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Smooth Formation Navigation of Multiple Mobile Robots 

for Avoiding Moving Obstacles 
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Abstract: This paper addresses a formation navigation issue for a group of mobile robots passing 
through an environment with either static or moving obstacles meanwhile keeping a fixed 
formation shape. Based on Lyapunov function and graph theory, a NN formation control is 
proposed, which guarantees to maintain a formation if the formation pattern is ,kC  1.k ≥  In 
the process of navigation, the leader can generate a proper trajectory to lead formation and avoid 
moving obstacles according to the obtained information. An evolutionary computational 
technique using particle swarm optimization (PSO) is proposed for motion planning so that the 
formation is kept as 1C  function. The simulation results demonstrate that this algorithm is 
effective and the experimental studies validate the formation ability of the multiple mobile robots 
system. 
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1. INTRODUCTION 
 
Formation navigation can be observed in spacecraft 

formation flying, robotic vehicles formation moving, 
and mobile robots formation surveying. Formation 
can be understood as a kind of information consensus 
in which agents (robots) interact with each other using 
various sensors and communication techniques. In 
order to understand the relationship between 
individual robots, graph theory is often used for the 
description of these interactions [1,2]. Since the 
formation issue of multiple mobile robots is also 
viewed as a distributed control problem, system 
stability theory such as Lyapunov method can be used 
effectively to analyze system performance of the 
formation navigation [3-6].  

In this paper, in order to understand the internal 
structure of a formation well, the formation pattern 
and the interactive relations among robots must be 
defined clearly. The formation pattern is described by 
a matrix in which every entry describes relative 
distances between robots. The interactions among 

robots can be described by an adjacency matrix based 
on graph theory. Combining these two matrices, a 
unique matrix is constructed to describe the structure 
of a formation. Each entry in the matrix is viewed as a 
moving point, then one certain robot is controlled to 
follow this moving point. Based on Lyapunov method, 
it is proved that even if some parameters of an 
individual model are unknown, in the case of 
perturbations existed, neural network (NN) control 
can enable robots to achieve regular formation with 
fixed or dynamic formation patterns [7,8].  

After solving individual robotic control, a 
formation navigation technique is applied to 
accomplish obstacle avoidance while keeping fixed 
formation shape. Relative to the real-time reactive 
way, such as artificial potential method, in which the 
motion of robots is controlled by artificial force 
calculated on real-time [9-11], the motion planning, 
namely path planning, is more convenient for 
evaluating paths ahead of robots moving, because it 
describes paths in the form of smooth splines [12], so 
that the paths generated are predictable. Due to the 
path is described in the form of high order polynomial, 
the computations referred in the analytical motion 
planning are complex and even unsolvable. To 
decrease computational burden, we use an 
evolutionary computational technique in terms of 
particle swarm optimization (PSO) to achieve motion 
planning [13-15]. Different from other evolutionary 
computations in which desired paths are expressed as 
nonsmooth ones [16,17], the PSO method can 
generate smooth trajectories so that the adaptive NN 
control strategy can be applied to control a group of 
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robots to follow the smooth trajectories while keeping 
formation pattern.  

This paper is organized as follows with the 
following section presenting the formation description 
based on formation pattern and interaction topology. 
Section 3 and Section 4 analyze the control strategy 
and its stability. Formation navigation with obstacle 
avoidance ability is studied in Section 5. Simulation is 
performed in Section 6. Experimental studies are 
conducted in Section 7. Conclusions are given finally 
in Section 8. 

 
2. DESCRIPTION OF FORMATION 

 
Given a group of robots labeled by Ri 

( 1,2, , ),i N=  where lR  denotes the leader of the 

formation. Let 1 2
Td d d d

NP p p p⎡ ⎤= ⎣ ⎦  be the 

desired positions of all robots relative to lR , where 

0.d
lp =  Let 1 2

T
NP p p p⎡ ⎤= ⎣ ⎦  be the 

practical positions of robots. 
Formation pattern describes the relative positions 

among robots over time, which is represented by a 
relative matrix defined as ( ) ( ){ } ,d d

ij N N
D t D t

×
=  

where ( ) ( ) ( )d d d
ij i jD t p t p t= −  with ( ) 0.d

iiD t =  In 

response to ( ) ,dD t  let ( ) ( ){ }ij N N
D t D t

×
=  denote 

the practical distances between robots where Dij(t) 
( ) ( ).i jp t p t= −  Obviously for leader-followers for-

mation, Dd(t) should be broadcasted by Rl to other 
members. 

Six robots are illustrated to form a rectangle 
formation as shown in Fig. 1. If projecting their 
positions onto a plane whose frame orientation is 
denoted by X / Y, a formation pattern is generated, 
whose coordinates in X-direction are shown in the 
matrix listed on the bottom of this page.  

If a robot has known its desired position in a 
formation, it needs to detect his neighborhood to 
move to the desired position. That means it should 
interact with other members. A directed adjacency 
graph G is exploited to describe the interaction among 
robots which consists of a set of vertices (nodes) V 

and a set of arcs A, where ( ),a v w A∈  and , .v w V∈  
It is pointed from v  to .w  In this paper arc ( ),a v w  
represents that vR  takes wR  as a reference object 
to decide the relative position. Since the reference 
position of a robot may be determined by several 
neighboring robots, if we let { }ij N N

G g
×

=  be 

adjacency matrix associated with graph G, ijg is 
defined as a weight to denote the influence factor of Rj 
to Ri in terms of the reference position. The values of 

ijg  satisfy the following property: 

1
1.

N

ij
j

g
=

=∑                             (1) 

The interaction topology and adjacency matrix are 
illustrated in Fig. 2. If R1 plays the role of the leader 
of the formation, then g11=1 holds and other diagonal 
entries of G are zero, ie. 0,iig =  ( )2, , .i N=  
Normally for any one robot, all of its leaders have the 
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Fig. 1. A formation pattern including six robots. 
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Fig. 2. An example of interaction topology among six 

robots. 
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same effect on determining its reference point. For 
example since R2 has two leaders R1 and R4, we can 
obtain 21 24 0.5g g= = . 

Let { } ( ) 11
1d

j NN
E e G D G D ××
= = −  be a relative 

error vector, where the operator ‘ ’ refers to a 
Hadamard product. If let a matrix H be defined as 
H I G= − , the relative error is expressed as 

( )1 11 1 .d d
N NE HP G D P GP G D× ×= − = − + (2) 

Due to the property of G, it holds that 
1

0,
N

ij
j

h
=

=∑  and 

0,ljh = ( )1,2, , .j N=  Since lR  is the formation 

leader, it holds 1,llg =  while 0,ljg =  ( ) ,j l≠  and 

0.d
llD =  Therefore the l -th element of the relative 

error, ,le  equals zero. It’s reasonable because the 
adjacency graph is built relative to the leader, the 
relative error of Rl should be zero. 

The following lemmas are introduced:  
Lemma 1: Given a nonnegative matrix G satisfying 

the property of stochastic matrix, the matrix 
H I G= −  has at least one zero eigenvalue and all of 
the non-zero eigenvalues are in the open right half 
plane, and ( ) 1Hρ ≤ . Furthermore H  has one zero 
eigenvalue and the kernel of H  is { }1span  if and 
only if the direct graph associated with G has a 
spanning tree. 

Lemma 2: Given an error shown in (2), if the 
adjacency matrix G is connected, all robots will 
follow the leader of the formation and form a 
formation in case of 0.E =  

Proof: Let Rl be the formation leader. If we obtain 
dP  by solving equation 11 ,d d

NHP G D ×=  then 

( ).dE H P P= −  

Two facts are given below: 1) Because Rl is the 
leader of the formation, the entries in the l -th row of 
H are zero, 2) Since 0,iiD =  the l -th element of 

11d
NG D ×  is zero too. Since the equation 0d

lp =  
holds, the equation can be reduced to  

( )1 11 ,d d
NHP G D − ×=                   (3) 

where 1 1 1 ,
Td d d d d

l l NP p p p p− +⎡ ⎤= ⎣ ⎦  H  

is the submatrix of H resulting from taking off the 
l th row and the l th column of ,H  G  and D  are 
the submatrices of G and D resulting from taking off 
the l th rows of them respectively. Obviously there is 
only one nonzero solution for (3). Hence the desired 

relative position Pd is unique. 
If 0,E =  we have ( ) 0.dH P P− =  According to 

Lemma 1, we have ( ) { }1 .dP P span− ∈  That means 

all elements in vector dP P−  are the same. Due to 
0,d

lp =  we have ,d
i l ip p p= +  ( )1, , .i N=  That 

means all members reach the desired positions 
described by D 

d
 (t), in other words, formation is 

formed. 
Lemma 2 suggests a way to realize formation 

control. Since D 
d is the information broadcasted by 

the formation leader and G is determined by the 
practical interaction among robots, 11d

NGP G D ×+  
in (2) can be measured on real-time. Hence every 
robot can control itself by decentralized control 
method to follow reference points determined by 

11d
NGP G D ×+  so that conditions of Lemma 2 are 

satisfied, and formation is formed.  
 
3. INDIVIDUAL CONTROL STRATEGY 

 
3.1. Dynamic description for individual robot 

A kind of two-wheel car-like mobile robot shown in 
Fig. 3 is exploited to achieve the formation task. If we 
take the center of mass as the robot’s position, the 
dynamic equation for such individual robot is 
expressed as  

( ) ( ) ( ) ( )T
dM q q V q q q J q B qτ λ τ+ , + = + ,     (4) 

where [ ]Tx yq p p θ=  represents general coor-

dinates, dτ  denotes bounded disturbance and 
unmodeled dynamics, other matrices referred in the 
equation are given by 

2
0

0 sin
( ) 0 cos

sin cos

m md
M q m md

md md I md

θ
θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= − ,

− +

 

T
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V q q md

θ θ
θ θ

⎡ ⎤
⎢ ⎥

, = ,⎢ ⎥
⎢ ⎥
⎣ ⎦
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Fig. 3. A two-wheel-driven mobile robot. 
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cos cos
1 sin sinB
r

L L

θ θ
θ θ

⎡ ⎤
⎢ ⎥= ,⎢ ⎥
⎢ ⎥−⎣ ⎦

[ ]( ) sin cosJ q dθ θ= − .  

The nonholonomic constraint is expressed as 
( ) 0J q q =  or sin cos 0.x y dp pθ θ θ− + =  Then the 

second order derivative of θ  is expressed as:  

2 2
2

2 2
2

1 1( cos sin ) ( )sin 2
2

1      (cos sin )

y x x y

x y

p p p p
d d

p p
d

θ θ θ θ

θ θ

= − + −

− − .
(5) 

A full rank matrix S(q) is formed by the vectors 
spanning the null space of constraint matrix J(q) such 

that ST(q)JT(q)=0, where 
cos sin

( ) sin cos .
0 1

d
S q d

θ θ
θ θ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

Multiplying both sides of (4) by ST to eliminate 
nonholonomic constraint forces λ , yields  

( ) ( ) ( )T T T
dS M q q S V q q q S B q ττ+ , + = ,      (6) 

where .T
d dS ττ =  For a formation task, the key 

point is how to keep relative positions among robots, 
so using (5) we can get a reduced system in which θ  
is enclosed into the system’s parameters. That means 

if define [ ] ,T
x yp p p=

cos sin
,

sin cos
T

θ θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

 and 

0M  
0

0 I
d

m⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

, (6) can be transformed to  

0 0
T

dM Tp M Tp S Bτ τ+ = − .                (7) 
 

3.2. Neural network controller  
From Lemma 2 we know that if we take 

11d d
NP GP G D ×= + ⋅  as local reference position, 

when (2) converges to zero, the formation is formed. 
If dP  is assigned to individual robots, the ideal 
reference point of iR  is in the form of d

ip =  

1
( ).

N
d

ij j ij
j

g p D
=

+∑  Therefore we can define the 

individual relative position error as  

1
( )

N
d d

i i i i ij j ij
j

e p p p g p D
=

= − = − + .∑          (8) 

A filtered error is defined as .ii iz ee= + Λ  If a 

temporal variable is defined as ,r d
ii i ep p= − Λ  

then .r
i i iz p p= −  Substitute it into (7), and let 

i i iT zz = , thus  

0 ,r rT
idi i ii i iM S B p pVMz τ τ= − − −        (9) 

where
0 cos sin

,
sin cos0 i

i

i i i
Ii

i id

m
M

θ θ
θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
( sini

i

I
ii d xV θ=  

0 sin cos
cos )

cos sin0 i
i

i i i
Ii

i id

m
y

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

⎡ ⎤ −
⎢ ⎥−
⎢ ⎥⎣ ⎦

. 

In practical situations, the values of matrices above 
are always not measured accurately. So a neural 
network is used to model the item r r

i ii ip pVM +  on-
line.  

A nonlinear function is defined as ( ) r
i i if X pM=  

r
i ipV+  in which sin cos

Tr r
i i i i i iX p p pθ θ⎡ ⎤= ⎣ ⎦  

who satisfies the following inequality:  

1 2 3
d

i iX c Q c z c≤ + + ,                (10) 

where 1c  to 3c  are positive scalars, dQ  is the 
bound satisfying  

d
i
d d
i
d
i

p

Qp

p

≤ .                            (11) 

To simplify the expression, the subscript i  is 
omitted. It is supposed that there exists a two-layer 
feedforward NN as shown in Fig. 4, which can 
approximate ( ).f X  

( ) ( )T Tf X W V Xσ ε= + ,                (12) 

where I HN NV R ×∈  represent the input-to-hidden-
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Fig. 4. A two-layer feedforward neural network. 
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layer interconnection weights; H ON NW R ×∈  repre-
sent the hidden-layer-to-outputs interconnection 
weights; NH, NI and NO are the numbers of neurons in 
the hidden layer, the input layer, and the output layer 
respectively. The activation function ( )σ ⋅  is in the 
form of 1

1
( ) ,xe
xσ −+
=  ε  is the NN functional 

approximation error.  
A NN function ˆ ( )f X  is constructed to estimate 
( )f X  on-line, which can be written as  

ˆ ˆ ˆ( ) ( )T Tf X XW Vσ= ,                    (13) 

where Ŵ  and V̂  are estimators of NN weights.  
The estimated errors are defined as ˆ ,f f f= −  

ˆ ,W W W= −  and ˆ.V V V= −  The hidden-layer output 
error is defined as ˆ ˆ( ) ( )TTV X XVσ σ σ σ σ= − = − . 
Applying Taylor series expansion, we can obtain  

2ˆ ˆ( ) ( ) ( ) ( )T TT T TV X X X X O XV VV Vσ σ σ′= + + , (14) 

where ( )

ˆ
ˆ( ) y

y y y
y σσ ∂

∂ =
′ = . Therefore,  

2ˆ( ) ( )T T TX X O XV VVσ σ ′= + ,            (15) 

where 2( )TO XV  is a term with order two, which 
satisfies the following property:  

Property 1:  

2
4 5 6 7

4 8 6

( )

                  

dT
F F F

F F

O X c c Q V c V z c VV

c c V c V z

≤ + + +

≤ + + ,
(16) 

where 4c  to 8c  are positive scalars, 8 5 7
dc c Q c= + .  

Substituting the approximated f (X) into (9), we 
have  

0 ( )

       ( )

T
d

T T T
d

M z S B f X

S B W V X

τ τ

τ σ ετ

= − −

= − − + .
      (17) 

The input-output feedback linearization control 
technology and adaptive backpropagation learning 
algorithm are applied to stabilize individual robot 
system, which can be expressed as  

 1( )TS Bτ −= ˆ( T
W σ ˆ( ) )T X KzV γ− + ,  (18) 

Ŵ ˆ ˆTF Vσ ′= ˆˆT TX F F z Wz zσ κ− −  
V̂ ˆ( )ˆ TTUX Wzσ= − ′ ˆ,U z Vκ−              (19) 

where K = diag{k1, k2}, in which 1k  and 2k  are 
positive scalars; γ  is a robust control term to 

suppress the disturbance of unmodeled structure of 
dynamics dτ  and functional approximation error of 
NN ε ; F  and U  are positive definite design 
parameter matrices governing the speed of learning.  

Substitute control law into (17), and let σ  and σ̂  
be ( )TV Xσ  and ˆ( )T XVσ  respectively, thus  

0 ˆˆ TT
dM z Kz W Wσ σ γ ετ= − − + + − + .     (20) 

Adding and subtracting ˆTW σ  and ˆ T
W σ , and 

considering (14) and (15), we have  

0 ˆ ˆ ˆˆ ˆ( )T TT TM z Kz X X sW VV Wσ σ σ γ′ ′= − − − − + + , (21) 

where ( )s t  is a disturbance term in terms of 

2ˆ( ) ( ) .T TT T
ds t V X W O XW Vσ ετ′= − − − +  (22) 

  
4. STABILITY OF FORMATION CONTROL  
 
The desired formation shape is determined by the 

formation pattern D 
d (t) and interaction matrix .G  In 

practice, due to the different requirements of 
formation tasks, formation pattern and interaction 
topology may be either invariant or variant.  

 
4.1. Stability under variant formation pattern and 

invariant interaction topology  
When a formation with a kind of formation shape is 
passing a field with obstacles, two actions may 
happen to avoid obstacles:  
1) A new formation pattern (D 

d (t)) is generated to 
make the formation avoid obstacles. 

2) A new desired path for the formation leader, Rl, is 
generated, so that Rl follows this new path to lead 
the whole formation to pass through obstacles. 
This change induces change of formation pattern  
D 

d (t). 
For these two changes about formation pattern, the 

following theorem represents the preconditions under 
which the control strategy ensures the convergence of 
the system.  

Theorem 1: For a multi-robot system which has a 
predetermined leader, if formation pattern D 

d (t) is 
kC  function with 1,k ≥  and adjacency matrix 

associated with interaction graph is connected and 
invariant, the robots must converge to the formation 
pattern following up the individual control strategy 
represented in (18) and (19).  

Proof: An important assumption is that D 
d (t) is at 

least 1.C  Then ( )d tD  is Lipschitz continuous.  
The dynamic equations of the system consist of 

(19) and (21). According to the definition of sigmoid 
function, it holds that ,x R∀ ∈  ( ) [0 1].xσ ∈ ,  And its 
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derivative satisfies ,x R∀ ∈ 1
4( ) [0 ].xσ ′ ∈ ,  All para-

meters such as ,F  ,U  ,κ  ,dτ  ε  are bounded. 
Therefore to make the dynamic functions (19) and 
(21) be locally bounded, the key precondition is that 

sin cos
Tr r

i i ii i iX p p pθ θ⎡ ⎤= ⎣ ⎦  is bounded. 

According to the definition of ,d
ip  the following 

formula holds for robot i :  

( )9 10 11
1

N
d

ii ij j j ji
j

X c c c g p p pQ z
=

≤ + + + + + ,∑ (23) 

where 9c  to 11c  are positive scalars, and 
d
iQ  satisfies  

1

1

1

N d
ij ijj

N dd
ij ij ij

N d
ij ijj

g D

g D Q

g D

=

=

=

≤ .

∑
∑
∑

                    (24) 

Obviously, to make Xi be locally bounded, all 
positions of robots ip  should be at least 1.C  

To simplify expression, the subscript i  is omitted 
in the following proof. Assume that X is bounded, 
then (19) and (21) are locally bounded functions. 
According to the properties of integral, for a finite 
interval of time [0 t], ,t < ∞  ( ),z t  ˆ ( )W t  and ˆ( )V t  
are Lipschitz continuous. From the definition of the 
filter error z , we know the position of robot ( )p t  is 
smooth continuous. Considering all robots, it is 
concluded that if initial coordinate (0)p  is finite, 
after a finite interval [0 ]t, , ( )X t  is bounded.  

Therefore (19) and (21) are locally bounded 
functions. And both equations can be expressed in 
Filippov sense [18]. Since ,z  Ŵ  and V̂  are 
Lipschitz continuous, the following expression holds.  

ˆ ˆˆ ˆˆ

ˆˆ ˆˆ ,

K

   K

T T T

T T T

W F X F F z Wz zV

F X F F z Wz zV

σ σ κ

σ σ κ

⎡ ⎤′∈ − −⎣ ⎦
⎡ ⎤′= ⋅ − −⎣ ⎦

  (25) 

where [ ]( )f zK  is defined as 

0 ( ) 0
[ ]( ) ( ( ) )

N
f x t co f B z N

δ μ
δ

> =
, ≡ , − ,∩ ∩K     (26) 

where 
( ) 0Nμ =
∩  denotes the intersection over all set 

of Lebesgue measure zero. Similarly,  

V̂ ˆ( )ˆ TTU X Wzσ⎡ ⎤
⎢ ⎥⎣ ⎦

∈− ⋅ ′K ˆ,U z Vκ−        (27) 

1 1
0 0 ˆ(Tz M Kz M W σ− − ⎡∈− − ⋅ ⎣K − ˆ ˆ )T XVσ ′  

1
0ˆˆ T T X s MVW σ γ−⎤′− + + .⎦    (28) 

A Lyapunov candidate is defined as  

{ } { }1 11
02 .T TTL M z tr F W tr U Vz W V− −⎡ ⎤= + +⎣ ⎦ (29) 

Obviously (0) 0L = .  
Using Lyapunov theorem on nonsmooth system 

[19], we have the derivative of Lyapunov function  

{ } { }
( ){ }

( ){ } ( )

({
)}

1 1
0

1 1
0

1

1
0

ˆ ˆ ˆ

ˆˆ [ ]

ˆ ˆ ˆ

ˆ ˆ ˆ

  K

       K K

  K

       K

    

T T T

TT T T

TT T T

TT T T

TT T

L z M z tr W F W tr V U V

M Kz tr W F W Xz z zV

tr V U V X sz zW

M Kz tr W Xz z zV

Xz zV

σ σ

σ γ

σ σ

σ σ

− −

− −

−

−

= + +

⎡ ⎤′⊂ − + − −⎣ ⎦

⎡ ⎤′+ − + +⎣ ⎦

⎡ ⎤′⊂ − + −⎣ ⎦

⎡ ⎤′− −⎣ ⎦

( ){ }
{ } { } ( )

( ){ }
( ){ } [ ]( )

ˆ ˆ( ) ( )ˆ ˆ

ˆ ˆ [ ]

.

   K K

       K

  

      K

T TT T T

T T T

TT

T T

tr X Wz X WzV

F z tr W W U z tr V V sz

Kz z tr W W Wz

z tr V V V z s

σ σ

κ κ γ

κ

κ γ

⎡ ⎤ ⎡ ⎤+ −′ ′⎣ ⎦ ⎣ ⎦

+ + + +

= − + −

− − + +

(30) 
It is noticed that { },Y diag W V= , { }ˆ ˆ ˆ,Y diag W V= , 

and ˆY Y Y= − . Then (30) can be expressed as  

( ){ } [ ]( ).KT T TL z Kz z tr Y Y Y z sκ γ= − + − + + (31) 

The robust term is designed as  

( )
( )

ˆ , 0

ˆ , 0,

z
Y F M z

Y F M

K Y Y z J z

K Y Y z z
γ

⎧− + − ≠⎪= ⎨
⎪ − + =
⎩

      (32) 

where J  and YK  are positive, MY is the bound of 
ideal weights. Substituting (32) into (31) and 
considering it holds that ( ){ } F

tr Y Y Y Y Y− = , −  

2 2
,FF F F

Y Y Y Y≤ −  if 0z≠ , we get  

( ) [ ]

22

2

min FF F

Y MF

L K z z Y Y Y

ˆK Y Y z J z z s ,

κ ⎛ ⎞≤ − + −⎜ ⎟
⎝ ⎠

− + − +     K
  (33) 
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where minK  is the minimum singular value of .K   
The following property holds:  
Property 2: Based on Property 1, since X is 

bounded, Y  and z  are smooth continuous, the 
disturbance term ( )s t  is bounded by 

0 1 2[ ( )]K F Fs t C C Y C Y z≤ + + ,       (34) 

where C0, C1 and C2 are positive scalars. Substituting 
it into (33), yields  

( )
( ) (

)

2 2

2
0 1

2

ˆ     

     .

min F F F

Y F M F

F

L K z z Y Y Y

K Y Y z z C C Y

C Y z J z

κ≤ − + −

− + + +

+ −

(35) 

It holds that ˆ ˆ
F M FF

Y Y Y Y+ ≥ + ˆ
F

Y Y≥ − =  

FY . Taking 2YK C> , we can obtain  

( )
( )

( )

( ) 2
3 3

2 2

0 1

0

1

2
02 4

  

min F F F

F

min F M F

F

C C
min F

L K z z Y Y Y

z C C Y J z

z K z Y Y Y C

C Y J

z K z Y C Jκ

κ

κ

κ

≤ − + −

+ + −

⎡≤ − − − −⎢⎣
⎤− + ⎦

⎡ ⎤
= − + − − − + ,⎢ ⎥

⎣ ⎦

(36) 

where 1
3

C
MC Y κ= + . Obviously, if we take 

2
3

4
CJ κ≥  

0C+ , it follows that  

( )3
2

2 0C
min FL z K z Yκ

⎡ ⎤
≤ − + − ≤ .⎢ ⎥

⎣ ⎦
    (37) 

Hence (29) is a Lyapunov function. According to 
the structure of (29), ,z  ,W  and V  are bounded. 
According to LaSalle’s principle for nonsmooth 
system [19], the system must stabilize to the invariant 
set included in { }0 ,z V =  here 0.z =  Since the 

determinant of T  is one, it holds 1 0z T z−= =  in 
case of 0.z =  Furthermore e  and e  converge to 
zero too. And the relative error defined in (2) 
converges to zero. According to Lemma 2, we can 
draw the conclusion that the robots converge to a 
formation whose pattern satisfies ,kC  1k ≥ .  

The proof does not assert that W  and V  
converge to zero. Hence although ˆ ( )f X  approaches 

to ( ),f X  the Ŵ  and V̂  may not converge to the 

desired weights W and V without error eventually. But 
since for a formation, the most important thing is to 
keep a formation shape, it is acceptable that there exist 
estimated errors on NN weights.  

To verify the performance of the controller, a 
simple simulation is illustrated where six mobile 
robots are required to form a formation with patterns 
varying three times as shown in Fig. 5.  

The interaction topology among robots is invariant, i.e. 

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0.5 0.5 0 0 0
0 0 1 0 0 0

G

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= .⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Some important parameters used are listed as follows: 
 Robot’s size is 0 14m 0 08m. × . , and its mass is 1kg. 
 The disturbance dτ  is a kind of white noise whose 

range is limited within [ 0 05 0 05]− . , . .  
 Parameters used in (18) and (19) are chosen 

as: { }10 10K diag= , , the NN includes 40 hidden 
nodes, and learning speeds in both F and U are 
identically 0 1,.  10,κ =  and 0 01.J = .  
The trace of the formation is shown in Fig. 6. Since 

this simulation is to test the control strategy’s 
performance under different formation patterns, the 
times for pattern change are predetermined. R1 is the 
leader of the formation, whose desired trajectory is 
predetermined. R1 follows the trajectory using the 
same control strategy as others. The tracking errors of 
all six robots are shown in Fig. 7. Obviously the 
control strategy guarantees that all tracking errors 
converge to zero. That means the robots can keep a 
regular formation according to the formation pattern.  

 
4.2. Stability under variant interaction topology  

Due to its perceiving range and communication 
bandwidth, one robot can communicate with other 
robots within a certain range. Hence if robots have to 
change their neighborhoods for exchanging 
information, the interaction topologies also change.  

When interaction topology is changed from 1G  to 

2G , as well as the adjacency matrix is changed from 

1R
2R

3R

4R

5R

6R

(1) (2) (3)

1R2R3R4R5R6R
1R2R

3R

4R

5R6R

(1)              (2)              (3) 

Fig. 5. A variant formation pattern. 
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G1 to G2, even if the formation shape and the positions 
of robots are fixed, the relative errors associated with 
the two adjacency matrices are different. That means 
at the instant of the change, the error shown in (8) is 
noncontinuous, as well as (21) is noncontinuous. 
Hence the control strategy can not be expressed in the 
Filippov sense. So we have to modify control 
strategies to control this noncontinuous system.  

Let the set be { }}1 2iG i= : = , ,G  which consists 
of all possible connected adjacency matrices. If a time 
sequence is denoted as { }0 1 ,it t t, , , ,  1,i it t −>  
where it  is the instant when the change of adjacency 
matrix occurs, the duration of formation is a 
sequence [ ) [ ) [ ){ }0 1 1 2 1, , , ,i it t t t t t−, , , and the 

adjacency matrix in duration 1[ )i it t− ,  is denoted by 

.
itG  Since 0,d

lp =  the equation d d
i iH P G D=  

11N×  has identical solution dP  for any .iG ∈G  
When the adjacency matrix is changed at the instant 

it , the control torque is infinity. To eliminate the 
infinite point, a modification of control torque is 
proposed as follows:  

( ) ( )i it tτ τ −= .                          (38) 

Then the control strategy is not a time continuous 
feedback control any more. In fact, a simple “switch” 
can be added into the controller, so that when the 
robot has to change its reference objects, its controller 
maintains the same control torque as that ahead of this 
change for a short duration.  

Based upon the previous analysis on formation 
control for invariant interaction topology, we have the 
following theorem describing performance of 
formation with variant interaction topologies:  

Theorem 2: Given a multi-robot system with a 
predetermined leader, if the interaction topologies 
among robots change from time to time, then there 
exists a temporal sequence of adjacency matrices 
{ }0 1

,t tG G, , 1i it t −> , describing relationship change, 

where 
itG  represents the adjacency matrix during 

time-interval in 1[ ).i it t− ,  If 
itG ∈G ( )1 2i = , , , and 

formation pattern dD  is kC  ( )1k ≥  function, the 
system will converge to a unique formation according 
to individual control strategy shown in (18) and (19).  

The proof of Theorem 2 is very similar to Theorem 
2 in [20] except that in [20] only formation pattern 
satisfying C∞  property is analyzed. But this 
difference does not affect the proof on the stability of 

        
 

Fig. 6. The trace of the formation. 
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Fig. 7. The relative errors of all robots. 
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formation control with variant interaction topology 
too much. In a short, the main idea of the proof is 
based on Theorem 1. If the modification mentioned 
above is considered, it can be proved when interaction 
topology is changed, the sudden change of tracking 
error e  is bounded, and in each interval 1[ )i it t− ,  the 
system is convergent according to Theorem 1. Hence 
when time goes to infinity, the robots will still be able 
to form a formation, even if the changes of interaction 
topology make the system become a noncontinuous 
one.  

 
5. FORMATION NAVIGATION WITH 

OBSTACLE AVOIDANCE 
 
The motivation of the formation navigation is 

described as follows: It is assumed that the sensor 
range of the leader Rl is bounded but large enough, so 
that Rl can perceive any obstacles which may collide 
with robots in the near future. If there are no obstacles 
perceived by Rl, it will generate a beeline connecting 
its position with the destination, so that other robots 
will follow Rl to reach the destination. But if any 
obstacles are moving into the sensor range of Rl, it 
will generate a proper path to the destination, so that 
all members of the formation follow it to avoid 
moving obstacles while keeping regular formation 
shape. During the process the formation pattern 
should be changed to avoid obstacles conveniently. 

Owing to the sensor limits for detecting obstacles, 
Rl is only able to perceive obstacles within its sensor 
range. With appearance and disappearance of 
obstacles within its sensor range, Rl has to generate 
desired paths from time to time, which will induce the 
change of formation pattern D 

d (t). At the same time, 
since interactions among robots may be truncated by 
obstacles, robots have to find new interactions with 
other robots to set up new reference points. That 
means the interaction topology, or adjacency matrix G 
will be timely changed. However the two theorems 
mentioned above imply that if formation navigation 
ensures the paths generated are smooth continuous, i.e. 

kC ( )1k ≥ , robots can keep formation using the 

decentralized NN controller, even if ( )dD t  and G 
are variant. Hence if the formation shape is fixed, the 
key point of formation navigation is the path planning 
for Rl, in order that the paths generated are smooth 
continuous with obstacle avoidance for all robots.  

This paper proposes a path planning via particle 
swarm optimization to fulfill these requirements. 

 
5.1. Description of desired trajectory of the leader  

Let ( ) [ ( ) ( )]d d d T
x yp t p t p t= ,  be a virtual moving 

point on a desired trajectory. If the coordinate in X-
direction is the function of time, i.e., ( ) ( )d

xp t tϕ= , 

the smooth path is expressed as an algebraic cubic 

spline, 
0

( ) ( ( ))
n

d d i
y i x

i
p t a p t

=
= .∑  

Since the desired trajectory should be at least 1C  
to apply local control strategy, not only position 
boundary conditions, but also velocity boundary 
conditions should be applied.  

0

0

0

0( ) ( ) ,

,

f

d d
y y f
d d
x x

f

ttd d
f

dp dp tt
dp dp

t t t t

p t P p t P

θ θ
= =

= , =

= , =
 

where 0[ ]ft t,  represents the interval for the moving 
point from the start time of path planning to the end 
time of reaching destination; 0tθ  represents the 
heading angle of Rl at the moment for new path 
planning. Therefore between two successive times of 
path planning, the path generated in the latter path 
planning must continue the former path smoothly. And 
the whole desired trajectory is ensured as 1.C  

If only the boundary condition is considered, a 
three-order polynomial trajectory function can be 
chosen. To avoid moving obstacles, a five-order 
polynomial for path planning is chosen as  

5

1
( )d d i

y i x
i

p a p
=

= .∑                        (39) 

There are six parameters a0 to a5 to be determined. 
According to the boundary conditions, only two of 
them are free parameters, and the other four 
parameters can be expressed by these two.  

 
5.2. Path planning via PSO algorithm  
5.2.1 PSO algorithm  

Obviously each particle in a swarm represents a 
solution on path planning. In following analysis, we 
will introduce the meaning of each particle and the 
algorithm of PSO path planning.  

Let S denote the size of the swarm. For an arbitrary 
particle ,i  its current position is denoted by 

1 2[ ]i i i iLξ ξ ξ ξ= , where L is the dimension of 
the solution space, and its current velocity is denoted 
by .iv  Assume that the function ( )F i  is to be 

minimized, 1 (0 1)Lr U ,∼ and 2 (0 1)Lr U ,∼  represent 

the two random vectors in the range of [0 1] .L,  To 
ensure convergence, the adjustment of particle with a 
constriction factor [21] is expressed as  

( ) ( ){ 1 11 ( ) ( )i c i i i iv t K v t c r t Y tξ+ = + −⎡ ⎤⎣ ⎦  



Smooth Formation Navigation of Multiple Mobile Robots for Avoiding Moving Obstacles             475 

}2 2                ( ) ( ) ,

( 1) ( ) ( 1),

g
i ii

i i i

c r t Y t

t t v t

ξ

ξ ξ

⎡ ⎤+ −⎣ ⎦
+ = + +

         (40) 

where c1 and c2 represent the acceleration coefficients 
satisfying with 1 2c cφ = + , 4φ > ; iY  represents the 

best position found by particle i so far; g
iY  represents 

the global best position among particle i’s 
neighborhood; the constriction factor Kc is defined as 

22 2 4cK φ φ φ= − − − .  

The best position recorded is updated by  

( ), ( ( 1)) ( ( ))
( 1)

( 1) ( ( 1)) ( ( )).
i i i

i
i i i

Y t F t F Y t
Y t

t F t F Y t
ξ

ξ ξ
+ ≥⎧

+ = ⎨ + , + <⎩
 (41) 

And the global best position found by particle i ’s 
neighborhood is modified by  

( 1) min ( ( 1))
i

g
ji j

Y t arg F Y t
∈Π

+ = + ,           (42) 

where iΠ  represents the neighbors of particle i .  
 

5.2.2 Fitness evaluation  
The goal of a PSO is to minimize a fitness function 
( ).F ⋅  For path planning, two requirements should be 

considered in fitness function: (i) Arriving at 
destination along the trajectory as soon as possible; 
(ii) Avoiding obstacles.  

1) Fitness with respect to trajectory’s length.  
Instead of a direct measurement of path length, 

another fitness function is chosen. If the X-axis of the 
universal reference frame is along the beeline 
connecting the leader and the destination, the fitness 
function can be expressed as  

0

( ) 2
( )

( )
d
x f
d
x

p tpath d d
y xp t

F p dp= .∫               (43) 

It reflects the intention that the desired trajectory 
should be as close as possible to the beeline 
connecting two ends of the trajectory.  

2) Fitness with respect to obstacle avoidance.  
To avoid obstacles, the shortest distance between 

obstacles and robots during the whole process should 
be larger than a critical or safety threshold. If we 
define such a threshold as ,effρ  and let Ω  and Ψ  
represent the set of robots and the set of obstacles 
perceived by Rl respectively, then this intention can be 
expressed as { }, , , ,eff

ijt i j min ρ ρ∀ ∀ ∈Ω ∀ ∈Ψ ≥  

where ijρ  represents the distance between robot i  

and obstacle .j  If let { },min
j ijminρ ρ=  an evaluation 

function for obstacle avoidance is designed as  

1 1( )

0,

min eff
j

effmin
j j

obstacle
j

effmin
j j

F ρ ρ
μ ρ ρ

ρ ρ

⎧
⎪⎪
⎨
⎪
⎪⎩

− , ≤
=

> .
  (44) 

Therefore the key point is to find out .min
jρ  Fig. 8 

illustrates how to find such a distance, where there are 
two trajectories denoted by lines (1) and (2), which 
are designed for two robots forming a formation. Then 
the minimal distance between an obstacle and robots 
equals the minimal distance between the obstacle and 
all trajectories. A critical point is defined such that a 
beeline through obstacle position intersects with the 
trajectory perpendicularly on it. Then if we find this 
critical point, min

jρ also be calculated.  
Given an obstacle m as shown in Fig. 8, since the 

path designed for the leader R1 is the function of time, 
according to the formation pattern, the path of the 
follower R2 is also expressed as the function of time. 
It is assumed that two moving points denoted by two 
virtual robots follow trajectories (1) and (2) generated 
by the PSO path planning. we draw two 
perpendiculars (denoted by dashed lines) with the 
same slope passing through the positions of robots 
respectively, and draw two connect lines connecting 
robots with the obstacle m respectively. If a robot is at 
the critical point, the connecting line must coincide 
with the perpendicular there. Therefore a fitness 
function on evaluating critical point is expressed as  

2

1
o c d
jy jy y
o c d d cP Pjx jx x j

p p dpcrosspoint
j p p dp

F
=

−

−

⎛ ⎞
= + ⋅ ,⎜ ⎟⎜ ⎟
⎝ ⎠

    (45) 

where j∈Ψ , 1 2[ ] ,c c c T
j j jP p p=  and 1 2[ ]o o o T

j j jP p p=  
represent the coordinates of critical point and obstacle 
respectively.  

If there are M obstacles, the fitness function in PSO 
for path planning is in the form of 

1 2 3
1 1

M M
crosspointpath obstacle

ii
i i

F F F Fω ω ω
= =

= ⋅ + ⋅ + ⋅ ,∑ ∑ (46) 

A moving 
 obstacle

Robot 1

m

(2) (1)

Robot 2

 
Fig. 8. A snapshot of two virtual robots at time st . 
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where 1ω  to 3ω  represent positive weights.  
 

5.2.3 Description of particles in swarm 
Based on the analysis, the dimension of solution 

space can be determined. Firstly a5 and a3 are chosen 
as free parameters in order to describe a desired 
trajectory. And for every obstacle perceived by Rl, we 
need to find the critical point. If a desired trajectory is 
described as a function of time, the critical point for 
obstacle j  is also a function of time .c

jT  Therefore 
if we assume that Rl can handle M  obstacles at the 
same time, the position of a particle is in the form of 

5 3 1 2[ ] .c c c T
Ma a T T Tξ =   

 
6. SIMULATION  

 
To illustrate the feasibility of the design of 

formation navigation, a simulation is carried out in 
which six robots maintain a rectangle formation. 
Some assumptions on the environment and parameters 
used in the navigation are listed below: 
1) There are four obstacles. A static obstacle is 

located at (2.5m, 0.1m). And other three obstacles 
are moving, which are located initially at (3.5m, 
0.55m), (3 7m, 0 45m). − . , and (6m, 0 55m). . The 
velocities of the obstacles are (0m s, 0 014m s),/ − . /  
(0.025m/s, 0.012m/s) and ( 0 012m s, 0 02m s)− . / − . /  
respectively.  

2) All obstacles are a kind of disc-like with radius 
0.15m.  

3) R1 is the leader of the formation, which is required 
to reach (7m, 0m) with a heading angle of 0rad, 
while all six robots are keeping rectangle 
formation whose pattern is shown in Fig. 1.  

4) Considering the size of robots, the distance for 
safe obstacle avoidance is chosen as 0.05m. Since 
an obstacle is a disc-like with radius 0.15m, the 
safe range is a disc with radius 0.2m.  

5) Rl handles two obstacles at one time.  
Other parameters such as the size of robot and 

control parameters are the same as the previous 
simulation. The results of simulation are displayed in 
Figs. 9 and 10. To describe the movements of 
obstacles, the initial positions and final positions of 
obstacles are denoted by black circles, while arrows 
passing through them denote their moving direction. 
The four grey discs denote the nearest positions where 
robots are away from obstacles. At these locations, the 
red circles around the discs represent the safety ranges 
of obstacles. Obviously, no trajectory of robots passes 
through any safety range, so that the minimum 
distance between any robot and any obstacle must be 
no less than 0.05m, and the robot must avoid the 
obstacle.  

Since R1 only handles the two nearest obstacles at 

one time of path planning, for all four obstacles, three 
times of path planning are needed. Counting the 
duration to form formation firstly, the process of 
formation is divided into four sections, denoted by (1) 
to (4) in Fig. 9(a). When R1’s coordinates in X-
direction are 1.52m, 3.36m, and 4.62m, the formation 
executes three times of path planning.  

According to the description of particles in swarm, 
it is known that 5 3 1 2[ ] .c c Ta a T Tξ =  Since 5a  
and a3 determine the polynomial of path, Fig. 10 
displays the evolutionary processes about these two 
parameters in the second and the third times of path 
planning, where the obstacles involved are all moving 
obstacles. From the figure, it is observed that in every 
planning, all particles converge. If the desired velocity 
along X-direction of R1 is predetermined as 

( ) 0 2 ,d
xp t t= .  the polynomials of paths after three 

times of path planning are:  
1) Duration (7 7s 16 8s]t∈ . , . : 

9 5 7 4 5 3
1 ( ) 8 10 10 8 80 10 3 52 10d

yp t t t t− − −= . × − . × + . ×  
4 26 31 10 0 0049 0 0137t t−− . × + . − . ;  

2) Duration (16.8s 23.1s]t∈ , : 

8 5 6 4 4 3
2 ( ) 5 02 10 6 77 10 3 57 10d

yp t t t t− − −= − . × + . × − . ×

       20 0091 0 1135 0 5442t t+ . − . + . ;  

3) Duration (23 1s 35s]t∈ . , : 

8 5 6 4 4 3
3 ( ) 5 76 10 9 30 10 5 87 10d

yp t t t t− − −= − . × + . × − . ×

       20 0182 0 2748 1 6325.t t+ . − . + .  
 

When obstacles truncate interactions between 
robots, robots have no choices but try to communicate 
with other robots to set up new reference points. This 
induces a change of interaction topology. In the 
simulation, thirty times of such changes are recorded. 
Fig. 9(b) shows some topologies in simulation. 
Topology (1) indicates the situation at the beginning 
which is generated arbitrarily. The first change occurs 
during the formation passing obstacle 1, where the 
obstacle blocks the interaction between R1 and R2. R2 
abandons interaction with R1 and totally turns to R4 to 
set up the reference point. This change is illustrated in 
Fig. 9(b), where arc a(2, 1) is disappeared in 
interaction topology (2), with a(2, 4) remained. So the 
second row of adjacency matrix G is changed from 
[0.5 0 0 0.5 0 0] to [0 0 0 1 0 0]. Since these changes 
of adjacency matrix occurs after the formation formed, 
the leaps of errors are too small to be observed in the 
first six figures of Fig. 9(c). But if the relative error of 
R4 is magnified, through observing the region around 
17.5s shown in the seventh subfigure of Fig. 9(c), we 
can find two leaps of error corresponding to two times 
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of interaction changes of R4, when R4 avoids obstacle 
1, its reference robot is changed from R1 to R3, and 
from R3 to R2, respectively.  

 
7. EXPERIMENTAL STUDIES  

 
An experiment study is conducted in our lab to 

verify this formation navigation. Up to now we have 
designed and manufactured a group of robots as 
shown in Fig. 11. All robots can acquire the 
information about their relative positions using lights 
and photosensors.  

Each individual robot has been designed as a full 
autonomous mobile robot, on which a Microchip 
PIC® microprocessor is mounted. Other necessary 
devices, such as communication parts, memory chips 
are all included. According to the mechanical design, 
the robot is constructed by 4 units, or layers from the 
top to the bottom: 1) interaction unit including the 
lights and photo sensors, which is mounted on the top 
layer, 2) extended board on the second layer, which 
will extend ability of input and output channels, 3) 

0  250 500 750 1000
−1.5

−1

−0.5

0

0.5

1
Convergence of X

1
 (a

5
)

Time (iteration)

V
a

lu
e

0  250 500 750 1000
−15

−10

−5

0

5

10
Convergenc of X

2
 (a

3
)

Time (iteration)

V
a

lu
e

 
(a) Convergence of the swarm for the 2nd path planning. 
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(b) Convergence of the swarm for the 3rd path planning. 

 
Fig. 10. Evolution processes for two path planning. 
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Fig. 9. Simulation results of formation navigation. 
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control unit on the third layer, which includes CPU, 
4096 bytes of user program and data memory, and IR 
transceivers for communication with PC, 4) power 
source and actuator unit on the bottom layer, which 
include two separated battery units and two servo 
motors with gear boxes. The system architecture is 
finally shown in Fig. 12.  

The following two layers of the architecture are 
described as follows.  

1) Interaction unit  
All lights mounted on robots are surrounded by 

light tight material, so that directional light cones are 
generated. Accordingly on the top layer there are 
several photo sensors which can perceive light from 
specific directions. Robots can perceive the beams to 
detect their reference position. Therefore the 
arrangement of lights and photo sensors determine the 
formation pattern. Till now the lights and photo 
sensors are fixed on the first layer, so that an invariant 
formation pattern can be generated, such as the 
formation of wild goose.  

2) Power source and actuator  
To avoid current disturbance resulting from action 

of actuator, which make power supply to the control 
board be unstable, the two separated 6V battery units 
are employed to provide power to the control unit and 
drive motors respectively. And the actuator unit 
includes two servo motors, which drive two wheels 
through a gear box with reduction ratio of 203:1.  

Using this prototype, we have tested that when the 
robots are put together, they can perceive their leaders 
and compute the relative positions according to the 
intension of lights. In the near future the close-loop 
control law will be applied to the robots to test the 
formation performance. And finally the NN control 
will be added into the controller to verify the 
feasibility of the control strategy.  

 
8. CONCLUSIONS  

 
A formation navigation algorithm for a group of 

mobile robots is proposed in this paper, which can 
achieve formation navigation in case of moving 
obstacles existed. If formation pattern is C1, the whole 
system is smooth continuous. Then the adaptive NN 
control can be applied to enable mobile robots follow 
a predetermined leader and form a formation. A PSO 
path planning method is proposed to generate 
successive paths for the leader of formation according 
to current obstacles perceived, and ensures that the 
path resulting from connection of these paths is 
smooth. Hence the precondition of C1 formation 
pattern is fulfilled. Simulation results demonstrate the 
algorithm is effective for formation navigation of 
multiple robots with moving obstacles. 
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