalized subbundle
G ⊆ E . The fact that we can find a finite set of global generators for G might lead one to hope
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that the module �(G) is finitely generated. Alas, we will give an example to show that �(G)
is not in general finitely generated and that there may be arbitrarily small neighborhoods U
of a point p such that the module �(U ; G) is not finitely generated.

To begin the construction of our example, we introduce some notation. Let J = (−a, a) ⊆
R be an open interval, where we allow the case a = ∞. Let I(J ) ⊆ C∞(J ) be the space
of smooth functions on J that are zero on (−a, 0]. Recall that one can construct a function
ψ ∈ I(R) by

ψ(x) =
{

e−1/x , 0 < x < ∞
0, −∞ < x ≤ 0,

for example. The restriction of ψ to J = (−a, a) is an element of I(J ).
We require the following lemmas. The first lemma follows from standard one-variable

calculus.

Lemma 5.1 Let J = (−a, a) be an open interval around 0.

(1) If f is a smooth function on J such that f = 0 on (−a, 0], then

lim
x→0

f (x)

xn
= 0, n = 0, 1, 2, . . . . (5.1)

(2) Let g be a smooth function on (0, a) and suppose that

lim
x→0+

g(x)

xn
= 0, n = 0, 1, 2, . . . . (5.2)

Then, the function f defined by

f (x) =
{

g(x), 0 < x < a
0, −a < x ≤ 0

(5.3)

is smooth.

Lemma 5.2 Let h ∈ I(J ) be strictly positive on (0, a). Then, the function
√

h is in I(J ).

Proof Clearly
√

h = 0 on (−a, 0] and
√

h is smooth on (0, a). We have

lim
x→0+

√
h(x)

xn
= lim

x→0+

√
h(x)

x2n
= √

0 = 0, n = 0, 1, 2, 3, . . . ,

so h ∈ I(J ) by Lemma 5.1. ��
Proposition 5.3 Let G be the generalized subbundle of �1(R) given by

Gx =
{
�1(R)x , x > 0,
{0} ⊂ �1(R)x , x ≤ 0.

This is a smooth generalized subbundle of�1(R); indeed it is spanned by the single smooth
section ψ .

The module of sections�(G) is not finitely generated, and�(J ; G) is not finitely generated
for any interval J = (−a, a), a > 0.

Proof Regarding sections of the trivial bundle as functions, we have �(J ; G) = I(J ).
Clearly I(J ) is an ideal in the ring C∞(J ), and our assertion is that I(J ) is not finitely
generated.
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Suppose, for a contradiction, that g1, . . . , gk is a finite set of generators for I(J ). Thus,
if f is any function in I(J ),

f =
k∑

i=1

ai gi (5.4)

for some functions a1, . . . , ak belonging to C∞(J ).
We claim that g1, . . . , gk have no common zero in (0, a). Indeed, if all the gi ’s vanish at

p ∈ (0, a), then (5.4) shows that f (p) = 0 for all f ∈ I(J ). But there is no such point. For
example, ψ |J is an element of I(J ) that does not vanish at any point in (0, a).

If we define h = g2
1 + g2

2 + . . . , g2
k then h ∈ I(J ) and h ≥ 0. Since the gi ’s have no

common zero in (0, a), h is strictly positive on (0, a). It follows that
√

h ∈ I(J ). Since
√

h

is strictly positive on (0, a) we have h1/4 =
√√

h ∈ I(J ).
Since the gi ’s generate I(J ), we have

h1/4 =
k∑

i=1

bi gi (5.5)

for some bi ’s in C∞(J ). Applying the Cauchy-Schwartz inequality to (5.5) we have

h1/4 =
∣
∣
∣
∣

k∑

i=1

bi gi

∣
∣
∣
∣ ≤

[
k∑

i=1

b2
i

]1/2 [
k∑

i=1

g2
i

]1/2

=
[

k∑

i=1

b2
i

]1/2 √
h (5.6)

If we restrict x to (0, a) so that h(x) > 0, we can divide both sides of this inequality by√
h(x) to get

[
k∑

i=1

bi (x)
2

]1/2

≥ 1

[h(x)]1/4 . (5.7)

But, if we let x go to zero from the right, the right-hand side of (5.7) goes to +∞ while the
the continuity of the bi ’s implies that the left-hand side approaches some finite value.

This contradiction shows that I(J ) has no finite set of generators. ��
Proposition 5.3 implies that C∞(J ) is not noetherian, which is no surprise.
Because T R ∼= �1(R), the proposition above shows that tangent distributions are no

better behaved than generalized subbundles of arbitrary vector bundles in this respect.
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