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Abstract Differential equations are used in modeling di-
verse system behaviors in a wide variety of sciences. Meth-
ods for estimating the differential equation parameters tra-
ditionally depend on the inclusion of initial system states
and numerically solving the equations. This paper presents
Smooth Functional Tempering, a new population Markov
Chain Monte Carlo approach for posterior estimation of pa-
rameters. The proposed method borrows insights from par-
allel tempering and model based smoothing to define a se-
quence of approximations to the posterior. The tempered ap-
proximations depend on relaxations of the solution to the
differential equation model, reducing the need for estimat-
ing the initial system states and obtaining a numerical differ-
ential equation solution. Rather than tempering via approx-
imations to the posterior that are more heavily rooted in the
prior, this new method tempers towards data features. Us-
ing our proposed approach, we observed faster convergence
and robustness to both initial values and prior distributions
that do not reflect the features of the data. Two variations
of the method are proposed and their performance is exam-
ined through simulation studies and a real application to the
chemical reaction dynamics of producing nylon.

Keywords Dynamic systems · Parallel tempering · Model
based smoothing · Functional data analysis · Population

D. Campbell
Department of Statistics and Actuarial Science, Simon Fraser
University, 13450 102nd avenue, Surrey, BC, Canada V3T 0A3
e-mail: dac5@stat.sfu.ca

R.J. Steele (�)
Department of Mathematics and Statistics, McGill University,
805 Sherbrooke Ouest, Montreal, QC, Canada H3A 2K6
e-mail: steele@math.mcgill.ca

Markov chain Monte Carlo · Multi-grid Markov chain
Monte Carlo

1 Introduction

Differential equations (DEs) are used to model complex
phenomena in pharmacokinetics, neuro-physiology, chem-
ical engineering, systems biology, and other sciences. They
are typically constructed from well understood scientific
principles such as conservation of mass, energy and mo-
mentum, providing an easily interpretable parameter vec-
tor θ that is often unavailable with other classes of mod-
els. Through changes in initial states (x(0)) and parameters
(θ ), a DE model can describe a wide variety of complex be-
haviors including oscillations, steady states, and exponen-
tial growth (or decay) with a small number of parameters.
However, the flexibility of a DE to succinctly model these
behaviors comes at a heavy price.

DEs describe the rate of change of a vector of functional
system states x(t) with respect to an argument, such as time
t ∈ [0, T ],

dx(t)/dt = f (x(t), θ , t). (1)

In the presence of additive measurement noise, one observes

y(t) = x(t) + ε(t), (2)

where only a subset of states may be observed and ε(t) is an
error process resulting from some distribution. When there
is no analytic solution for x(t), as often arises when f (·)
is a nonlinear function, the initial system states x0 = x(0)

are required to produce the numerical solution to the DE,
x(t) = S(θ ,x0, t). Due to the properties of S(θ ,x0, t), the
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likelihood for y(t) in (2) may be rife with undesirable to-
pography such as local maxima, ridges, ripples and/or large
flat segments (Esposito and Floudas 2000). We will primar-
ily focus on ordinary differential equations (ODEs) in our
work.

There is a rich literature in the biological sciences
proposing solutions to the parameter estimation problem
for models like (1). Varah (1982) and Voit and Sauvegeau
(1982) first proposed the use of smoothing for the estima-
tion of the parameters of an ODE. Ramsay and Silverman
(2005) and Poyton et al. (2006) extended Varah’s approach
to iterate between smoothing the data and estimating the
parameters of the underlying ODE. A recent approach to
parameter estimation based on generalized profiling (GP)
also aims to improve the likelihood topology by using a
data smooth x̂(t) ≈ S(θ ,x0, t) resulting from a basis ex-
pansion. Estimates of θ are determined by the profile like-
lihood, marginalizing over the nuisance parameters used to
construct x̂(t) (Ramsay et al. 2007). Data smoothing us-
ing GP accounts for both the dynamics in (1) and the data
features, providing an increased basin of attraction for the
mode of θ . Smoothing removes the dependence on the nui-
sance parameters x0 and improves stability of the estimate
of θ . However, it has been shown that a profile likelihood ap-
proach can perform poorly in the presence of multiple nui-
sance parameters (Walley and Moral 1999). Additionally,
a purely frequentist approach does not allow for valuable
prior information about the system to be incorporated into
the modeling.

We present a new Bayesian sampling method for pos-
terior estimation of θ and x0 (if desired) from ODE mod-
els. The proposed smooth functional tempering (SFT) is a
population Markov Chain Monte Carlo (MCMC) method
that uses the GP model as a bridging auxiliary density in
a parallel tempering algorithm (PT). Our approach employs
a GP data smooth to define a sequence of approximations
to the posterior with increased basins of attraction for the
modes. SFT does not require a priori knowledge of the pos-
terior topology or a bounded posterior space. Furthermore,
unlike previous implementations of PT, SFT is robust to situ-
ations where prior information is inconsistent with the data.
We propose two variations on our technique, one that in-
corporates the initial conditions in the estimation (SFT1)
and a more computationally efficient alternative approach
which profiles over the initial conditions, reducing the di-
mensionality of the parameter space (SFT2). Section 2 re-
views background methods and leads into the description of
both proposed variants of SFT in Sect. 3. A simulation study
is given in Sect. 4 which examines the performance of our
approaches in a canonical example from the statistical ODE
literature. We conclude with a real data case study in Sect. 5
and a discussion of our results (Sect. 6).

2 Background

The lack of an analytical form for S(θ ,x0, t) implies that
there is no closed form for the likelihood. Gradient based
methods like non-linear least squares (NLS) do not typ-
ically perform well and practitioners are warned to ex-
pect a method based error level of the order of 25%
(Bates and Watts 1988; Marlin 2000). New evolutionary
approaches to maximization of the likelihood function are
able to overcome many of these shortcomings, although
inference depends on asymptotic approximations for stan-
dard errors or computationally expensive bootstrap proce-
dures (Rodriguez-Fernandez et al. 2006; Miao et al. 2009;
Liang and Wu 2008; Liang et al. 2010). Bayesian models
provide an alternative to asymptotic frequentist analysis of
ODE data. Typical Bayesian parameter estimation meth-
ods for ODEs (for two examples, see Gelman et al. 1996
or Huang and Wu 2006) use a model of the form:

y(t) | θ ,x0, σ
2 ∼ N

(
S(θ ,x0, t), σ

2
)
,

θ ,x0, σ
2 ∼ P(θ ,x0, σ

2).
(3)

A Bayesian approach for ODEs requires Monte Carlo
simulation or numerical integration, and most implementa-
tions of Bayesian ODE models have used MCMC methods.
For example, Barenco et al. (2006) and Rogers et al. (2007)
both used traditional Metropolis sampling methods to ob-
tain Bayesian posterior estimates for ODE parameters used
for predicting gene transcription activity. Klinke (2009) im-
plemented an adaptive MCMC approach for Bayesian es-
timation of a complex signaling network. The GNU MC-
Sim software (Bois 2009) allows for Bayesian estimation of
ODE models coded in Systems Biology Markup Language
(SBML). However, current applications of MCMC require
that the ODE is numerically solved at each proposed param-
eter value which makes exploration of the posterior surface
under these topological difficulties challenging. Examples
of these kinds of problems are shown in Sect. 4.2. Simulated
annealing has been used to circumvent the topological diffi-
culties (Gonzalez et al. 2007), but still requires a numerical
solution to the ODE at each iteration. The dependence on
S(θ ,x0, t) also increases the dimensionality of the parame-
ter space with the inclusion of x0, a set of nuisance param-
eters that grows in dimension with additional experimental
runs. The structural parameters, θ , are of primary interest
because they define the ODE dynamics, yet current meth-
ods treat x0, θ and σ 2 in (3) equally, despite their differing
influence on the data-generating process and importance in
estimation.

The primary challenges for Bayesian ODE estimation
methods are that the topology of the posterior and location of
the dominant mode are difficult to determine, the likelihood
(and, thus, the un-normalized posterior distribution) gener-
ally does not have a closed form expression, and the param-
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Fig. 1 A cross section of the FitzHugh-Nagumo log likelihood for γ (bottom) and the fits to the data for V (grey) and R (black) corresponding to
the likelihood modes using the true parameter values (top middle), a small value (top left) and a large value (top right)

eter space may be unbounded and high dimensional. Fur-
thermore, the posterior surface may have local maxima sur-
rounded by deep and wide likelihood valleys making deter-
mining the global mode difficult. Figure 1 shows an example
of a multimodal posterior surface where local modes asso-
ciated with a partial fit to the data are of negligible posterior
relevance. Therefore, a Bayesian approach to ODE models
requires a method that can adeptly manage these challenging
features.

The nature of the posterior topology for difficult models
is often referred to in the biological literature as “sloppi-
ness”. In statistics, the term normally used would be “non-
identifiable” or, if not strictly not identifiable, then only
weakly identifiable with respect to estimating parameters
from the observed data. The wide extent of the sloppi-
ness in biological systems problems is discussed in a pa-
per by Gutenkunst et al. (2007b), where they identify slop-
piness issues with parameters in a large number of mod-
els extracted from the BioModels database (Le Novère et
al. 2006). There is a large amount of work that has been
done to develop methods for identifying problems that are
sloppy in nature and to choose parameterizations that rem-
edy the problem (Gutenkunst et al. 2007a; Vilela et al. 2007;
Raue et al. 2009). The body of work on identifying and rem-
edying sloppy parameterizations is interesting and could be
potentially used in conjunction with our approach to im-
prove inference, but it is beyond the scope of our work here.

2.1 Population MCMC

Population based simulation methods are designed to im-
prove mobility of MCMC samplers using information from
parallel MCMC chains based on a sequence of approxima-
tions to the posterior density. Parallel tempering (PT), for
example, approximates the posterior distribution of ψ =
[θ ,x0] through a sequence of m = 1, . . . ,M approxima-
tions; Pm(ψ | y) ≈ P(ψ | y) defined by a temperature gra-
dient 0 ≤ ξ1 < · · · < ξM = 1 (Geyer 1991). The most com-
monly used series of approximations is

Pm(ψ | y) ∝ (P (y | ψ))ξmP (ψ). (4)

We have that for ξ1 = 0, P1(ψ | y) = P(ψ) and for ξM = 1,
PM(ψ | y) = P(ψ | y), the posterior distribution of inter-
est. The M posterior approximations are used as the target
densities of M parallel MCMC chains. The posterior ap-
proximations from chains corresponding to smaller values
of ξm are rooted more heavily in the prior, affording ψm

greater mobility around the posterior parameter space com-
pared to larger ξm-valued chains. Consequently, the smaller
ξm-valued chains explore a larger area of the parameter sur-
face while the larger ξm-valued chains remain trapped in the
basin of attraction of a local posterior mode. Figure 2 shows
the impact of changes in ξ on the posterior surface of γ in
the FitzHugh-Nagumo model to be discussed in Sect. 4.

At the ith iteration, each chain independently performs
a Metropolis-Hastings (MH) step to update ψ (i). However,
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Fig. 2 The effect of changing
the temperature gradient
parameter on the
-log(-log(non-normalized
posterior)) for methods
(columns) using different priors
for γ (rows). Increasing values
of the parameter (ξ for PT, λ for
SFT1 and SFT2) gives lines
appearing lower down within
each plot

the M chains are not generated entirely independently. With
some probability, two chains k and � are randomly selected
and their parameters ψ

(i)
k and ψ

(i)
� are proposed to be ex-

changed between the chains rather than mutate indepen-
dently. The exchange is accepted with probability

rswap = min

(
1,

Pk(ψ
(i)
� | y)P�(ψ

(i)
k | y)

Pk(ψ
(i)
k | y)P�(ψ

(i)
� | y)

)
.

Over time, the proposed exchanges between neighboring
chains should be accepted approximately 50% of the time
to ensure reasonably smooth sequence of distributions (Liu
2001). The exchange step enables multiple modes to be sam-
pled and improves mixing for the chain sampling from the
posterior of interest, P(ψ | y).

Parallel tempering and genetic algorithms (GA) share
many conceptual similarities. The critical difference be-
tween the two approaches is that parallel tempering is used
for generating samples from a distribution rather than for op-
timization of an objective function (Liang and Wong 2000).
Parallel tempering allows for two kinds of updates to the
model parameters, mutation steps (the MH updates per-
formed within each chain) and exchange (the MH updates
performed between chains). In their work, Liang and Wong
(2000, 2001) also suggested a potential crossover (known
as recombination in the GA literature in optimization re-
search) move that would allow for only portions of the pa-
rameter vector to be exchanged between chains. However,
this crossover move can be difficult to implement in practice
and so we have not used it as part of our simulations. For
a comprehensive and somewhat current review of the litera-
ture on these methods, we encourage the readers to see Jasra
et al. (2007).

PT and variants (Marinari and Parisi 1992; Neal 1996;
Calderhead et al. 2009) have been shown to work well for
sampling from certain multi-modal densities. However, de-
spite enabling the sampler to escape local posterior modes,

the posterior flattening strategies that improve the mobility
of some parameters may over-flatten parameter dimensions
with less complex posterior topologies leading to slower
mixing and burn-in in the target distribution (Geyer and
Thompson 1995). Additionally since tempering is almost al-
ways done towards the prior, PT will fail when prior infor-
mation does not agree with the features of the observed data
(see Sect. 4.2).

2.2 Model-based smoothing

Model-based smoothing is a generalization of smoothing
splines or penalized smoothing (Eilers and Marx 1996).
The mean of the data is assumed to be a linear combi-
nation of basis functions (φ(t)) with coefficients (c), i.e.
E[y(t)] = x(t) = c′φ(t). The shape of the smooth depends
on the hyper-parameter λ and can be expressed as a distri-
bution on x(t),

P(x(t) | θ , λ) ∝ exp

[
−λ

2
PEN(x, θ , t)

]

where

PEN(x, θ , t) =
∫

t

[
dx(s)

ds
− f (x(s), θ , s)

]2

ds. (5)

A Bayesian extension of this model would then assume a
further prior distribution for (θ, λ,σ 2)

A standard choice in the smoothing literature for the
penalty term is PEN= ∫

t
(d2x(s)/ds2 − 0)2 ds. This defines

a model structure that anticipates a linear model, whereas
in (5), the penalty is more generally based on the integrated
square of the residual of (1). When used as a kernel for a
prior on x(t), we see that the prior density increases as x(t)

approaches the shape defined by the ODE model through
PEN. Model parameters θ from (1) can be considered as
hyper-parameters of the prior on x(t).
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The smoothing parameter λ defines a balance between
measurement error σ 2 and deviation from the ODE model.
As λ → 0, the posterior mode of x(t) | y, θ , σ 2, λ is the
function space spanned by the basis that interpolates the
data. As λ → ∞, the posterior mode of x(t) | y, θ , σ 2, λ oc-
curs on the function space spanned by the ODE solution.

Model-based smoothing was not designed for optimal es-
timation of θ when the parametric structure of (1) is as-
sumed. To highlight this, note that λ controls the flow of
information between y and θ because θ is conditionally in-
dependent of y given x(t), λ, and σ 2. Consequently, model
based smoothing reduces the impact of changes in θ on x(t),
inflating var(θ | y) compared to estimating θ via (3) without
the hierarchical layer of the data smooth.

In some cases x0 may be known to high precision, but
remaining trajectory x(t,x0) must be estimated. These ini-
tial value problems generally could be computed using con-
strained optimization, however the computation is simplified
using a B-spline basis since there is only one basis function
taking a non-zero value at each of the time interval bound-
aries. With respect to parameter estimation, if x0 is known,
this additional information can improve reliability in the es-
timation of θ , especially when the model is sensitive to ini-
tial conditions (Wu et al. 2008).

3 Smooth functional tempering (SFT)

Our novel approach to Bayesian estimation of ODE mod-
els, Smooth Functional Tempering (SFT), is a particular
form of parallel tempering, as it is defined by a sequence
of M distributions towards the posterior of the measure-
ment error model in (3). However, SFT is best seen as
a collocation tempering method that uses the data-smooth
as an auxiliary distribution. SFT depends on a basis ex-
pansion for the approximation x(t) = c′φ(t) ≈ S(θ ,x0, t)

and tempers towards the posterior by varying the smooth-
ing parameter. When using a B-spline basis, as the smooth-
ing parameter increases and the ODE model is more rigor-
ously enforced, x(t) → S(θ ,x0, t), where x0 = c′φ(t = 0)

and S(θ ,x0, t) is numerically computed using an implicit
Runge-Kutta method with stepping points at the knot loca-
tions (Deuflhard and Bornemann 2000). Consequently, bas-
ing the tempering process on a collocation method is equiv-
alent to basing the tempered chains on a relaxation to the
ODE solution. In this section, we outline two variations of
this process. The first variation (SFT1) employs a smooth
approximation to the initial value problem and utilizes a
fixed point in the data smoothing step in conjunction with a
numerical ODE solution. The second variation (SFT2) uses
smooth approximations and does not depend on numerical
ODE solutions or x0.

3.1 SFT1: parameter estimation with a smooth and a
numerical ODE solution

We first assume that we are interested in making inference
about x0 and/or the function space spanned by the possible
ODE solutions as well as θ . SFT1 defines a tempering strat-
egy towards model (3) based on the increasing sequence of
fixed smoothing parameters 0 < λ1 ≤ · · · ≤ λM = ∞:

Pm(y | xm(t,x0), σ
2) ∼ N

(
xm(t,x0), σ

2
)

Pm(θ ,x0, σ
2) ∝ exp (−λmPEN(x,x0, θ , t))P (θ ,x0, σ

2)

where

PEN(x,x0, θ , t) =
∫

t

[
d

ds
xm(s,x0)

− f (xm(s,x0), θ , s)

]2

ds. (6)

The parameters (λ1, . . . , λM) in the SFT1 model assume the
role of the temperature gradient parameters (ξ1, . . . , ξM) in
the PT approach.

Our proposed SFT1 approach differs from the model
based smoothing approach described in Sect. 2.2 in that
SFT1 removes one layer of the hierarchical model. SFT1 im-
plicitly defines a distribution on the smooth and uses fixed
values of λm. As with model based smoothing, as λm → 0,
the posterior mean for y under the SFT 1 model tends to-
wards a data interpolant because the induced prior for x(t) is
uniform over the function space spanned by the basis. Addi-
tionally, when λm = 0, Pm(θ | y) = P(θ) since θ is not used
to define the shape of x(t,x0). If one assumes that λM = ∞
then

exp (−λmPEN(x,x0, θ , t))

=
{

1 if x(t,x0) = S(θ ,x0, t)

0 otherwise.

Consequently, the Mth chain produces samples from the
ODE measurement error model in (3) but the M − 1 chains
with λm < ∞ use a relaxation of the ODE solution enabling
x(t,x0) to deviate from the dynamics in (1) to better match
the features of the data. Thus, while the usual PT algorithm
tempers towards the prior, SFT1 tempers towards the data
features. Additionally, the impact of changes in θ and x0 on
x(x0, t) when using SFT1 are reduced with decreasing λm

relative to the standard PT approach.

3.2 SFT2: parameter estimation without a numerical ODE
solution

In many situations, x0 is not directly of interest but is re-
quired to numerically produce S(θ ,x0, t). Furthermore, the
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numerical solution may be difficult to produce or may be
subject to propagating numerical errors due to the reliance
on x0. SFT2 avoids the potential liability of numerically
solving the ODE and eliminates the need to explicitly model
x0 by tempering via the sequence of distributions for 0 <

λ1 ≤ · · · ≤ λM ≤ ∞:

Pm(y | θ , σ 2) = N(xm(t), σ 2)

Pm(θ , σ 2 | y) ∝ exp
[−λmPEN(x, θ, t)

]
P(θ , σ 2).

(7)

As with SFT1, SFT2 uses fixed values of λm and induces
a distribution on x(t). However, SFT2 no longer requires
S(θ ,x0, t) because xM(t) can be made arbitrarily close to
S(θ ,x0, t) by changing λM (Qi and Zhao 2010). In practice,
we choose λM < ∞ both for computational reasons and be-
cause large values of λM ensure that the induced posterior on
xM(t) decays rapidly towards zero as xM(t) deviates from
the function space of the ODE solution. However, even at
λM = ∞ model (7) is not equivalent to (3), because SFT2
effectively profiles over x0.

3.3 Impact of the smoothing parameter λ

Figure 2 shows the impact of changes in λ on a cross section
of the posterior surface of the γ parameter in the FitzHugh-
Nagumo model (discussed in Sect. 4) based on SFT1, SFT2
and PT under 3 different priors. The effectiveness of the tem-
pering in PT changes drastically with the prior. Under the
Uniform or χ2

2 priors, the minor mode at γ = 13 eventu-
ally disappears with any tempering approach. However the
minor mode becomes relatively more important in PT us-
ing the N(14,2) prior as λm decreases. Instead of tempering
P(γ | y) towards the prior, SFT methods temper the poste-
rior function space of x(t) towards the data. Consequently
the effectiveness of tempering is not as adversely impacted
by changes in the prior.

Figure 2 also shows that SFT2, which does not use a
fixed value of x0, has the necessary flexibility to induce ad-
ditional smoothness into the topology of the tempered pos-
terior. Consequently, the posterior modes for large λ val-
ues around γ = 13 in the PT and SFT1 posterior plots are
avoided when using SFT2.

If λm is small then the mth posterior approximation will
have a larger posterior variance for ψ due to its reduced
impact on xm(t) or x(t,x0). This provides considerable ro-
bustness to parameter values used to initialize the algorithm
and produces a wide basin of attraction for the target pos-
terior modes. To exploit this benefit, we suggest as a rule
of thumb that the smallest value of λ should be able to ap-
proximate well the data dynamics, or if in doubt, it should
nearly interpolate the data regardless of the values used to
initialize the algorithm. The other values of λ can be deter-
mined by increasing λ on the log scale until the discrepancy

between neighboring chains permits an adequate exchange
acceptance rate.

It is important to note that the choice of λ values will
have a large effect on the performance of the algorithm.
Finding an optimal number and sequence of temperatures
for tempering strategies is currently a problem of open re-
search (Jasra et al. 2007; Gramacy et al. 2010; Atchadé and
Liu 2010; Liu 2001). The usual spacings for the temper-
ature gradient tend to be either geometric or logarithmic,
and the number of temperatures is typically selected based
on the computational demands of generating samples for a
single temperature (i.e. the smaller the demands for a sin-
gle chain, the larger number of temperatures that can be
used). It should also be noted that such choices tend to be
problem dependent, so our approach (as with all tempering
approaches) may require some initial exploration of these
choices in order to ensure good performance.

When using SFT2 the value of PEN(x, θ , t) should be
examined to ensure that it is sufficiently small compared to
the sum of squared residuals to enforce adequate fidelity to
the model at λM . If λM is further increased the computa-
tion time will increase with negligible improvement in the
approximation x(t) ≈ S(θ ,x0, t).

3.4 Choice of basis and prior

B-splines permit considerable flexibility in shape, allow-
ing high order smooth or discontinuous derivatives where
needed which makes them a convenient choice for SFT.
However, other bases such as Fourier, wavelet or (truncated)
polynomial bases can also used for smoothing and produc-
ing solutions to ODEs and may provide additional advan-
tages in some problems. The type and number of basis func-
tions used must permit x(t) to accommodate the ODE model
dynamics and deviations for a wide range of values of θ .
Use of a model based smoothing strategy suggest that the
optimal number of B-spline bases is of order O(n) (Olhede
2008), however with small n there may be a need for far
more basis functions than observations. We anticipate this
would occur more often if the dynamics of the ODE model
are complex. Note that neither SFT1 nor SFT2 explicitly
sample c, so employing a large number of basis functions
does not complicate the convergence or tuning of the chains.

The integral terms in (6) and (7) to compute PEN(·) can
be computed through numerical quadrature. Using B-spline
basis with quadrature points at the unique knot locations
produces a computationally fast result. Some relevant dis-
cussion about quadrature and calculating PEN(·) in model
based smoothing can be found in the discussion of Ramsay
et al. (2007).

As an additional practical note, we emphasize here that
care must be taken in real applications in producing a prior
on θ in ODE systems. A prior should be placed on the
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shape of S(θ ,x0, t) and transformed to the parameter space
[θ ,x0]. Non-informative or loosely informative (vague) pri-
ors on the parameter space may lead to prior distribu-
tions that are quite informative on the function space (see,
for example, Salway and Wakefield 2008; Wakefield 1996;
Wakefield and Bennett 1996; and Bates and Watts 1988).
One could, for example, place a bounded, piece-wise con-
stant set of uniform priors over regions of the function
space where there is confidence the function values must
lie. Then one can use a (potentially non-linear) transforma-
tion to transform this vague prior distribution on the func-
tion space to a prior over the parameters of the model (Sal-
way and Wakefield 2008). In practice, working entirely with
a prior distribution on the function space (for example, us-
ing a Gaussian process prior) is often easier to specify and
manage computationally than transforming distributions on
function spaces into priors on θ . However, the challenge
then shifts to relating posterior inference on the function
space to the underlying parameters of the ODE (Gao et al.
2008) A formal comparison between these two approaches
is beyond the scope of this paper.

4 Simulated examples from the FitzHugh-Nagumo
model

The FitzHugh-Nagumo differential equations (FitzHugh
1961; Nagumo et al. 1962) comprise a simple model for
the voltage potential across the cell membrane of the axon
of giant squid neurons. These equations are used in neuro-
physiology as an approximation of the observed spike po-
tential. The voltage V moving across the cell membrane de-
pends on the recovery variable R through the relationship:

dV

dt
= γ

(
V − V 3

3
+ R

)
,

dR

dt
= − 1

γ
(V − α + βR) .

(8)

An example of a simulated data set and the true under-
lying process when γ = 3 appears in Fig. 1. Figure 1 also
includes a cross section of the log likelihood and additional
ODE solutions using parameter values corresponding to mi-
nor modes of the cross section. The mode corresponding to
values of γ ≈ 0.5 produces a ODE solution with the cor-
rect period but the shape is too sinusoidal to represent the
dynamics of V . The likelihood mode corresponding to val-
ues of γ ≈ 9 produces approximately the correct shape but
does not match the period. Traversing the likelihood sur-
face in either direction from the local modes causes a de-
terioration in the data fit before it can be improved. Any
sampling or optimization algorithm would encounter wide

regions of prohibitively deep posterior topology of approxi-
mately 4000 units deep on the log scale. We consider a par-
ticular one-parameter version of this model, where all pa-
rameters other than γ are held fixed, in order to highlight the
ability to accurately estimate the posterior in Sect. 4.1. We
have set the fixed parameters to values that yield a bimodal
likelihood surface that is representative of the types of ir-
regularities that are observed in problems involving ODEs.
We compare Bayesian and frequentist methods using the
one dimensional version of this model in Sect. 4.2. The full
FitzHugh-Nagumo model, where all unknown parameters
are estimated, is explored in Sect. 4.3. A simulation exam-
ining computational effort in a real data setting is saved for
Sect. 5.1.

4.1 One dimensional bimodal example

In this section we alter (8) to produce a symmetric, bimodal
posterior for γ ;

dV

dt
= |γ |

(
V − V 3

3
+ R

)
,

dR

dt
= − 1

|γ | (V − α + βR) .

(9)

Due to the computational intensity of working with dif-
ferential equations, we restricted ourselves to ten simulated
data sets, obtained from the numerical solution to (9) using
the parameter γ = 3 at the 201 evenly spaced time points
t = 0,0.1,0.2, . . . ,20 with added Gaussian white noise. Fo-
cusing attention on γ , all other parameters are held fixed at
their true values (α = 0.2, β = 0.2, σ 2

V = 0.25, σ 2
R = 0.16,

V0 = −1, and R0 = 1) so that the posterior density can
be evaluated numerically and compared with results from
SFT1, SFT2 and PT under two different prior distributions:

P(γ ) = 1

2
χ2

2 , γ > 0

P(−γ ) = 1

2
χ2

2 , γ < 0

(10)

and

P(γ ) = Uniform(−15,15). (11)

Neither of the two prior distributions had much influence
on the posterior, whose most important features could be
reasonably approximated by 2 identical Gaussians whose
means are separated by 312 standard deviations. SFT1 and
SFT2 algorithms were constructed with 101 evenly spaced
knots from a 5th order B-spline basis. From the largest λM

for each method, parallel chains were added in sequence by
tuning the next value of λm so that the between-swap accep-
tance rate approached 50%.
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Fig. 3 Discrepancy between
sampled and numerical posterior
estimates using different prior
distributions and sampling
methods. Boxplots show D(P̂ )

using the uniform prior (left)
and the χ2 based prior (right)

Fig. 4 The autocorrelation
functions for the SFT1 (solid
line), SFT2 (dotted line) and PT
(dashed line) for the bimodal
problem of Sect. 4.1, with the
uniform prior (left) and the χ2

based prior (right). The heavy
lines are the point-wise mean
autocorrelation functions

For each of the two prior distributions for γ , the numeri-
cally evaluated posterior (Pnum) was compared with the re-
sults of the sampling based methods using the Integrated
Squared Error (ISE):

D(P̂sampled) =
∫ [

Pnum(γ | y) − P̂sampled(γ | y)
]2

dγ.

(12)

The ISE values are shown in Fig. 3 for the Mth chains using
the last 40,000 posterior draws after discarding burn-in.

For comparison, note that the Mth chains of SFT1 and
PT use the same target distribution. In our simulations, PT
performed somewhat better than SFT1 when using a uni-
form prior on γ but somewhat worse with a χ2 based prior,
although both performed well based on the ISE. SFT1 and
PT both use the true value of x0, but SFT2 estimates γ with-
out this additional knowledge. Consequently, SFT2 uses less
information than the other two approaches, leading to a pos-
terior variance around the modes (at γ = ±3), which is ap-
proximately 7 times wider than that using SFT1 or PT. In or-
der to make for a fair comparison, D(P̂SFT 2) was computed
comparing the sampled density with the numerical estimate
of its smooth based density from the Mth chain.

Figure 4 shows the autocorrelation functions (ACFs) and
their point-wise mean ACFs for the posterior samples of the

λM chains. The main factor dominating the ACF is the ex-
change between the modes at ±3. SFT2 performs the best
with respect to this criterion, in part due to the lack of depen-
dence on the initial conditions. SFT1 generally ranks sec-
ond, likely due to the reduced impact of initial conditions in
the finite λm parallel chains. The ACFs for PT are slowest
to decay. We do not observe an impact of the choice of prior
distribution on the ordering of the ACFs in this example.

4.2 Inconsistent prior information

In this section, we focus on the one dimensional problem
of estimating P(γ | y) using the FitzHugh-Nagumo model
(8) with a prior that is inconsistent with the observed data:
γ ∼ N(14,22). The bottom row of Fig. 2 shows that the
global mode of the target posterior at γ = 3 remains vir-
tually unchanged by this change in prior. Parameter esti-
mation was attempted using SFT1, SFT2, PT, single chain
Metropolis Hastings (MH), NLS and GP on 10 data sets
from the measurement error model from Sect. 4. SFT1 and
SFT2 were performed with 6 parallel chains each and PT
was equipped with 10. All chains in all methods were initial-
ized at γ = 10. The number of burn-in iterations determined
by the Raftery-Lewis criterion (Raftery and Lewis 1992)
was less than 125 in all cases from this starting point. Af-
ter discarding 1,000 iterations, both the Raftery-Lewis and
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Fig. 5 Boxplots of the
estimates of γ in Sect. 4.2, the
dashed line is where the
methods where initialized, the
true parameter value is 3. Top:
Estimates for all 6 methods,
bottom, rescaled to show detail

Geweke convergence diagnostics (Geweke 1992) indicate
convergence from all of the independent chains from all the
sampling methods.

Figure 5 shows a boxplot of the final parameter estimates.
MH and NLS are not able to escape the strong gradient to-
wards the local mode at γ = 12. The strategy of tempering
towards the prior hindered any of the PT chains from find-
ing the global mode because the smaller λ chains enforce
behavior inconsistent with the data features and emphasize
the local mode at γ = 12 within the alloted 100,000 itera-
tions.

Both SFT1 and SFT2 used the increased basin of attrac-
tion of their smaller λ-valued parallel chains and tempering
towards data features to avoid the impact of the inconsistent
prior information. GP also smoothes the likelihood towards
the data features and the point estimate converged quickly
close to the true value. Since x0 is assumed known, SFT1
uses this additional information to perform better than SFT2
and GP.

4.3 FitzHugh-Nagumo, full model

While the previous simulations showed the ability of the
methods to produce reasonable results in a single dimension,
the performance of SFT2 was negatively impacted because
it did not use information about the initial conditions. In this
section, we use model (8) with simulated data from the more
realistic scenario where no parameters are known. Prior dis-
tributions for θ = (γ,α,β) were determined by numerically
solving the ODE over a coarse grid of values of θ and plac-
ing approximately 95% of the prior mass over the values that

produce oscillatory dynamics giving:

γ ∼ χ2
2 , P (α) = P(β) = N(0,0.42) (13)

Priors for x0 = (V0,R0) were chosen based on the ob-
served data, where the priors for both were chosen to be in-
dependent Gaussian densities centered on the first observed
value with variance equal to the observed data variance,
which places most of the prior mass in regions where data
for V and R were actually observed. The priors for the vari-
ance parameters σ 2

V and σ 2
R were chosen to be Jeffreys, i.e.

P(σ 2
V,R) ∝ 1/σ 2

V,R . In this simulation study we used 30 dif-
ferent data sets, each with 401 evenly spaced observations
for each of V and R. This large amount of data ensured that
the likelihood was well approximated by a multivariate Nor-
mal distribution, making the Delta method interval estimates
of Ramsay et al. (2007) good approximations.

For these simulations we focus on SFT1, SFT2 and GP
because of the bad performance of PT for the inconsistent
prior distribution in Sect. 4.2. Parameters were initialized
with draws from the prior. All parallel chains (across all
methods) were initialized with the same values. SFT1 and
SFT2 used 4 parallel chains and GP was performed using
an increasing sequence of λ values as suggested in Ramsay
et al. (2007) such that SFT2 and GP have the same value of
λM=10,000. The point estimates are shown in Fig. 6 based
on 30,000 posterior draws after burn-in. The observed mag-
nitude of the bias is small and there are no significant dif-
ferences in performance amongst the methods in this exam-
ple.
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Fig. 6 Bias in point estimates
for the FitzHugh-Nagumo
parameters α (top), β (middle)
and γ (bottom) of Sect. 4.3

5 Nylon example

In this section, we model the production of nylon in a heated
reactor where its constituents, amine (A) and carboxyl (C),
combine to produce the polymer, nylon (L), and water (W),
which escapes as steam. At the same time, before escaping
the system as steam, W decomposes L into A and C in the
molten nylon mixture, giving the symbolic competing reac-
tions A + C � L + W . In the experiment of Zheng et al.
(2005), steam is bubbled through molten nylon to maintain
an approximately constant concentration of W in the system
causing A, C and L to move towards equilibrium concentra-
tions with W. Within each of the i = 1, . . . ,6 experimental
runs, the pressure of input steam was held at a high level un-
til time τi1, and then reduced until time τi2, at which point it
returned to its original level for the remainder of the experi-
ment. Each experiment was performed at a constant temper-
ature Ti which, along with the input water pressure, deter-
mines the equilibrium concentration of water in the molten
nylon mixture, Weq . Using reaction rates kp and Ka , the dy-
namics of the model are described with the following system
of differential equations:

−dL

dt
= dA

dt
= dC

dt
= −kp(CA − LW/Ka)10−3, (14)

dW

dt
= kp10−3(CA − LW/Ka) − 24.3(W − Weq). (15)

The reaction rate Ka is allowed to change with Ti and
Weq through relationships depending on the reference tem-
perature T0 = 549.15 giving four ODE parameters: θ =
[kp, γ,Ka0,H ] by the following expansion of Ka :

Ka =
{

1 + Weqγ 10−3
}

KT [Ka0]�
(

H

8.314

)
, (16)

�(m) = exp

(
−m103

{
1

Ti

− 1

T0

})
, (17)

KT = 20.97 exp

(
−9.624 + 3613

Ti

)
. (18)

Figure 7 shows the data for each of the 6 experimental
runs. The plot shows the observed components A and C as
well as input Weq . Due to the mass balance of this system,
given any three components the fourth can be computed ex-
actly. Because only A and C are observed, we must esti-
mate the unobserved W(t) for each experimental run. Fur-
thermore, since the components are chemical reactions, they
are constrained to take on non-negative values. In the nylon
system, x0 increases the dimension of the parameter space
from 6 parameters in [θ , σ 2], to 24 parameters; [θ ,x0, σ

2].
We set our prior distribution to be uniform on the set of

functions taking values between 0 and 250, where 250 was
selected because it its about 10% larger than the largest ob-
servation. We chose this interval to be wider than is likely to
be necessary to place non-zero mass over realistic functions
for this problem. It is likely that values of the unobserved
W would remain close to the values of Weq (all take on
value less than 100) but the more conservative value of 250
was used throughout for the states A, C and W . Addition-
ally, the prior distributions on 1/σ 2

A and 1/σ 2
C were chosen

to be independent Gamma densities with mean 9 and vari-
ance 27. These are pessimistic priors relative to the measure-
ment error variance estimates from additional experiments
by Zheng et al. (2005).

We implemented SFT1 and SFT2 using evenly spaced
knots placed at a rate of 3 per hour of experimental duration.
In anticipation of sharp dynamics after the step change in in-
put Weq , an additional 9 knots were evenly spaced at times
τ +[0.1,0.2, . . . ,0.9] after the input change. The discontin-
uous first derivative induced by the step input change was
accommodated by the addition of knots at the time of the
step change. SFT2 was implemented with values λ1 = 100,
and λ2 = 10,000. SFT1 required four times the number of
parameters of the SFT2 model and consequently M = 3
chains were used, with tempering values λ1 = 200, λ2 =
500.
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Fig. 7 The nylon observations along with the fit to the data. Temperatures of the experimental runs are given above component A in degrees
Kelvin. Vertical axes are in concentration units and horizontal axes are in hours

Fig. 8 A comparison of the
posterior density estimates for
the nylon parameters using
SFT1 (black line) and SFT2
(dashed line)

The small values of λ1 in both methods produced con-
siderable robustness with respect to values used to initialize
the Markov Chains. The kernel density estimate of 40,000
posterior draws from the Mth chain of SFT1 and SFT2 for
θ , σ 2

A and σ 2
C (after discarding burn-in) are shown in Fig. 8.

Estimates for the marginal posterior densities of θ are sim-
ilar between the methods, and the values for the integrated
squared difference between marginal posteriors comparing
SFT1 with SFT2 are 0.057, 0.016, 0.018 and 0.0073 for
kp0, γ,Ka0 and H respectively. The squared discrepancy
between the marginal posterior density estimates deviates
slightly more for σ 2

A and σ 2
C giving values equal to 0.11 and

0.15 respectively. The reason for this discrepancy may lie in
the marginal posterior density estimates of x0, estimated by
SFT1 and shown in Fig. 9. The dynamics of the system are
quite fast, so that the impact for some of the experimental
runs on moving W0 from near 0 to near 250 only affects the
fit to the first few data points, leading to some relatively flat
(and uninformative) posterior distributions. SFT1 explores
the distribution of X0 and, in the process, finds more values
that allow a better fit to A in exchange for a decrease in fit to
C giving the shifted densities for σ 2

C and σ 2
A shown in Fig. 8.

SFT1 also allows for new insights into the vast uncertainty
in W0. The advantages of SFT2 are the reduced dimension
of the problem and, in this case, a five fold computational
time reduction.

5.1 Comparison of computational effort

The simulation studies of Sect. 4 were performed with high
resolution, homoscedastic data from a fully observed sys-
tem in order to highlight the algorithmic performance in
the face of specific posterior topological difficulties. Data
such as this are unlikely to be observed often in practice.
In this section, we examine the variability in computation
time of the SFT1, SFT2 and PT algorithms using more re-
alistic replications of the same algorithmic process where
the only difference between algorithmic trials is the random
seed initializations. This is in contrast to the simulation stud-
ies of Sect. 4 where each trial used a different random data
set. Variability in the computation time required for a sin-
gle iteration of the sampler depends on the parameter values
being proposed because they determine the stiffness (mag-
nitude of the derivative) of the differential equation system.
When numerically solving an ODE, a stiff system is con-
siderably slower than a non-stiff system and the parameter
values determine the stiffness (Deuflhard and Bornemann
2000). Consequently, we use repeated algorithmic simula-
tions on a fixed real dataset to compare the algorithmic dif-
ferences in methods and examine the practical advantages of
the proposed methods.

The full nylon model in (14)–(18) requires multiple ex-
perimental runs to estimate the temperature dependency of
kp and Ka , however for this study we use a single experi-
mental run of the nylon dataset, (shown in Fig. 7 with tem-
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Fig. 9 Histograms of posterior
draws x0 in the nylon system
using SFT1. Rows are for the
different experimental runs,
while columns are (left to right)
A0, C0 and W0

perature of 544), performed at a fixed temperature. Conse-
quently, we use the model (14) and (15) without further ex-
pansion of kp and Ka . The priors from Sect. 5 were re-used
to produce the statistical model.

The algorithmic study was run with this unevenly spaced
partially observed data set 50 times for each of the three
methods compared. Each of the 50 algorithmic simulations
per method were run for 50,000 iterations from the same
starting point and the computational time and effective sam-
ple size were measured after discarding the first 10,000 for
burn in.

The within chain ODE parameters, [kp,Ka,A0, C0, W0]
for PT and SFT1 or [kp,Ka] for SFT2 were updated in a
single step using Metropolis Hastings tuned with the opti-
mal normal jumping kernel. Variance terms were updated
using Gibbs steps. The 3 methods were attempted with 3
parallel chains each where λ and ξ values were chosen to ob-
tain an acceptance rate of 50% between neighboring chains.
Each method required the same number of evaluations of
PEN(·) per iteration. Although distributed computing is nat-
ural when dealing with population MCMC, all runs were al-
lotted only a single 3 GHz processor core with 1 Gb RAM.

The compute time, effective sample size and ratio thereof
are shown in Fig. 10. While PT was about 30% faster on av-
erage, 13 of the 50 PT trials proposed at least one set of stiff
parameters such that the stiff Runge-Kutta solver, ode15s
in Matlab® (The MathWorks 2010), failed to solve the ODE
within the permitted numerical tolerance bounds. Breaking
the solver in this way was much faster than actually solving
the system at these numerical limits.

The autocorrelation differences in Fig. 4 were primarily
due to the SFT algorithms’ ability to jump between distant
modes, whereas here the target posterior is unimodal, reduc-
ing the advantage of SFT1 over PT. Figure 10 shows that

SFT1 and PT effective sample sizes are less than half that
of SFT2. Consequently, SFT2 results in a large advantage in
terms of the compute time per independent draw, shown in
the right of Fig. 10 and defined as the average over relevant
parameters A,C,kp,Ka,A0,C0,W0 of:

Total compute time for 40,000 iterations

Effective Sample Size from those 40,000 iterations
.

6 Discussion

Parameter estimation for nonlinear differential equations
presents challenges for both frequentist and Bayesian mod-
eling where, despite the appearance of convergence, the like-
lihood topology may not permit either convergence to or
sampling around the global optima. Our proposed SFT ap-
proaches utilize model based smoothing to construct aux-
iliary densities for PT to match the features of the data
with the dynamics of the model and improve estimation.
This variation of tempering smooths out the posterior en-
abling faster convergence towards the dominant mode, and
as such, represents an important new tool for population-
based MCMC simulation. While the simulations and ap-
plication presented feature nonlinear differential equation
models, the methods are applicable to nonlinear regression
in general, especially when the response surface is pro-
hibitive. SFT1 and SFT2 temper towards the data features
to improve posterior mobility, whereas PT was shown to fail
when tempering towards a prior that is inconsistent with the
data. Using SFT, priors can therefore be used to describe
knowledge about the system without needing to also account
for it’s utility in providing an adequate tempering strategy.
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Fig. 10 Summary of
computational effort for SFT1,
SFT2, and PT. Left to right: total
compute time, effective sample
size, compute time per
approximate independent
posterior sample for the 2
parameter nylon simulation

In the presence of prior information consistent with the
data features, SFT1, SFT2 and PT perform similarly, as mea-
sured by integrated squared error discrepancy between sim-
ulated and numerical posterior estimates. However SFT has
the advantage of reduced dependence on initial conditions
which can reduce the autocorrelation between samples.

When the likelihood and posterior were unimodal, SFT1,
SFT2 and GP produced similar point estimates. Given ad-
ditional information in the form of x0, SFT1 was able to
out-perform both of these methods, even with a prior that
was inconsistent with the data. In the case of multi-modality,
GP requires additional information to find additional modes,
whereas SFT methods were shown to be successful in the
FitzHugh-Nagumo bimodal example with only 10 parallel
chains in an example where the posterior consisted of two
widely separated modes.

It is rarely the case that a computational approach will
universally provide improvement, as one can always con-
struct examples where a particular method can fail. Our
work has shown that the SFT approaches can significantly
improve upon the usual implementation of the PT algorithm
in certain situations without yielding significantly worse
performance in situations where the standard PT approach
performs well. The SFT2 approach, which avoids depen-
dence on the initial system states (x0), performs very well
and is significantly computationally less intensive per inde-
pendent sample than the other approaches, especially when
the ODE is computationally slow to solve.

Our objective in this paper was to propose a better
computational approach to Bayesian analysis of nonlin-
ear differential equation models. There exist many promis-
ing non-Bayesian solutions to this problem, particularly in
the field of biology. Varah (1982) and Voit and Sauveg-
eau (1982) both proposed a data-smoothing approach to
estimate the parameters of an ODE. More modern work
in this area includes the use of artificial neural networks
to estimate parameters in a non-parametric way (Voit and
Almeida 2004). Chou and Voit (2009) provide a fairly com-
prehensive overview of not only different potential solu-

tions for estimation of model parameters, but also for dif-
ferent approaches to specification of the model and gen-
eral issues with these types of non-linear biological systems.
Brunel (2008) explores the asymptotics of combining non-
parametric smoothing with parameter estimation for data
generated from non-linear ODE’s and provides a new two-
step approach that seems promising.

Similarly, although we have chosen a particular type of
smoother, i.e. the generalized profiling method (Ramsay et
al. 2007), as an auxiliary density, one would not be restricted
to using only this kind of smoother. Other potential smooth-
ing auxiliary models could be used, such as the perfect
smoother of Eilers (2003) or the adaptation of Whitaker’s
smoother proposed by Vilela et al. (2007). We have used the
generalized profiling method because of our familiarity with
the smoother and the ease with which one can interpret the
single smoothing parameter as a temperature in the temper-
ing process. Other choices for the smoother could perform
either better or worse (likely depending on the particular
data problem) and we hope to explore this in future work.
It would be interesting to see whether an ensemble of differ-
ent choices of smoother would be computationally feasible
as well.

Producing a data smooth to the ODE is not necessar-
ily a computational improvement compared to producing
a numerical solution to a ODE model. When the ODE is
stiff, however, computing a numerical solution can already
be extremely computationally intensive (Huang et al. 2006;
Li et al. 2002) and using a relaxation of the numerical so-
lution can accelerate iterations and convergence. The use
of parallel processing reduces the total computational time
of the population MCMC method and ensures minimal ad-
ditional computational time from adding additional chains.
To further reduce the computational load in SFT, one could
omit computing x(t) or x(t,x0) at each proposed value and
instead update only occasionally during mutation step, while
updating always at the exchange steps. The success of this
modification to our algorithm depends strongly on the qual-
ity of the smooth approximation to the ODE model and the
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sensitivity of the dynamics to the parameters. This modifi-
cation will certainly alter the effectiveness of the posterior
sampling, although it is not clear exactly how. We thus leave
the subject to future investigation.

There may be some interest in a mixed dimension ap-
proach that implements SFT2 along with an additional par-
allel chain using the model (3), where for some � < M , an
exchange move proposes to swap (x(t = 0))� with (x0)M .
However, the dimension jumping between chains with and
without x0 is not guaranteed to produce the desired target
distribution for (3). In the nylon example, the induced den-
sity PSFT 2(x(t = 0) | y, λM) does not have the same distri-
bution for X0 as PSFT 1(x0 | y, λM) because the former is
essentially a profile posterior mode, whereas the latter is in-
tended to explore the distribution of X0.

The variability in x0 and θ translates into variability
within the function space spanned by S(θ ,x0, t), whereas
in finite λ SFT, the smooth permits deviation from the func-
tion space of S(θ ,x0, t). For example, in Fig. 1, the data ex-
hibit rapid changes in the trajectory of component V near
times 5.5,10,15 and 18. By permitting small deviations
from the ODE model leading up to these times of rapid
change, the smoothing based methods have the advantage
of allowing some flexibility in the timing of these steep
changes in trajectory to account un-modeled deviations in
period or other model inadequacies. SFT has the additional
advantage that the parallel chains can be used to provide
qualitative diagnostics. The evolution of the induced posteri-
ors of x1(t), . . . ,xM(t) will show deviations from the model
dynamics towards data. Large deviations between the data
features and the model features provides a qualitative good-
ness of fit diagnostic, although more quantitative summaries
could be derived in future work.

Finally, our work here focused only on generating sam-
ples from the posterior distribution of the model parameters.
However, as one reviewer pointed out, the problem in many
situations is not one of parameter estimation, but of model
selection. Bayes factors (Kass and Raftery 1995) can be used
to rank competing models on the basis of their posterior
probability. The primary practical difficulty in using Bayes
factors is integrating the unnormalized posterior over the
space of parameters. The parallel tempering methods that
have been used here to generate samples from the posterior
can also be used to estimate the normalizing constants nec-
essary for computation of posterior model probabilities (see,
for example, Friel and Pettitt 2008). Calderhead and Giro-
lami (2009), in particular, used population MCMC methods
in conjunction with thermodynamic integration to compute
normalizing constants for nonlinear ODE models. It would
be quite interesting to observe whether our proposed SFT
approach would also be useful for estimating normalizing
constants in these problems, however this assessment is out-
side of the scope of our paper.
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