
i?

Computer Graphics, 26,2, July 1992

Smooth Interpolation of Orientations

with Angular Velocity Constraints

using Quaternions

Alan H. Barrt, Bena Currint, Steven Gabrieltt, John F. Hughesttt

California Institute of Technology

Sage Designtt

Brown Universityttt

Abstract

In this paper we present methods to smoothly inter-

polate orientations, given N rotational keyframesof an

object along a trajectory. The methods allow the user

to impose constraints on the rotational path, such as

the angular velocity at the endpoints of the trajectory.

We convert the rotations to quaternions, and then

spline in that non-Euclidean space. Analogous to the

mathematical foundations of flat-space spline curves,

we minimize the net “tangential acceleration” of the

quaternion path. We replace the flat-space quantities

with curved-space quantities, and numerically solve the

resulting equation with finite difference and optimiza-

tion methods.

1 Introduction

The problem of using spline curves to smoothly in-

terpolate mathematical quantities in flat Euclidean

spaces is a well-studied problem in computer graph-

ics [BARTELS ET AL 87], [KOCHANEK&BARTELS 84].

Many quantities important to computer graphics, how-

ever, such as rotations, lie in non-Euclidean spaces. In

1985, a method to interpolate rotations using quater-

nion curves was presented to the computer graph-

ics community [SHOEMAKE 85]; beyond this, there

has been relatively little work in computer graphics

to smoothly interpolate quantities in non-Euclidean,

curved spaces [GABRIEL&KAJIYA 85]. In that paper,

Kajiya and Gabriel developed a foundation for an “in-

trinsic” differential geometric formulation for comput-

Perrnission 10 copy without fee all or part of [his material is granted

provided thal the copies are not made or distributed for direct

commercial advantage. the ACM copyrigh(notice and the title of Ihe

publication and its date appear. and notice is given that copying is by

permission of [he Awtxial!on for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

ing spline paths on curved manifolds, and applied their

results to quaternion paths.

\
I

I

I

\
\
“\
\ q

%2

\
\

\ ‘.:
q.-l

\.\,..: ,

.. “’”’,‘; ‘ Q==q’
,..:-... ..
...

2?
‘,, ‘\

:/

-hoe

Figure 1. The interpolation problem we solve:

Given K keyframe quaternions, (capital) Q’, : = 1,

2, ..., K, at keyframe times t, = p, h, what are the n opti-

mal interpolated quaternions q(p), p = 1,2, n at equally

spaced times rP = h (p —1), that pass through the keyframe

quaternions? q(p) = Qi and t,= TP,when p = p,. Option-

ally, find the n rotations (plus two extra key frame rotations)

first and W1wt of the first andwhen given angular velocities w

last rotation along the path.

p]y)~ ACM-()-89791-479- 1/92/007/031 3 $01.50 3[3

SIGGRAPH ’92 Chicago, July 26-31, 1992

Splining in non-Euclidean Spaces

This paper presents a simpler version of the

Gabriel/Kajiya approach to splining on arbitrary mani-

folds, Our approach uses extrinsic coordinates and con-

straints (rather than intrinsic methods, Christoffel sym-

bols and coordinate patches), and generalizes to other

manifolds that are embedded in Euclidean space.1 The

problem of computing spline curves on curved manifolds

is of increasing importance to computer graphics, and

we predict many future generalizations.

There are several reasons why someone would choose

to use our interpolation techniques:

●

●

●

●

●

The paths we generate through rotation space are

very smooth.

Our techniques allow the user to specify arbitrar-

ily large initial and final angular velocities of a

rotating body; by assigning large angular veloci-

ties, a user can make an object tumble several full

turns between successive keypoints,

It is fairly easy to add additional constraints.

The techniques generalize to interpolations of

other quantities in non-Euclidean spaces.

The techniques are fast enough to experiment

with, taking a few minutes per interpolation.

Of course, we cannot claim to have solved all

problems of interpolating rotations and orientations.

Through our choice of representation, we will have

the classic advantages and disadvantages of using unit

quaternions to represent rotations.2 Also implicit in

our approach is the assumption that the geometry of

the space of orientations has a certain homogeneity, and

that we can mathematically specify all of the constraints

that we wish to apply.3

We find a path that minimizes a measure of net

bending. We implement this, however, using a finite

difference technique, so that we end up with a sequence

of points on the path, rather than a continuous path. To

produce a continuous path, we use Shoemakers slerping

to interpolate between these points.

In section 2, we provide a brief discussion of quater-

nions, and present intuitive mathematical background

to motivate the differences between interpolating in flat

space and curved spaces; in section 3 we sketch the over-

all algorithm; in section 4 we present the constrained

1whitney~s origin~ embedding theorem tells us that every M

dimensional manifold can be embedded in a 2 M + 1 dimensional

Euclidean space.
2The m~n ~vatage is that quaternion constraints we sim-

ple to enforce (constructing a four dimensional unit vector); the

main disadvantage is double representation: there are two unit

quaternions that represent each rotation.
3For ~wbling bodies this is reasonable, but it is not completely

true for camera orientations: certain orientation (ones with no

“tilt” around line of sight of the camera) are far preferable to

others. We would need to determine the appropriate constraints

to minimize the net tilting.

314

optimization problem; section 5 speaks briefly about

numerical derivatives on manifolds; section 6 presents

methods to solve the problem, while section 7 presents

our results,

2 Mathematical Background

Shoemakers paper on quaternions provides a good in-

troduction to the mathematics of quaternions and their

relationship to rotations. For our results, we need three

basic

●

●

●

facts-about quaternions:

The set of unit-length quaternions (i.e., expres-

sions of the form q = a + bi + cj + dlc with az +

b2+c2+d2 = 1) corresponds to the unit 3-sphere in

4-dimensions. The quaternion a + bi + cj + dk cor-

responds to the point (a, b, c, d). The same quater-

()
nion is denoted by q = ~ , where s = a and

v = (h, c,d).

There is a natural map that takes a unit quater-

nion and produces a rotation: the quaternion a +

bi + cj + dlt corresponds to a rotation of 2 cos-l(a)

about the axis (b, c, d) in 3-space. If (b, c, d) =

(O,O,O) the rotation angle is 2 Cos-’(zkl) = O, and

the rotation is the identity.

The map from unit quaternions to rotations is 2-

to-1. For every rotation, two quaternions, +q and

–q, lying at antipodal ends of a hypersphere, cor-

respond to it.

Advantages of quaternions. There are several rea-

sons to use quaternions to describe rotations. First, the

quaternion space has the same local topology and geom-

etry as the set of rotations (this is not true of the space of

Euler angles, for example, but is true of the 3 x 3 orthog-

onal matrices of determinant 1). Second, the number of

coordinates used in describing a quaternion is small (4

numbers, in contrast to the 9 in a 3 x 3 matrix). Third,

the number of constraints on these coordinates is small:

the only constraint on a quaternion representing a ro-

tation is that it have unit length; a 3 x 3 matrix must

satisfy six equations to represent a rotation. Finally,

the extrinsic equations for quaternions turn out to be

fairly simple.

Disadvantages of quaternions. The main disadvan-

tage of using quaternions is that their 2-to-1 nature ne-

cessit ates a preprocessing step, to choose whether the

plus or minus keyframe quaternion is the appropriate

one to use.

Euclidean and non-Euclidean-space splines. Since

the 3-sphere is a non-Euclidean space, we discuss inter-

polation methods for Euclidean spaces, and then mo-

tivate and describe a generalization to non-Euclidean

Computer Graphics, 26,2, July 1992

spaces. We will informally refer to them as “flat” spaces

and “curved” spaces respectively.

2.1 Flat-space interpolation

The Hermite formulation expresses a spline curve as a

parametric cubic curve ~(t) that starts and ends at two

given points4, T(O) = PO and v(1) = P1, and haa given

velocities there, i.e., ~’(0) = R“ and ~’(l) = RI. Given

these boundary conditions (i.e., PO, P1, Il”, and RI),

we can find a unique cubic path that satisfies them. But

why is a cubic the right curve to use?

One answer is given by reformulating the problem to

ask “Among all curves starting at PO with velocity RO

and ending at P1 with velocity R1, what curve bends

the least?” We approximate the least square measure of

curvature by minimizing the net squared length of the

acceleration vector, ~“. Thus we seek to minimize

/

1

E= -y’’(t) -y’’(t)dt (1)
o

over all paths ~ that satisfy the boundary conditions.

The Euler-Lagrange equations [ZWILLINGER 89] pro-

vide a necessary condition for v to be a minimum. Writ-

ing out these conditions gives T“” = O, which means

that each component of ~(t) must be a cubic function

oft,

A physical implementation of splines in a flat

space. The word “spline” originally referred to a

thin strip of wood or metal that was constrained by

pins to form smooth curves for drafting or shipbuild-

ing. For drafting, the pins were placed onto a flat sur-

face; for shipbuilding, rigid posts were inserted into the

earth, and wooden flexible planks were threaded be-

tween them. In each case, the splines flexed to meet the

positional constraints imposed by the pins or posts. The

spline took on curved shapes in its attempt to achieve

a low-energy state, governed by equation (1).

2.2 Flat space splines versus curved-

space splines.

We would like to carry out an analogous computation

in a curved space: we define a “bending” measure of a

curve, and then determine which curves minimize the

measure. Unfortunately, the ordinary second derivative

of a path is no longer the right way to measure net

“bending.” We can understand this by considering the

problems that arise even for surfaces in 3-space.

If ~ is a path on a surface M in 3-space, then 7 can

be thought of as a path in 3-space as well. As such,

at each time t the path has a velocity vector -+(t)and

an acceleration vector ~“(t).Because 7 lies within the

4We use superscripts to indicate different vectom, and sub-

scripts to denote z, y, z, etc components of vectors.

surface, its velocity vector will always be tangent to the

surface. Its acceleration vector, however, does not have

to lie within the surface. It is likely to have components

normal to the surface, as well aa components tangential

to the surface.

In Figure 2 we see a pair of curves on a surface. The

midpoint of the upper curve has an acceleration vector

a that points both out from the surface and up a little.

We see that the acceleration vector a is not parallel to

the surface normal IV; the “non-~ part” of vector a

(the tangential acce/eratton or covariant accelemtion) is

labeled Sin the drawing. The acceleration vector of the

lower curve actually coincides with the normal vector to

the surface, and hence its tangential acceleration is zero.

I

Figure 2. Two curves on a curved surface. The upper curve

has an acceleration vector a, that does not lie in the surface.

The vector N is the normal vector to the surface, along the

path. The tangential part of the acceleration is the vector

S = a \ N (described in section 2.3). The lower curve’s

acceleration is parallel to N, hence it has zero tangential

acceleration.

A physical analogy. Imagine driving in a small circle

in a hilly region. You feel two sorts of acceleration: you

bounce up and down in your seat as you go over bumps,

and you are pushed against your car door because you

are turning in a tight circle. The first is acceleration

in the direction normal to the surface of the earth; the

second is the tangential acceleration. Note that if you

want to take a drive, any path you take is likely to

have some net tangential acceleration. But to make the

trip as comfortable as possible, minimizing tangential

acceleration is desirable.

Normal acceleration is inevitable. By contrast, the

normal component of the acceleration is a necessary evil.

Imagine trying to get from one place on a sphere to an-

315

SIGGRAPH ’92 Chicago, July 26-31, 1992

other in a way that minimizes total acceleration. If you

travel along a great circle at a constant speed, the only

acceleration will be normal. If you try to adjust your

path so that you undergo no acceleration, you will have

to be traveling in a straight line in 3-space, and hence

will have to leave the surface of the sphere. This gets rid

of the normal acceleration, but at the cost of violating

the requirement that -y be a path on the surface.

Another physical example. Let us consider making a

physical spline onto a spherical globe. Instead of placing

pins into a flat drafting surface, we push the pins into

the globe itself. We thread a semi-rigid elaatic strip

through the pins, making sure that the strip stays on

the globe while being constrained by the pins. Since the

strip needs to stay on the globe, we do not penalize it

for bending to stay on the globe.

These examples motivate why we do not penalize

acceleration normal to the surface, while penalizing ac-

celeration within the surface, for constructing splines

on curved surfaces. In generalizing Equation 1 to

curved spaces, Kaji ya and Gabriel therefore replaced

the squared length of the acceleration vector with the

squared length of the tangential acceleration. This is

the starting point for our solution: we will seek a path

in quaternion space, i.e., a path on the unit 3-sphere

in 4-space, that minimizes the total squared tangential

acceleration.

2.3 A formula for tangential accelera-

tion

Given two n dimensional vectors a and b, we wish to

project away and remove all portions of b found in vec-

tor a. The notation we use for this is a \ b

vector a “without” vector b). By definition,

a\ b=a– ab, such that

(a\ b). b=O

(read as

. . (a ~b)

‘hich ‘mpl’es ‘hat o = (b. b)

If the surface M is a unit sphere, then the unit nor-

mal at the point (a, b, c) is (a, b, c). So for a path ~

on the unit sphere, the total acceleration at time t is

~“(t); its normal vector is ~(t) itself, and the tangential

acceleration S(t) is given by

s(t) = -f’’(t) \ ~(t),

For other applications, the formula for tangential accel-

eration of a curve on an arbitrary implicitly defined surface

f(z) = O is

S(t) = ~“(t) \ N, where

N = Vf.

316

2.4 Physical meaning of paths on the

quaternion sphere

We have already noted that each unit quaternion corre-

sponds to a rotation. If we think of this rotation acting

on a rigid body in a “home” coordinate system, then we

can say that each quaternion corresponds to an orienta-

tion of the rigid body. Therefore a path in the quater-

nion sphere represents a continuously changing orienta-

tion. The derivative of the path at a particular instant

represents the rate of change of orientation of the body,

essentially its angrdur velocity. Thus to specify the end-

points and end tangents of a quaternion curve means to

specify the initial and final orientations of a rigid body

and its angular velocities at those points.

3 Algorithm Description

We provide a sketch of the overall algorithm in figure 3,

using the curved-space results of the previous sections.

In the subsequent few sections, we develop the math-

ematics for step 2. The implementation for step 2 is

found in section 6.

1.

2.

3.

4.

—

Preprocess orientations into

key frame quaternions, Qi as shoun

in Appendix A

Use constrained optiraization

techniques as described in section

6 to compute quaternions

interpolated between the

keyframes.

Optionally slerp between the

interpolated quaternions to get a

cent inuous represent at ion.

Convert the quaternions back into

rotation matrices (or other

desired form) .

Figure 3. The steps of the algorithm.

4 Mathematical Formulations

In this section, for our constrained optimization prob-

lem, we consider some of the merits of using a contin-

uous derivative versus using discrete derivatives. Ulti-

mately we will choose the discrete approach, because it

is simpler. The reader should not infer that continu-

ous approaches are not worthy of further investigation,

however.

Computer Graphics, 26, 2, July 1992

4.1 Continuous derivative approach

The problem statement for the continuous version with-

out angular velocity constraints is: given K keyframe

quaternions, Ql, Q2, . ~, QK, at times tl, tz, t~,

what is the unit quaternion curve -y(t) of minimal net

least square tangential acceleration that passes through

the points?

We are looking for the unknown (four dimensional)

unit magnitude quaternion function ~(t) which mini-

mizes t, the net square magnitude of the tangential ac-

celeration. Without loss of generalit y,5 we stipulate that

tl = O. Thus we minimize

&=
/

~*K l#(t) \ -f(t)[2 dt

subject to the constraints

boundary values : V(ti) = Qi, i = 1,2,..., K.

magnitudes : 17(t)l = 1, 0 ~ t ~ tK

The boundary value constraints ensure that the

quaternion path passes through the key frame quater-

nions; the unit magnitude constraint keeps the quater-

nion on the unit 3-sphere. tK and O are the (prescribed)

values of t at the endpoints of the quaternion path.

This constrained optimization problem is a calcu-

lus of variations problem, which produces an Euler-

Lagrange ordinary differential equation formulation

with constraints [ZWILLINGER]. It is an extrinsic form

of the Gabriel/Kajiya equation. The authors have de-

rived this equation, but feel it would needlessly clutter

the presentation. The approach involves the solution

of a K-point ODE boundary value problem with con-

straints; we leave the pursuit of this approach as future

work,

4.2 Discrete derivative approach

If we do not wish to solve K-point boundary value prob-

lems, we can make discrete approximations to convert

the calculus of variations problem into a calculus prob-

lem. Instead of solving for an unknown function 7(t),

we solve for n fixed quaternions q@J,p = 1,2, n. We

retain the constraints that each q@’) is a (four dimen-

sional) unit vector, and that the appropriate q(p’ls coin-

cide with our key frame quaternions Qi, i = 1, 2, K.

We replace the continuous derivatives ~(t)” in the

& equation with a numerical approximation, shown in

section 4.3; we denote the discrete derivative approxi-

mation with (q@))”, and compute them from the q@)s.

In addition, we replace the integral with a discrete ap-

proximation, the sum of about n equally spaced values,

times the stepsize, h = tK/(n – 1).

5The reader can shift the arguments of the function to reduce

a tl # O problem to a tl = O problem.

Thus, we minimize the function

Pu..x

E(q) = h ~ (q(p))” \ q(p) 2

P=Pmin

subject to the constraints that

boundary values : ~(P!)
= Q’, inl,z,...,K

magnitudes: lq(p)l = 1, p= 1,2,n.

The p: are those values ofp where we wish the inter-

polated quaternions q@J to coincide with the keyframe

quaternions Qi. Pl=l, andl-k=n;prnin=l or2
and pmax = n or n – 1. They are chosen so that (q(p))“

can be computed in each term in the sum. (This is

equivalent to having a weighting factor in the sum).

4.3 Discrete second derivatives

A simple discrete version of the second derivative is the

three-point formula:

(q(p)),, = @’+l)– 2q(P) + q(P-l)

h2

We now have a calculus problem: find the n quaternions

q@’1that minimize the scalar function f?(q) subject to

the above constraints. Without the angular velocity

constraints we let pmin = 2 and pmaX = n — 1.

4.4 Angular velocity constraints

Sometimes, we may wish to stipulate that angular veloc-

ities Ufirst and UIMt apply to the first and last rotations

along the path.

We can stipulate that the angular velocity is

constant over the time interval —h < t <0 and

t~ < t < tK + h. We reduce the problem with angu-

lar velocity constraints into the previous case, creating

new quaternions and new constraints q(o) = QO and

q(~+l) = QK+l. TO compute QO, let

w=
Wfirst

O = hlw{’

w = w/lwl

()
Qo = c:f3@/2) QI

– sln(O/2) d

To compute QK+l, let

w=
Wlast

0 = hlwl’

d= w/{wl

@+l =

()

c0s(8/2) QK

sin(O/2) &

Thus, the method involving angular velocity con-

straints is merely a renumbered version of the previous

317

SIGGRAPH ’92 Chicago, Juty 26-31, 1992

method. We let pmin = 1 and p~ax = n, to add the two
points. These points are the two smaller dots in figure

8.

5 Numerical derivatives on the

3-sphere

There are three problems that typically arise when using

numerical methods to approximate derivatives on a mani-

fold. First, some derivative formulas are not centered – they

approximate the derivative, but not at the specified point.

Secondly, there is a numerictai accuracy problem – numerical

approximations of the derivative typically will not lie in the

tangent plane. Finally, there can be an aliasing problem,

particularly for paths which circumnavigate the sphere or

travel in tight loops. The aliasing problem greatly accentu-

ates the numerical accuracy problem.

We compute our numerical derivatives using the centered

three point formula for the second derivative shown in sec-

tion 4.3. To solve the aliasing problem, we must choose

n, the number of samples of g(p) to be large enough so

that aliesing effects are not significant. To reduce &s-

ing, we suggest maintaining enough interpolation points

so that adjacent q(p)s do not travel more than +1/4 way

around the sphere, which can be tested via the condition

#’J . g(PtlJ >0.)?OI inst ante, between antipodal keyframe

quaternions, two or more intervening interpolation points

are needed.

For the angular velocity constraint, a similar condition

suggests maintaining

lelc ~/2.

This implies that we need n > # Idl t~., steps, where [dl is

the magnitude of the larger of the two angular velocities.

6 Implementing the discrete

derivative method

The most reliable way to implement the algorithm, whether

or not angular velocity constraints are used, is to use a con-

strained optimization package for sparse systems, such as the

MINOS package [MURTAGH8ZSAUNDEHS83]. Any method
whichsolves for the q(p)can be used, aalong as it minimizes
E(q), subject to the constraints. By using first and second

derivatives of the energy function E(q), you can speed up

the solutions significantly.

An advantage of thm approach is that the packaged al-

gorithms implement a robust convergence test, to determine

when the optimal solution is found.

6.1 Augmented Lagrangian constraints

If the implementer does not wish to use prepackaged algo-

rithms, a practical approach is to implement a variation of

the Lagrangian methods in [PLAIT 88], using first-derivative
information. (We leave the implementation of faster meth-
ods, with quadraticconvergence,as future work.)

First, you need the constraint function which keeps the

p-th quaternion on the unit sphere

Then construct a total energy J’(q) by adding the constraint

and penalty terms

P=Pmi.

(r)
and take its derivative with respect to ql and with respect

to A,

If r c ~min + l,pma= - 1], the above equation is valid.

If r = pmin -1, only the r + 1 term applies and the others

are deleted; if r = Pmi., the r + 1 and r terms apply, but

the first term is deleted; if r = p~a, + 1, only the first term

applies, while if r = Pm,,, the first three terms apply.

Then, set up the differential equations

d (r) s

z ‘~ -&F(q), r#pi
~qp

‘(r)=o
Zqt ‘ ‘=pi
-gA, = +gr(q)

and set up appropriate initial conditions:

= Q) r=pl, i=l,..., K, lz0,1,2,3.q:) (0)

q\r) (0) = interpolated values between the Q&, either

flat-space or results from previous runs with

smaller numbers of points. Better initial con-

ditions significantly improve the speed of this

method
Ap=l

Numerically solve the differential equations with an au-

tomatic stepsize method (such as Adarns method), until

you reach sufficiently constant values. This heuristic “stop”

condition is why we advocate using packaged optirniiation

algorithms, which have robust stop conditions.

It is recommended that the program be structured so

that output from a smaller number of interpolated points

can be used to set up the initial conditions for a run with a

larger number of interpolated points.c

6you cm &o trmfom the variables in the differential equ-

tion via s = 1 + 1/(0 - 1), essentially scaling the right hand side

by 1/(1 - u’). The solution will then be found at u = 1, rather

than at s = co; you can iterate, numerically integrating the trans-

formed differential equation repeatedly from O to 0.999 until the

termination condition is reached.

318

Comwter Graphics, 26, 2, July 1992 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 Results

In the following figures, we show quaternion points visualized

in three dimensions: we chose quaternions with the k com-

ponent set to zero. Internally, of course, the implementation

is fully four dimensional. We implemented augmented La-

grangian constraints, as well as a prepackaged version. The

two methods agreed within the prescribed tolerances.

I 1

Figure 4a. Two keyframe rotations, without angular velocity

constraints (shown as dots) on the interpolated path.

Figure 4b. The corresponding rotational path of the object.

The two yellow objects are the two keyframe rotations, while

the green images are the interpolated values. For clarity, we

draw only a subset of the interpolated values.

Figure 5a. We go half-way around the quaternion sphere for

the same initial and final rotation, by choosing the antipo

point, -Q’. We rotate more fully around in space.

Figure 5b. The rotational path of the object in 5a.

da1

Figure 6a. Here we specify asymmetric angular velocity con-

straints, doubling until the path goes around the sphere.

Figure 6b. The object rotates twice around.

Figure 7a. Here we have seven keyframe quaternion points;

there are 199 interpolated points.

Figure 7b. The seven keyframe rotations are clearly visible.

Figure 8. Symmetric angular velocity constraints are applied

to the same endpoints in 4a. Note the two extra points, Q”

and Q1’+r, drawn with smaller dots off of the curve.

SIGGRAPH ’92 Chicaao, July 26-31, 1992

Notes. In the figures, the keyfrarne quaternions are drawn

with larger dots, while the keyframe quaternions from the

angular velocity constraints are drawn with smaller dots.

Note the qualitative similarity with flat-space splines. The

banana rotates more in figure 5b than in 4b, due to the

antipodal representation of the left rotation. Since the algo-

rithm finds local mtilma, a different solution with a ditTerent

number of loops might turn out to be the absolute minimum.

The method, for large numbers of points, prefers good ini-

tial conditions, such as those produced by the algorithm with

fewer points.

For figures 7a and 7b, 32 interpolation points are used

in each interval, for a total of 199 points. The schedule of

increasing points in each interval was 5 ~ 8 ~ 16 * 32.

The total computation time on an HP 700 was less than

four minutes.

8 Conclusions

We have presented a new technique to smoothly in-

terpolate rotations using quaternions. The method

uses an extrinsic version of Kajiya and Gabriel’s bend-

minimization to characterize a spline in the quater-

nion 3-sphere; such splines are natural generalizations

of splines in Euclidean space, and are particularly

amenable to solution on the 3-sphere. We use a numeri-

cal method to determine several points between the key

orient ations; Shoemakers slerping can be applied to the

points; the resulting splines are smooth, and have the

desirable property that they pass through their control

points exactly.

Our preliminary results are favorable, but there is

much that can still be done to improve on this tech-

nique. We believe that splining in curved spaces will

be of increasing importance to computer graphics, and

predict many future generalizations.

Acknowledgements

The authors wish to thank Mark Montague, John Sny-

der, David Laidlaw, and Jeff Goldsmith at the Cal-

tech graphics lab, as well as the Siggraph review-

ers, for numerous helpful suggestions. The banana

database is a generative model made by John Snyder

and Jed Lengyel. This research was supported by the

NSF/DARPA STC for Computer Graphics and Scien-

tific Visualization, and by grants from HP, IBM, DEC

and NCR to the university laboratories.

References

[1]

320

R. Bartels, J. Beatty, and B. Barsky. An intro-

duction to Sphnes for Use in Computer Graphics

and Geometrr”cModeling. Morgan Kaufmann, Los

Angeles, 1987.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. Gabriel and J. Kajiya. Spline interpolation in

curved space. In “State of the Art Image Synthe-

sis,” Course notes for SIGGRAPH ’85, 1985.

W. R. Hamilton. Lectures on Quaternions. Hodges

and Smith, Dublin, 1853.

D. Kochanek and R. Bartels. Interpolating splines

with local tension, continuity, and bias control.

Computer Graphics, 18(3):33-41, July 1984.

R. S. Millman and G. D. Parker. Elements of

Diflerentiai Geometry. Prentice-Hall, Englewood

Cliffs, NJ, 1977.

B. A. Murtagh and M. A. Saunder. MINOS 5.(I

user’s guide. Technical Report SOL 83-20, Dept.

of Operations Research, Stanford University, 1983.

Ltd Numerical Algorithms Group. NAG Fortran

library routine document, 1988.

J. Platt. Constraint methods for flexible models.

Computer Graphics, 22(4):279-288, July 1988.

W.H. Press, B.P. Flannery, S.A. Teukolskym, and

W .T. Vetterling. Numericai Recipes in C... Cam-

bridge Univ. Press, Cambridge, England, 1988.

K. Shoemake. Animating rotation with quaternion

curves. Computer Graphics, 19(3):245-254, July

1985.

M. Spivak. A C’omprehensiue Introduction to Dif-

ferential Geometry. Publish or Perish, Inc., Boston,

1970.

D, Zwillinger. Handbook of Differential Equations.

Academic Press, San’ Diego, 1989.

Appendix A: Preprocessing Step to Cre-

ate Spin

First, convert the K rotation matrices into K quater-

nions (see Shoemake or other quaternion referencefor

details). Then choose the desiredspinning behavior of

the objects between the quaternions. Sometimes, the

object is desiredto undergo an odd numberof full spins

around on an interval(usually once). These will be the

“odd” intervals (and the other intervals are regarded

as “even ,“ which usually do not spin around). Mu]-

tiplying a quaternion by – 1 does not change the ori-

entation it represents, but it does change whether or

not an even or odd number of full-spins around the ob-

ject takea place. The dot product of adjacent keyframe

quaternions should be greater than or equal to zero for

the even intervals, and less than zero for the odd ones.

Multiply the quaternion by by –1 to change the interval

from one state to the other.

