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Metric adjusted skew information, in-
duced from quantum Fisher information,
is a well-known family of resource mea-
sures in the resource theory of asymme-
try. However, its asymptotic rates are not
valid asymmetry monotone since it has an
asymptotic discontinuity. We here intro-
duce a new class of asymmetry measures
with the smoothing technique, which we
term smooth metric adjusted skew infor-
mation. We prove that its asymptotic sup-
and inf-rates are valid asymptotic mea-
sures in the resource theory of asymme-
try. Furthermore, it is proven that the
smooth metric adjusted skew information
rates provide a lower bound for the coher-
ence cost and an upper bound for the dis-
tillable coherence.

1 Introduction

Symmetry and conservation laws are basic yet
profound concepts in modern physics. As first
pointed out by Wigner [1] and further exam-
ined by Araki and Yanase [2], conservation laws
place limitations on the precision of the mea-
surements. Based on this observation, Wigner
and Yanase [3] introduced a measure of infor-
mation content in the presence of a conserva-
tion law, called the Wigner-Yanase skew infor-
mation. It quantifies how a state is “askew" (i.e.,
non-diagonal, or coherent) to the eigenbasis of
the conserved quantity. This quantity was later
shown to be closely related to quantum informa-
tion geometry [4, 5]. Generalizing this connec-
tion, metric adjusted skew information is intro-
duced from a family of quantum Fisher informa-
tion metrics as quantifiers of information content
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relative to a conserved quantity [6].
A deeper understanding of the above relation

between symmetries and skew information has
been gained through the recent development of
quantum resource theories. Quantum resource
theories [7] provide a powerful framework for
studying the connection between a resource and
the physical restriction posed by our inability to
prepare a state and perform an operation. Due to
its wide applicability, various kinds of resources
have been investigated, such as entanglement [8],
coherence [9–11], athermality [12, 13] and asym-
metry [14]. The resource theory of asymmetry
is one of the most actively studied quantum re-
source theories, where the dynamics and states
are restricted by symmetries of the system.

In the resource theory of asymmetry, a class of
coherence called asymmetry is considered to be a
resource to implement operations that break the
symmetry. Asymmetry captures consequences
of symmetry that cannot be captured by the
Noether theorem [15] and has various applica-
tions. For example, time-translation asymmetry
is mandatory for creating accurate clocks [16–21]
and accelerating quantum operations [22], and is
known to be a resource independent of entropy
in quantum thermodynamics [23]. Furthermore,
asymmetry is shown to be an essential resource
in various problems under conservation laws such
as quantum measurements [1, 2, 24–28], gate
implementation in quantum computing [29–33],
quantum error correction [32–37], and the Hay-
den–Preskill model for evaporating black holes
[32, 33].

As a resource under conservation laws, asym-
metry is closely related to metric adjusted skew
information. Indeed, metric adjusted skew infor-
mation plays a significant role in both one-shot
and asymptotic settings. In the one-shot setting,
a family of metric adjusted skew information is
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known as valid resource measures [38, 39] for U(1)
symmetry. It is lifted to a family of skew in-
formation matrices [40] for a general Lie group
G, which are valid asymmetry measures as well
as G-asymmetry [41] and the relative entropy of
G-frameness [42]. The convertibility conditions
in the one-shot regime [14, 43–46] are signifi-
cantly simplified in the asymptotic regime, and
a thermodynamic structure based on skew infor-
mation appears for i.i.d. pure states [14, 47]. Fur-
thermore, the conversion theory in the non-i.i.d.
regime [45] has been established by extending the
quantum Fisher information, which is an example
in the family of metric adjusted skew information.

Despite the above progress in the resource the-
ory of asymmetry, little is known about asym-
metry measures in the asymptotic regime. In
particular, it is known that the asymptotic rate
of metric adjusted skew information is not a
valid asymptotic asymmetry measure due to a
discontinuity in the asymptotic regime [42, 47].
Also, the asymptotic rate of the relative en-
tropy of G-frameness becomes trivial for any i.i.d.
states since the regularized relative entropy of G-
frameness vanishes in the asymptotic limit [42].
These results show that useful asymptotic asym-
metry measures cannot be obtained from a one-
shot asymmetry measure just by calculating its
asymptotic rate.

In this paper, we introduce a family of valid
asymptotic asymmetry measures, which we call
the smooth metric adjusted skew information
rates. For this purpose, we first introduce the ε-
smooth metric adjusted skew information param-
eterized by the smoothness parameter ε ∈ (0, 1]
with the smoothing technique [48, 49]. Then,
we define the smooth metric adjusted skew in-
formation rates as the sup- and inf-rates of the ε-
smooth metric adjusted skew information in the
limit of ε → 0. We show that they are valid
asymptotic asymmetry measures. For an i.i.d.
sequence of a pure state, we further show that
they are equal to the metric adjusted skew infor-
mation of the state. Combining these results, we
relate the smooth metric adjusted skew informa-
tion rates to the coherence cost and the distillable
coherence, which are central operational quanti-
ties in the asymptotic conversion theory. Con-
cretely, by using an argument of Lieb-Yngvason’s
non-equilibrium thermodynamics [50], we prove
that the smooth metric adjusted skew informa-

tion rates provide a lower bound of the coherence
cost and an upper bound of the distillable coher-
ence.

This paper is organized as follows: In Sec. 2,
we first review the basics of the resource theory
of asymmetry. We also briefly summarize the
properties of metric adjusted skew information,
including its asymptotic discontinuity. In Sec. 3,
we introduce a family of the ε-smooth metric ad-
justed skew information and its asymptotic rates.
We state our main theorems on the properties
of the smooth metric adjusted skew information
rates. Theorem 1 shows that the smooth metric
adjusted skew information rates are valid asymp-
totic asymmetry measures. In Theorem 2, the
smooth metric adjusted skew information rates
for i.i.d. states are explicitly calculated. We also
present a general asymptotic behavior of metric
adjusted skew information for states near i.i.d.
pure states, which are used to prove Theorem 2.
The details of the proofs are postponed to Ap-
pendix. In Sec. 4, we prove inequalities that re-
late the smooth metric adjusted skew information
rates to the coherence cost and the distillable co-
herence by using Theorems 1 and 2, based on
Lieb-Yngvason’s non-equilibrium thermodynam-
ics.

2 Resource theory of asymmetry
2.1 Definition
In this subsection, we review the definition of the
resource theory of asymmetry. Fundamental ele-
ments of any resource theory are free states and
free operations that are prepared and performed
freely. In the resource theory of asymmetry, they
are defined with respect to a symmetry group G.
We say that a state ρ is symmetric if and only if it
is invariant under a group action, i.e., ρ = UgρU

†
g

for any g ∈ G, where Ug denotes the unitary rep-
resentation of g. A symmetric state can be pre-
pared without access to the reference frame re-
lated to the group G [14] and is considered a free
state in the resource theory of asymmetry. Any
state that breaks the symmetry is called asym-
metric and is regarded as a resource.

A free operation in the resource theory of asym-
metry is the so-called covariant operation E sat-
isfying E(U in

g (ρ)U in†
g ) = Uout

g E(ρ)Uout†
g for all

states ρ and g ∈ G, where U in
g and Uout

g are uni-
tary representations of g in the input and output
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systems, respectively. A covariant operation de-
scribes a process that can be implemented with-
out access to the reference frame related to the
group G. By using the covariant Stinespring di-
lation theorem [43, 51], it can also be interpreted
as the dynamics of a system that couples to an
ancillary system initially in a symmetric state un-
der a unitary evolution with a conservation law
of additive observables associated with G.

Although the resource theory of asymmetry is
a general framework for investigating the conse-
quences of symmetries described by any group G,
we here focus on U(1) and (R,+) groups where
a unitary representation is given by Ut = e−iHt

with an observable H on the system. This corre-
sponds to the case where a single additive quan-
tity is conserved. Such an additive quantity can
vary depending on the physical situation we are
interested in. To simplify the terminologies, we
always call it the Hamiltonian of a system in this
paper. In this case, a quantum channel E is co-
variant if and only if it commutes with the time
translation, that is,

E(e−iHtρeiHt) = e−iH′tE(ρ)eiH′t, ∀ρ, ∀t ∈ R,
(1)

where H and H ′ are the Hamiltonians of the in-
put and output systems of E . Furthermore, a
symmetric state can be understood as a state di-
agonalized by the energy eigenbasis since ρ =
e−iHtρeiHt implies [ρ,H] = 0. Since an asym-
metric state ρ satisfies [ρ,H] 6= 0, the resource
theory of asymmetry with time-translation sym-
metry is a branch of resource theories investigat-
ing the properties of energetic coherence.

For later convenience, we here introduce no-
tations for convertibility in the resource theory
of asymmetry. The most basic setup in conver-
sion theory is one-shot conversion without error,
which has been analyzed, e.g., in [14, 43, 45, 46].
Suppose that for a given state ρ of a system with
Hamiltonian H and a given state σ of a system
with Hamiltonian H ′, there exists a covariant op-
eration E such that σ = E(ρ). In this case, we
say that ρ is convertible to σ and denote

(ρ,H)
cov
� (σ,H ′). (2)

It should be noted that convertibility depends not
only on the states ρ and σ, but also on the Hamil-
toniansH andH ′ since the covariance of channels
is defined with respect to the time translations

generated by them. The binary relation
cov
� is a

preorder since the identity operation is covariant
and any product of covariant operations is covari-
ant.

Since the exact conversion is too restrictive
from a practical point of view, conversion with an
error is often analyzed. In this paper, we focus
on the setup in which the error vanishes in the
asymptotic limit. Consider sequences of states
ρ̂ = {ρm}m and σ̂ = {σm}m of systems with
Hamiltonians Ĥ = {Hm}m and Ĥ ′ = {H ′m}m,
respectively. We say that ρ̂ is asymptotically
convertible to σ̂ by covariant operations if and
only if for any ε ∈ (0, 1], there exists a se-
quence of covariant operations {Em}m such that
lim supm→∞D(Em(ρm), σm) ≤ ε, where D de-
notes the trace distance defined by D(ρ, σ) :=
1
2‖ρ− σ‖1. Here, the covariance of Em is defined
with respect to Hm and H ′m for each m. In this
case, we denote

(ρ̂, Ĥ)
cov
� a (σ̂, Ĥ ′). (3)

The subscript in
cov
� a indicates that the binary

relation is defined for the asymptotic conversion.
The asymptotic conversion theory has been an-
alyzed in [14, 20, 45, 47]. We will briefly review
their results in Sec. 4, where we relate the smooth
metric adjusted skew information rates to the co-
herence cost and the distillable coherence. Simi-
larly to the one-shot case, the binary relation

cov
� a

is a preorder.

2.2 Metric adjusted skew informations as
asymmetry measures
Resource theories have the advantage of provid-
ing a concrete way to quantify a resource. In gen-
eral, a resource measure is defined with a conver-
sion relation. We say that R(ρ,H) is an asymme-
try measure (in the one-shot setting) if and only
if the following two conditions are satisfied:

1) Monotonicity: If (ρ,H)
cov
� (σ,H ′), then

R(ρ,H) ≥ R(σ,H ′).

2) If ρ is symmetric, then R(ρ,H) = 0.

If a measure R further satisfies the converse of
the second condition, i.e., if R(ρ,H) = 0 implies
that ρ is symmetric, we say R is faithful. We do
not impose faithfulness as one of the minimal re-
quirements for an asymmetry measure, as well as
entanglement measures in entanglement theory.
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In the one-shot regime, there are several known
asymmetry measures [14, 38, 39, 41, 42]. Our
main focus in this paper is the family of met-
ric adjusted skew information [6]. They are first
introduced as quantifiers of non-commutativity
of a state and an observable by extending the
Wigner-Yanase skew information [3], which are
later shown to be asymmetry measures [38, 39].

The metric adjusted skew information is closely
related to the Riemannian geometry of the state
space. In classical information geometry, there is
a unique Riemannian metric that monotonically
contracts under information processing, which is
called the Fisher information metric. The study
of monotone metrics in quantum information the-
ory is initiated by Morozova and Chentsov in [52].
Its classification is completed by Petz in [53],
showing a one-to-one correspondence between a
monotone metric and an operator monotone func-
tion. We say that a function f is a standard
monotone function if and only if it satisfies the
following three conditions:

i) 0 ≤ A ≤ B =⇒ f(A) ≤ f(B).

ii) f(x) = xf(1/x)

iii) f(1) = 1

It is known that

fRLD(x) ≤ f(x) ≤ fSLD(x), x > 0 (4)

for any standard monotone functions f [54–56],
where fRLD := 2x/(x+ 1) and fSLD := (x+ 1)/2.
Here, RLD and SLD are abbreviations for right
logarithmic derivative and symmetric logarithmic
derivative. For a family of states ρt parameter-
ized by a single real number t ∈ R, the family
of quantum Fisher information is defined by the
norm of ∂tρt with respect to the monotone metric
[53, 57], given by

Jf (ρt) := Tr
(
∂ρt
∂t
cf (Lρt , Rρt)

(
∂ρt
∂t

))
, (5)

where Lρ and Rρ denote the left and right mul-
tiplication operators by ρ, i.e., Lρ(O) = ρO and
Rρ(O) = Oρ for an operator O. The function
cf (x, y) is called the Morozova–Chentsov function
associated with a standard monotone function f ,
which is defined by

cf (x, y) = 1
yf(x/y) , x, y > 0. (6)

A standard monotone function satisfying
f(0) 6= 0 is called regular. Hansen [6] defined
the metric adjusted skew information for a regu-
lar standard monotone f as

If (ρ,H) := f(0)
2 Jf (ρt)

∣∣∣∣
t=0

(7)

where ρt denotes a unitary model defined by ρt :=
{e−iHtρeiHt}t∈R. The prefactor f(0)/2 is chosen
so that

If (ψ,H) = Var(ψ,H) (8)

holds for any pure state ψ, where Var(ρ,H) :=
Tr(ρH2)− (Tr(ρH))2 denotes the variance. For a
generic state ρ, it holds If (ρ,X) ≤ Var(ρ,X).
By using the eigenvalue decomposition ρ =∑
i λi |i〉 〈i|, the metric adjusted skew informa-

tions are written as

If (ρ,H) = f(0)
2

∑
i,j

(λi − λj)2

λjf(λi/λj)
| 〈i|H|j〉 |2. (9)

An example of the metric adjusted skew infor-
mation is the Wigner-Yanase-Dyson skew infor-
mation, which is known as a one-parameter ex-
tension of the Wigner-Yanase skew information.
The corresponding operator monotone function
is given by fWYD,p(x) = p(1− p)(x− 1)2/((xp −
1)(x1−p−1)) [6]. The Wigner-Yanase skew infor-
mation is obtained as a special case for p = 1/2.
Another important example is skew information
for fSLD, which corresponds to the SLD Fisher in-
formation. It is known that the SLD skew infor-
mation is equal to the convex roof of variance [58,
59]: IfSLD(ρ,H) = min{pi,φi}

∑
i piVar(φi, H),

where {pi, φi} runs over the set of all probability
distributions {pi}i and pure states {φi}i satisfy-
ing ρ =

∑
i piφi. The SLD skew information is

the largest among the family of metric adjusted
skew information. Precisely, it holds

1
2f(0)I

f (ρ,H) ≥ IfSLD(ρ,H) ≥ If (ρ,H), (10)

where f is an arbitrary regular standard mono-
tone function [60].

From the viewpoint of the resource theory of
asymmetry, critical properties of metric adjusted
skew informations are the following two:

1) Monotonicty [38]: If (ρ,H)
cov
� (σ,H ′), then

If (ρ,H) ≥ If (σ,H ′).
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2) If ρ is symmetric, then If (ρ,H) = 0.

In other words, metric adjusted skew informa-
tions are valid asymmetry measures. Further-
more, since Jf (ρt) = 0 only if ∂tρt = 0, metric
adjusted skew informations are faithful asymme-
try measures.

Another property which we shall use later is
the convexity of the metric adjusted skew infor-
mations: For any set of density operator {ρk} and
probability distribution {pk}k such that pk ≥ 0
and

∑
k pk = 1, it holds

∑
k

pkI
f (ρk, H) ≥ If

(∑
k

pkρk, H

)
. (11)

Such a convexity is one of the requirements
that Wigner and Yanase [3] imposed on quan-
tifiers of information content under conserva-
tion laws. The convexity of the Wigner-Yanase
skew information is proved in [3]. The convex-
ity of the Wigner-Yanase-Dyson skew information
was called the Wigner-Yanase-Dyson conjecture,
which was later proved by Lieb [61]. The con-
vexity for all metric adjusted skew informations
is proven by Hansen [6].

2.3 Asymptotic discontinuity of metric ad-
justed skew informations

The metric adjusted skew informations are valid
asymmetry measures that monotonically decrease
under covariant operations. However, their
asymptotic rates

lim sup
m→∞

1
m
If (ρm, Hm), lim inf

m→∞
1
m
If (ρm, Hm)

(12)

are not asymptotic asymmetry measures. Here,
we say that a quantity R(ρ̂, Ĥ) defined for se-
quences of states ρ̂ and Hamiltonians Ĥ is an
asymptotic asymmetry measure if and only if it
satisfies the following two conditions:

1) Monotonicity: If (ρ̂, Ĥ)
cov
� a (σ̂, Ĥ ′), then

R(ρ̂, Ĥ) ≥ R(σ̂, Ĥ ′).

2) If ρ̂ is a sequence of symmetric states, then
R(ρ̂, Ĥ) = 0.

We usually do not impose faithfulness for asymp-
totic resource measures as a minimal require-
ment. This is because an operationally important

asymmetry measure called the distillable coher-
ence is not faithful. A similar argument can also
be found in entanglement theory [62].

Intuitively, we can understand the reason why
the metric adjusted skew information rates in
Eq. (12) are not asymptotic asymmetry measures
as follows: From Eq. (9), we can estimate the
maximal change in metric adjusted skew informa-
tions as ∼ ‖Hm‖2 × ε when the state changes on
the order of ε in the trace distance. This implies
that even when ρ̂ and σ̂ are interconvertible, their
metric adjusted skew information rates can take
different values, violating condition 1) above. We
remark that this was one of the non-trivial issues
in establishing the conversion theory in the i.i.d.
regime [47].

Indeed, such a discontinuity can be seen by
examining the variance. A quantity A is called
asymptotically continuous [42, 63, 64] if

lim
m→∞

A(ρm)−A(σm)
1 + log(dim(Hm)) = 0 (13)

holds for any states ρm and σm of a Hilbert
space Hm such that limm→∞D(ρm, σm) = 0.
In a typical setup, including i.i.d. setup,
1 + log(dim(Hm)) = O(m) for m → ∞.
Therefore, Eq. (13) implies limm→∞

1
mA(ρm) =

limm→∞
1
mA(σm) if limm→∞D(ρm, σm) = 0. In

[42], it is pointed out that the variance is not
asymptotically continuous. Since metric adjusted
skew informations are equal to the variance for
pure states, this result proves that the metric ad-
justed skew information rates cannot be asymp-
totic asymmetry measures.

3 Smooth metric adjusted skew infor-
mation rates

So far, we have seen that the asymptotic rates
of the metric adjusted skew informations are
not asymptotic asymmetry measures. Intuitively,
this is because metric adjusted skew informations
change too drastically with a small perturbation
in the state space and hence they are not good
quantifiers in the asymptotic conversion theory
with an error.

To find an asymptotic asymmetry measure re-
lated to the metric adjusted skew informations,
we here apply the smoothing technique to met-
ric adjusted skew informations. The smoothing
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technique [48, 49] is commonly used to investi-
gate information-theoretic tasks with an error.
It is closely related to the information-spectrum
method [65], a powerful and universal tool to an-
alyze asymptotic problems in information theory.
The smoothing technique is used in a recent study
[45] on the asymptotic conversion theory in the
resource theory of asymmetry in the non-i.i.d.
regime. In [45], the smoothing technique is ap-
plied for the max- and min-quantum Fisher in-
formation to construct an information-spectrum
approach for quantum Fisher information. How-
ever, it has not been applied to metric adjusted
skew informations.

To begin with, let us introduce a family of the
ε-smooth metric adjusted skew informations. For
a smoothing parameter ε ∈ (0, 1], we define

Ifε (ρ,H) := inf
σ∈Bε(ρ)

If (σ,H), (14)

where Bε(ρ) is the ε-ball in the state space de-
fined by Bε(ρ) := {σ : states | D(ρ, σ) ≤ ε}. In
Appendix A, we show that Ifε (ρ,H) monotoni-
cally decreases through a covariant channel. In
addition, it trivially vanishes for any symmetric
state. Therefore, Ifε (ρ,H) is an asymmetry mea-
sure. Note that the ε-smooth metric adjusted
skew informations Ifε is not a faithful measure
as it vanishes for a state ε-close to a symmetric
state. In Appendix A, we prove that Ifε (ρ,H)
inherits the convexity of metric adjusted skew in-
formations.

By using the smooth metric adjusted skew
informations, we now define the sup- and inf-
smooth metric adjusted skew information rates
as follows:

If+(ρ̂, Ĥ) := lim
ε→0+

lim sup
m→∞

1
m
Ifε (ρm, Hm), (15)

If−(ρ̂, Ĥ) := lim
ε→0+

lim inf
m→∞

1
m
Ifε (ρm, Hm). (16)

We also call them the smooth metric adjusted
skew information rates for short. We re-
mark that since lim supm→∞ 1

mI
f
ε (ρm, Hm) and

lim infm→∞ 1
mI

f
ε (ρm, Hm) are monotonic func-

tions of ε, their right-hand side limits If±(ρ̂, Ĥ)
always exist.

A key property of the smooth metric adjusted
skew information rates is the following:

Theorem 1. For any regular operator monotone
function f , the smooth metric adjusted skew in-
formation rates are asymptotic measures in the

resource theory of asymmetry. That is, the fol-
lowing two conditions are satisfied:

1) Monotonicity: If (ρ̂, Ĥ)
cov
� a (σ̂, Ĥ ′), then

If+(ρ̂, Ĥ) ≥ If+(σ̂, Ĥ ′) and If−(ρ̂, Ĥ) ≥
If−(σ̂, Ĥ ′).

2) If ρ̂ is a sequence of symmetric states, then
If+(ρ̂, Ĥ) = If−(ρ̂, Ĥ) = 0.

This is one of the main results of this paper.
The proofs of Theorem 1 and the convexity of
smooth metric adjusted skew information rates
are provided in Appendix B.

Note that the monotonicity implies that for any
sequence of Hamiltonians Ĥ,

If+(ρ̂, Ĥ) = If+(σ̂, Ĥ), (17)

If−(ρ̂, Ĥ) = If−(σ̂, Ĥ) (18)

hold if limm→∞D(ρm, σm) = 0.
We remark that from Eq. (10), it holds

1
2f(0)I

f
+(ρ,H) ≥ IfSLD

+ (ρ,H) ≥ If+(ρ,H), (19)

1
2f(0)I

f
−(ρ,H) ≥ IfSLD

− (ρ,H) ≥ If−(ρ,H) (20)

for any regular standard monotone function f .
Therefore, smooth skew information rates for
fSLD are the largest among the family of smooth
metric adjusted skew information rates.

Another main result of this paper is the follow-
ing:

Theorem 2. Let ψ be a pure state having pe-
riod 2π for a Hamiltonian H. Assume that the
third absolute moment of the Hamiltonian is fi-
nite, i.e., 〈ψ||H|3|ψ〉 < ∞. For a positive pa-
rameter R > 0, define ψ̂iid(R) := {ψ⊗dRme}m
and Ĥiid(R) := {Hiid,dRme}m, where Hiid,k :=∑k
i=1 I⊗i−1 ⊗H ⊗ I⊗k−i. The smooth metric ad-

justed skew information rates for this i.i.d. se-
quence are given by

If+(ψ̂iid(R), Ĥiid(R)) = If−(ψ̂iid(R), Ĥiid(R))

= lim
m→∞

1
m
If (ψ⊗dRme, HdRme) = If (ψ,H)R.

(21)

This theorem is an immediate corollary of the
following lemma, proven in Appendix C:
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Lemma 3. Let ψ be a pure state with period 2π
with a Hamiltonian H. Assume that the absolute
third moment is finite, i.e., 〈ψ||H|3|ψ〉 <∞. Fix
ε to be a sufficiently small real parameter. Let
ρ̂ = {ρm}m be a sequence of states such that ρm ∈
Bε(ψ⊗dRme) for all sufficiently largem with a real
parameter R > 0, where Bε(ρ) is the ε-ball in
the state space defined by Bε(ρ) := {σ : states |
D(ρ, σ) ≤ ε}. Then there exists a real function
δf (ε) of ε such that limε→0 δ

f (ε) = 0 and

If
(
ρm, Hiid,dmRe

)
≥ If

(
ψ⊗dRme, Hiid,dmRe

)
−mδf (ε) + o(m)

(22)

as m→∞.

Intuitively, this lemma shows that
1
mI

f
(
ρm, Hiid,dmRe

)
approximately takes a

local minimum around i.i.d. states ψ⊗dRme in
the asymptotic regime. As a consequence, its
smooth metric adjusted skew information rates
become equal to the asymptotic rate of metric
adjusted skew informations for i.i.d. states,
proving Theorem 2.

4 Smooth metric adjusted skew infor-
mation rates and the asymptotic conver-
sion theory
In this section, by using Theorems 1 and 2, we
relate smooth metric adjusted skew information
rates to the coherence cost and the distillable co-
herence, which are the central quantities in the
asymptotic conversion theory in the resource the-
ory of asymmetry.

4.1 Coherence cost and distillable coherence
In order to introduce the coherence cost and the
distillable coherence, let us briefly review the
asymptotic conversion theory in the resource the-
ory of asymmetry.

Independent and identically distributed (i.i.d.)
setup is one of the most important and funda-
mental regimes in the asymptotic conversion. In
this setting, many copies of a state are converted
to copies of another state under the assumption
that the Hamiltonian is given by a sum of copies
of a free Hamiltonian of a subsystem. Precisely,
we consider a sequence of states ρ̂iid = {ρ⊗m}m

with Hamiltonians Ĥiid = {Hm}m, where Hm =∑m
i=1 I⊗(i−1) ⊗H ⊗ I⊗(m−i).
The convertibility among i.i.d. pure states is

studied in earlier research [14] and completed in
[47]. Suppose that two pure states ψ and φ have
the same period. For i.i.d. sequences ψ̂iid =
{ψ⊗m} and φ̂iid(R) = {φ⊗dRme}, it is shown that
ψ̂iid is convertible to φ̂iid(R) if and only if R ≤
F(ψ,H)/F(φ,H ′). Here, F(ρ,H) denotes the
symmetric logarithmic derivative (SLD) quan-
tum Fisher information with respect to the one-
parameter family of states ρt = {e−iHtρeiHt}t∈R,
given by

F(ρ,H) := 2
∑
i,j

(λi − λj)2

λi + λj
| 〈i|H|j〉 |2, (23)

where ρ =
∑
i λi |i〉 〈i| is the eigenvalue decom-

position. Conventionally, this quantity is sim-
ply called the quantum Fisher information. Note
that the quantum Fisher information is related
to the skew information of fSLD = (1 + x)/2 as
4IfSLD(ρ,H) = F(ρ,H).

The above result in the i.i.d. regime shows that
pure states with the same periods are equivalent
coherence resources in the sense that they are in-
terconvertible with a non-vanishing rate as long
as the quantum Fisher information is non-zero.
Since the period of a state can be set to 2π by
rescaling the Hamiltonian, we can pick up any
pure state with period 2π as a reference in ana-
lyzing convertibility. Here we adopt a coherence
bit

φcoh := |φcoh〉 〈φcoh| , |φcoh〉 = 1√
2

(|0〉+ |1〉)

(24)

with Hamiltonian Hcoh = |1〉 〈1| as a refer-
ence. This state has period 2π and its quan-
tum Fisher information is normalized to unity:
F(φcoh, Hcoh) = 1. For arbitrary sequences of
states ρ̂ = {ρm}∞m=1 and Hamiltonians Ĥ =
{Hm}∞m=1, the coherence cost and the distillable
coherence are defined by

Ccost
(
ρ̂, Ĥ

)
:= inf

{
R |

(
φ̂coh(R), Ĥcoh(R)

) cov
� a

(
ρ̂, Ĥ

)}
,

(25)

Cdist
(
ρ̂, Ĥ

)
:= sup

{
R |

(
ρ̂, Ĥ

) cov
� a

(
φ̂coh(R), Ĥcoh(R)

)}
,

(26)
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where Ĥcoh(R) := {Hcoh,dRme}m with Hcoh,k :=∑k
i=1 I⊗i−1 ⊗ Hcoh ⊗ I⊗k−i and φ̂coh(R) :=
{φ⊗dRmecoh }m.

The above result [47] for i.i.d. pure states can
be restated as

Ccost
(
ψ̂iid, Ĥiid

)
= Cdist

(
ψ̂iid, Ĥiid

)
= F (ψ,H) ,

(27)

where the period of ψ is set to be 2π and ψ̂iid =
{ψ⊗m}m. This result for the coherence cost is di-
rectly extended to a general i.i.d. states ρ̂iid =
{ρ⊗m} as Ccost(ρ̂iid, Ĥiid) = F (ρ,H) [47]. Al-
though no general formula on the distillable co-
herence is known for an i.i.d. mixed states, it
is known that i.i.d. mixed states typically have
vanishing distillable coherence [20].

4.2 Smooth metric adjusted skew information
rates, the coherence cost and the distillable co-
herence
We are now ready to relate the smooth metric
adjusted skew information rates to the coher-
ence cost and the distillable coherence by using
Lieb-Yngvason’s non-equilibrium thermodynam-
ics [50]. Note that although the original aim of
Lieb-Yngvason’s non-equilibrium thermodynam-
ics was to extend the notion of thermodynamic
entropy to non-equilibrium states, some of their
arguments are applicable to a generic preorder
relation.

Concretely, we here prove the following in-
equalities, proving that the smooth metric ad-
justed skew information rates yield a lower bound
of the coherence cost and an upper bound of the
distillable coherence:

Theorem 4. For any sequences ρ̂ and Ĥ, it holds

Ccost(ρ̂, Ĥ) ≥ 4If+(ρ̂, Ĥ) ≥ 4If−(ρ̂, Ĥ) ≥ Cdist(ρ̂, Ĥ).
(28)

Proof. Suppose that Ccost(ρ̂, Ĥ) < ∞. For any
δ > 0, define Rδ := Ccost(ρ̂, Ĥ)+δ. Then it holds(

φ̂coh (Rδ) , Ĥcoh (Rδ)
) cov
� a

(
ρ̂, Ĥ

)
. (29)

From the monotonicity of smooth metric ad-
justed skew information rates, we get

If+

(
φ̂coh (Rδ) , Ĥcoh (Rδ)

)
≥ If+

(
ρ̂, Ĥ

)
. (30)

Since

If+

(
φ̂coh (Rδ) , Ĥcoh (Rδ)

)
= Rδ

4 (31)

holds from Theorem 2, we get

Ccost(ρ̂, Ĥ) + δ ≥ 4If+(ρ̂, Ĥ) (32)

for any δ > 0 and hence

Ccost(ρ̂, Ĥ) ≥ 4If+(ρ̂, Ĥ). (33)

Note that when Ccost(ρ̂, Ĥ) > +∞, Ccost(ρ̂, Ĥ) ≥
If+(ρ̂, Ĥ) is trivially true. By a similar argument,
it is shown that

4If−(ρ̂, Ĥ) ≥ Cdist(ρ̂, Ĥ). (34)

Among these inequalities, the tightest lower
bound for the coherence cost can be obtained
by IfSLD

+ (ρ̂, Ĥ) as can be directly shown from
Eq. (19).

Theorem 4 is of fundamental importance since
it clarifies a relation among smooth metric ad-
justed skew information rates and quantities with
operational meaning, i.e., the coherence cost and
the distillable coherence. Although the proof pro-
vided here is straightforward, the result itself is
non-trivial since it is derived from Theorems 1
and 2. To understand its importance, we shall
apply Theorem 4 to explicit examples in Sec. 5.

4.3 Relation to the spectral QFI rates and
comparison to entropic quantities
For pure states with finite periods, asymptotic
conversion theory has been established beyond
the i.i.d. regime [45]. This result shows that
the coherence cost and the distillable coherence
for any sequence of pure states are given by the
spectral sup- and inf-quantum Fisher information
rates, respectively. By using Theorem 4, it is
straightforward to show that the smooth metric
adjusted skew information rates give lower and
upper bounds for the spectral quantum Fisher
information rates. A similar relation is known
in entropy rates and the spectral entropy rates.
This subsection aims to compare these relations
and explore their similarities and differences.

Let us first briefly review the result in [45]. The
definitions of quantities reviewed here are some-
what involved and therefore postponed to Ap-
pendix D. In [45], two quantities Fmax(ψ,H) and
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Fmin(ψ,H), called the max- and min-quantum
Fisher information, are introduced for pure states
with finite periods. It is proven [45] that they give
upper and lower bounds of the quantum Fisher
information:

Fmax (ψ,H) ≥ F (ψ,H) ≥ Fmin (ψ,H) . (35)

For a sequence of pure states with a finite period,
the spectral sup- and inf-quantum Fisher infor-
mation rates are defined by

F(ψ̂, Ĥ) := lim
ε→0

lim sup
m→∞

1
m
F εmax (ψm, Hm) , (36)

F(ψ̂, Ĥ) := lim
ε→0

lim inf
m→∞

1
m
F εmin (ψm, Hm) , (37)

where F εmax and F εmin are smooth max- and min-
quantum Fisher information. See Appendix D for
their definition. It is proven [45] that the coher-
ence cost and the distillable coherence are given
by

Ccost(ψ̂, Ĥ) = F(ψ̂, Ĥ), Cdist(ψ̂, Ĥ) = F(ψ̂, Ĥ).
(38)

Therefore, Theorem 4 implies

F(ψ̂, Ĥ) ≥ 4If+(ψ̂, Ĥ) ≥ 4If−(ψ̂, Ĥ) ≥ F(ψ̂, Ĥ).
(39)

Let us now consider a special case with fSLD.
Since 4IfSLD(ρ,H) = F(ρ,H) holds for any state
ρ, we get

F(ψ̂, Ĥ) ≥ lim
ε→0

lim sup
m→∞

1
m
F ε(ψm, Hm) ≥ lim

ε→0
lim inf
m→∞

1
m
F ε(ψm, Hm) ≥ F(ψ̂, Ĥ), (40)

where we defined

F ε(ψ,H) := inf
ρ∈Bε(ψ)

F(ρ,H) (41)

These inequalities are interpreted as the asymp-
totic version of inequalities (35).

A similar inequalities are known for the spec-
tral sup- and inf-information rates. Let us
first introduce the max-entropy Smax(ρ) :=
log (rank (ρ)) and the min-entropy Smin(ρ) :=
− log (‖ρ‖∞), where rank (ρ) and ‖ρ‖∞ denote
the rank of ρ and the maximum eigenvalue of
ρ, respectively. These quantities provide upper
and lower bounds for the von Neumann entropy
S(ρ) := −Tr(ρ log ρ) as

Smax(ρ) ≥ S(ρ) ≥ Smin(ρ). (42)

Defining the smooth max- and min-entropies
Sεmax(ρ) := infσ∈Bε(ρ) Smax(σ) and Sεmin(ρ) :=
supσ∈Bε(ρ) Smin(σ), the spectral sup- and inf-
entropy rates S(ρ̂) and S(ρ̂) of a sequence of
states ρ̂ = {ρm}m are expressed as

S(ρ̂) := lim
ε→0

lim sup
m→∞

1
m
Sεmax(ρm), (43)

S(ρ̂) := lim
ε→0

lim inf
m→∞

1
m
Sεmin(ρm) (44)

by using the smoothing method [49, 66]. It is
known that

S(ρ̂) ≥ lim sup
m→∞

1
m
S(ρm) ≥ lim inf

m→∞
1
m
S(ρm) ≥ S(ρ̂).

(45)

hold [67]. These inequalities can be understood
as an asymptotic version of inequalities (42).

In the resource theory of entanglement, the
spectral entropy rates play an essential role in
the conversion theory of non-i.i.d. states. Pre-
cisely, for a sequence of bipartite pure states
ψ̂AB = {ψAB,m}m, the entanglement cost and
the distillable entanglement are given by the
spectral sup- and inf-entropy rates for the se-
quence of reduced states ρ̂ := {ρm}m, where
ρm := TrB(ψAB,m), respectively [68, 69]. Fur-
thermore, the sup- and inf-rates of the von Neu-
mann entropy for ρ̂ are asymptotic entanglement
measures since the entanglement entropy of a
pure state SEE(ψAB,m) := S(ρm) is an entangle-
ment measure that is asymptotically continuous
[62, 63, 70–72] as shown by the Fannes inequality
[73].

It is worth emphasizing that there is a cru-
cial difference between Eqs. (40) and (45) for
the asymptotic rates of the quantum Fisher in-
formation F and the entanglement entropy SEE.
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In Eq. (40), smoothing parameter ε must be in-
cluded in since the quantum Fisher information
F is not asymptotically continuous [42]. On the
other hand, in Eq. (45), the smoothing technique

is not required for the entanglement entropy SEE
since it is asymptotically continuous [62, 63, 70–
72]. The correspondence is summarized in Ta-
ble 1.

Table 1: Summary of asymptotic resource measures in the resource theory of entanglement and the resource
theory of asymmetry, which are based on entropies and the quantum Fisher information (QFI), respectively.

Entropy the quantum Fisher information (QFI)

Spectral rates

sup-rate of smooth max-entropy sup-rate of smooth max-QFI§

S(ρ̂) = lim
ε→0

lim sup
m→∞

1
m
Sεmax(ρm) F(ψ̂, Ĥ) = lim

ε→0
lim sup
m→∞

1
m
F εmax(ψm, Hm)

inf-rate of smooth min-entropy inf-rate of smooth min-QFI§

S(ρ̂) = lim
ε→0

lim inf
m→∞

1
m
Sεmin(ρm) F(ψ̂, Ĥ) = lim

ε→0
lim inf
m→∞

1
m
F εmin(ψm, Hm)

Asymptotic rates

sup-rate of entanglement entropy* sup-rate of smooth QFI

lim sup
m→∞

1
m
S(ρm) lim

ε→0
lim sup
m→∞

1
m
F ε(ψm, Hm)

inf-rate of entanglement entropy* inf-rate of smooth QFI

lim inf
m→∞

1
m
S(ρm) lim

ε→0
lim inf
m→∞

1
m
F ε(ψm, Hm)

* Smoothing technique is not required.
§ Defined for a sequence of pure states with a finite period.

5 Applications

To better understand our results established in
the present paper, we here apply them to concrete
examples.

5.1 Upperbound for distillable coherece

Distillable coherence is particularly relevant for
mixed states since it quantifies the number of
pure resources that can be extracted from noisy
resources. In [20], the following sufficient con-
dition for the distillable coherence to vanish is
proven:

[Πρ, H] = 0 =⇒ Cdist
(
ρ̂iid, Ĥiid

)
= 0, (46)

where Πρ is the projector to the support of
ρ, ρ̂iid = {ρ⊗m}m and Ĥiid = {Hiid,m}m for
Hiid,m :=

∑m
i=1 I⊗i−1 ⊗H ⊗ I⊗m−i. However, de-

spite its importance, no general formula is known
for the distillable coherence of mixed states, even
in the i.i.d. regime.

We here derive a simple upper bound for the
distillable coherence applicable to general se-

quence of states. From Theorem 4, the distill-
able coherence Cdist

(
ρ̂, Ĥ

)
is upper bounded by

4If−
(
ρ̂, Ĥ

)
. From the definition of smooth met-

ric adjusted skew information inf-rate, it holds
lim infm→∞ 1

mI
f
−(ρm, Hm) ≥ If

(
ρ̂, Ĥ

)
. There-

fore,

4 lim inf
m→∞

1
m
If (ρm, Hm) ≥ Cdist

(
ρ̂, Ĥ

)
(47)

holds for any
(
ρ̂, Ĥ

)
.

To simplify the argument, let us now consider
the i.i.d. case. Since the metric adjusted skew
informations are additive for product states [6],
we have

lim inf
m→∞

1
m
If (ρ⊗m, Hiid,m) = If (ρ,H), (48)

implying that

4If (ρ,H) ≥ Cdist
(
ρ̂iid, Ĥiid

)
. (49)

Note that for fSLD, this bound is equivalent to a
trivial inequality

Ccost
(
ρ̂iid, Ĥiid

)
≥ Cdist

(
ρ̂iid, Ĥiid

)
(50)
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since Ccost
(
ρ̂iid, Ĥiid

)
= 4IfSLD(ρ,H) if ρ has a

period 2π [47]. Our bound in Eq. (49) gives a
better bound in general since IfSLD(ρ,H) is the
largest element in the family of metric adjusted
skew information.

As a concrete example, let us analyze an i.i.d.
copies of qutrit systems with Hamiltonian H =∑2
n=0 n |n〉 〈n|. Consider a mixed state

ρ := (1− q)ψ1 + qψ2 (51)

where q ∈ (0, 1) and ψi := |ψi〉 〈ψi| for orthonor-
mal states {|ψi〉}2i=1. From the definition, the
metric adjusted skew information is explicitly cal-
culated as

If (ρ,H)
= (1− q)Var(ψ1, H) + qVar(ψ2, H)

−
(

1− f(0)(1− 2q)2

qf((1− q)/q)

)
| 〈ψ1|H|ψ2〉 |2 (52)

for the mixed state in Eq. (51).
To compare the bounds in Eqs. (49) and (50),

we calculate the metric adjusted skew informa-
tion for

|ψ1〉 := 1
2 |0〉+ 1

2 |1〉+ 1√
2
|2〉 , (53)

|ψ2〉 := 1√
2
|0〉 − 1√

2
|1〉 (54)

Note that the result in Eq. (46) is not applicable
since [Πρ, H] = [ψ1 + ψ2, H] 6= 0. For this ex-
ample, the metric adjusted skew information for
fSLD and fWYD,p are evaluated as

IfSLD(ρ,H) = 11− 15q + 8q2

16 , (55)

IfWYD,p(ρ,H) = 11− 7q
16

− 1
8

(
1− q

((1− q
q

)p
− 1

)((1− q
q

)1−p
− 1

))
(56)

for q ∈ (0, 1). Since IfWYD,p is a monotonically in-
creasing continuous function of p for p ∈ (0, 1/2)
and q ∈ (0, 1), Eq. (49) implies

4 lim
p→0+

IfWYD,p(ρ,H)
∣∣∣∣
q 6=0,1

= 9− 7q
4 ≥ Cdist

(
ρ̂iid, Ĥiid

) ∣∣∣∣
q 6=0,1

(57)

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

Figure 1: Comparison of upper bounds of the distillable
coherence for an i.i.d. mixed state. 4IfSLD corresponds
to a trivial bound in Eq. (50), while 4IfWYD,p is a special
case of our new bound in Eq. (49). The plot shows that
the latter gives a tighter bound.

for q ∈ (0, 1).
The metric adjusted skew information for fSLD

and fWYD,p, and the bound in Eq. (57) are plot-
ted in Fig. 1. Of particular interest are their be-
haviors near q ≈ 0 and q ≈ 1. When q = 0, i.e.,
ρ = ψ1, the distillable coherence is given by

Cdist
(
ρ̂iid, Ĥiid

) ∣∣∣∣
q=0

= 4IfSLD(ψ1, H) = 11
4 ,

(58)

while when q = 1, it holds

Cdist
(
ρ̂iid, Ĥiid

) ∣∣∣∣
q=1

= 4IfSLD(ψ2, H) = 1. (59)

From Eqs. (57), (58) and (59), we find that the
distillable coherence Cdist

(
ρ̂iid, Ĥiid

)
is discontin-

uous at q = 0, 1.
We stress that the bounds in this subsection

is derived by using Eq. (47), which can be cal-
culated without using any smoothing technique.
Nevertheless, the smoothing technique is essen-
tial to prove Eq. (47) as we have argued in this
paper. In the next subsection, we will revisit this
point by analyzing an explicit example.

5.2 Necessity of smoothing

Let us now consider a sequence of pure states
ψ̂ = {ψm}m for qutrit systems given by

|ψm〉 :=
√

1− εm |φcoh〉⊗m +
√
εm |2〉⊗m (60)
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where |φcoh〉 is defined in Eq. (24) and εm :=
1/
√
m. Note that ψ̂

cov
� a φ̂coh(1) and φ̂coh(1)

cov
� a

ψ̂ since limm→∞D
(
ψm, φ

⊗m
coh

)
= 0. Therefore,

we get

Ccost(ψ̂, Ĥ) = Ccost(ψ̂, Ĥ) = 1. (61)

The left-hand side of Eq. (47) is evaluated as

4 lim
m→∞

1
m
If (ψm, Hm) =∞ (62)

since

If (ψm, Hm) = Var(ψm, Hm)

=
√
m

4 (9m− 8
√
m− 1). (63)

Therefore, Eq. (47) does not provide a meaningful
bound for distillable coherence in this example.
This can be understood from the fact that the
asymptotic rate of metric adjusted skew informa-
tion is not a good asymptotic asymmetry measure
due to the asymptotic discontinuity [20, 42].

In the present paper, we showed that the
smoothing technique is essential to overcome this
issue. From Lemma 3, the smooth metric ad-
justed skew information rates are explicitly eval-
uated as

4If±(ψ̂, Ĥ) = 1. (64)

From Theorem 4, this quantity gives a lower
bound for the coherence cost and an upper bound
for the distillable coherence, as is consistent with
Eq. (61).

6 Conclusions
In this paper, we investigated the properties
of metric adjusted skew information particularly
from the perspective of the resource theory of
asymmetry. A family of metric adjusted skew in-
formation is induced from a family of monotone
metrics, i.e., quantum Fisher information met-
rics in information geometry. They are known
as asymmetry resource measure in the one-shot
regime. However, their asymptotic rates are not
valid asymptotic asymmetry monotone due to
their asymptotic discontinuity. To find asymp-
totic asymmetry measures, we first introduced a
family of the ε-smooth metric adjusted skew in-
formation by using the smoothing technique. We

then defined the sup- and inf-smooth metric ad-
justed skew information rates as its asymptotic
rates in the limit of ε→ 0. We proved that these
families of smooth metric adjusted skew informa-
tion rates are valid asymptotic asymmetry mea-
sures. We further proved that the smooth metric
adjusted skew information rates inherit the con-
vexity of skew informations, which may be viewed
as an extension of the Wigner-Yanase-Dyson con-
jecture [3, 61] to the asymptotic regime.

By analyzing a general asymptotic behavior
of the metric adjusted skew information for se-
quences of states that are close to i.i.d. pure
states, we explicitly calculated the smooth met-
ric adjusted skew information for an arbitrary se-
quence of i.i.d pure states. Combining this result
with the asymptotic monotonicity of the smooth
metric adjusted skew information rates, we re-
lated them to the key operational quantities in
the asymptotic conversion theory in the resource
theory of asymmetry. Concretely, we showed
that the smooth metric adjusted skew informa-
tion rates provide a lower bound of the coherence
cost and an upper bound of the distillable coher-
ence. As a corollary, we further proved inequal-
ities relating the asymptotic rates of the quan-
tum Fisher information to the spectral quantum
Fisher information rates based on an information-
spectrum approach for the quantum Fisher infor-
mation [45]. They have a structure similar to the
inequalities for the von Neumann entropy rates
and the spectral entropy rates. However, our
analysis shows that smoothing parameters must
be included in the rates of the quantum Fisher
information since it has an asymptotic disconti-
nuity.

The main focus of this paper is to study the
metric adjusted skew information in the resource
theory of asymmetry. However, our results could
also be useful in quantum thermodynamics and
quantum estimation theory. In the resource the-
ory of athermality, thermal operations are re-
garded as free. Here, thermal operations are op-
erations that can be implemented by coupling
a system to a thermal bath through an energy-
conserving unitary evolution [12, 74, 75]. Since
any thermal operation is covariant with respect to
the time translation, Theorem 1 implies that the
smooth metric adjusted skew information rates
If± are valid asymptotic resource measures in the
resource theory of athermality. Although relevant
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quantities in quantum thermodynamics are typi-
cally introduced from entropies, new insights are
obtained with the family of quantum Fisher infor-
mation [20]. Therefore, it will be quite interesting
to explore the role of the smooth metric adjusted
skew information rates not only as asymmetry
measures but also as athermality measures. On
the other hand, the smooth metric adjusted skew
information rates can also be helpful in studies
on quantum estimation theory in the asymptotic
regime. Indeed, the metric adjusted skew infor-
mation is proportional to quantum Fisher infor-
mation, a central quantifier in quantum estima-
tion theory, for a unitary model. Further research
in these directions is left for future work since it
is out of the scope of the present paper.
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A Properties of the ε-smooth skew informations
Let us first prove the monotonicity of the ε-smooth skew informations.

Proposition 5 (Monotonicity of the ε-smooth metric adjusted skew information). Let ε be a parameter
such that ε ∈ (0, 1]. Let (ρ,H) and (σ,H ′) denote sets of states and Hamiltonians. If ρ is convertible
to σ by a covariant operation, i.e., (ρ,H)

cov
� (σ,H ′), then it holds

Ifε (ρ,H) ≥ Ifε (σ,H ′). (65)

Proof. The proof directly follows from the monotonicity of the metric adjusted skew informaiton and
the trace distance. By using a covariant channel E such that E(ρ) = σ, we get

Ifε (ρ,H) = inf
ξ∈Bε(ρ)

Ifε (ξ,H) (66)

≥ inf
ξ∈Bε(ρ)

Ifε (E(ξ), H ′) (67)

from the monotonicity of metric adjusted skew informations. Since the trace distance is contractive
under a quantum channel, E(ξ) ∈ Bε(E(ρ)) holds for any ξ ∈ Bε(ρ), implying that

inf
ξ∈Bε(ρ)

Ifε (E(ξ), H ′) ≥ inf
χ∈Bε(σ)

Ifε (χ,H ′). (68)

Therefore, we get

Ifε (ρ,H) ≥ Ifε (σ,H ′). (69)

We now prove the convexity of the ε-smooth metric adjusted skew informations.

Proposition 6 (Convexity of the ε-smooth metric adjusted skew information). Let ε be a parameter
ε ∈ (0, 1]. For any states {ρ(k)}k and a probability distribution {pk}k, it holds∑

k

pkI
f
ε (ρk, H) ≥ Ifε

(∑
k

pkρk, H

)
. (70)

Proof. By using the convexity of the metric adjusted skew information∑
k

pkI
f (ρk, H) ≥ If

(∑
k

pkρk, H

)
, (71)

we get ∑
k

pkI
f
ε (ρk, H) =

∑
k

pk inf
σk∈Bε(ρk)

If (σk, H) (72)

= inf
∀k, σk∈Bε(ρk)

∑
k

pkI
f (σk, H) (73)

≥ inf
∀k, σk∈Bε(ρk)

If
(∑

k

pkσk, H

)
(74)

≥ inf
σ∈Bε(

∑
k
pkρk)

If (σ,H) (75)

= Ifε

(∑
k

pkρk, H

)
. (76)

In the last inequality, we have used

∀k, σk ∈ Bε(ρk) =⇒
∑
k

pkσk ∈ Bε

(∑
k

pkρk

)
, (77)

which follows from the convexity of the trace distance. See, e.g., [76] for proof of the convexity of the
trace distance.
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B Properties of smooth metric adjusted skew information rates

Let us first prove the asymptotic monotonicity of the smooth metric adjusted skew information rates.

Proposition 7 (Monotonicity of the smooth metric adjusted skew information rates). Let (ρ̂, Ĥ) and
(σ̂, Ĥ ′) be sequences of states and Hamiltonians. If (ρ̂, Ĥ)

cov
� a (σ̂, Ĥ ′), then it holds

If±(ρ̂, Ĥ) ≥ If±(σ̂, Ĥ ′). (78)

Proof. Since (ρ̂, Ĥ)
cov
� a (σ̂, Ĥ ′), for any ε > 0, there exists a sequence of covariant channels {Em}m

such that

D (Em(ρm), σm) < ε (79)

holds for all sufficiently large m. By using the triangle inequality, we have

∀χm ∈ Bε (Em(ρm)) , D (χm, σm) ≤ D (χm, E(ρm)) +D (Em(ρm), σm) < 2ε (80)

for all sufficiently large m. Therefore, we get

Ifε (ρm, Hm) ≥ Ifε
(
Em(ρm), H ′m

)
(81)

≥ If2ε
(
σm, H

′
m

)
(82)

and hence

lim sup
m→∞

1
m
Ifε (ρm, Hm) ≥ lim sup

m→∞

1
m
If2ε
(
σm, H

′
m

)
, (83)

lim inf
m→∞

1
m
Ifε (ρm, Hm) ≥ lim inf

m→∞
1
m
If2ε
(
σm, H

′
m

)
(84)

holds for any ε ∈ (0, 1]. In the limit of ε→ 0, it is proven

If+(ρ̂, Ĥ) = lim
ε→0+

lim sup
m→∞

1
m
Ifε (ρm, Hm) (85)

≥ lim
ε→0+

lim sup
m→∞

1
m
If2ε
(
σm, H

′
m

)
(86)

= If+(σ̂, Ĥ ′), (87)

and similarly

If−(ρ̂, Ĥ) ≥ If−(σ̂, Ĥ ′). (88)

Let us now prove the convexity of the smooth metric adjusted skew information rates.

Proposition 8 (Convexity of the smooth metric adjusted skew information rates). Let {pk}k be a
probability distribution. We denote ρ̂(k) a sequences of states for each k. For a sequence of states∑N
k=1 pkρ̂

(k) given by {
∑N
k=1 pkρ

(k)
m }m, it holds

N∑
k=1

pkI
f
±

(
ρ̂(k), Ĥ

)
≥ If±

(
N∑
k=1

pkρ̂
(k), Ĥ

)
(89)
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Proof. By using the convexity of smooth metric adjusted skew informations, we immediately get
N∑
k=1

pkI
f
+

(
ρ̂(k), Ĥ

)
=

N∑
k=1

pk lim
ε→0

lim sup
m→∞

1
m
Ifε

(
ρ(k)
m , Hm

)
(90)

= lim
ε→0

lim sup
m→∞

1
m

N∑
k=1

pkI
f
ε

(
ρ(k)
m , Hm

)
(91)

≥ lim
ε→0

lim sup
m→∞

1
m
Ifε

(
N∑
k=1

pkρ
(k)
m , Hm

)
(92)

= If+

(
N∑
k=1

pkρ̂
(k), Ĥ

)
. (93)

It should be noted that this proof is valid only if we can exchange the order of the sum
∑
k and the

limits limε→0 lim supm→∞. When the summation
∑
k is taken over a finite set, this condition is always

satisfied.
In the same way, we also get

∑N
k=1 pkI

f
−

(
ρ̂(k), Ĥ

)
≥ If−

(∑N
k=1 pkρ̂

(k), Ĥ
)
.

Combining the convexity of the smooth metric adjusted skew information rates and Theorem 4, we
can derive the following simple upper bound for the distillable coherence:

∑
k

pkI
f
±

(
ρ̂k, Ĥ

)
≥ If±

(∑
k

pkρ̂
(k), Ĥ

)
≥ Cdist

(∑
k

pkρ̂
(k), Ĥ

)
. (94)

As a corollary, we also get upper bounds that can be calculated without using the smoothing technique:

lim inf
m→∞

1
m

∑
k

pkI
f
(
ρ(k)
m , Hm

)
≥ lim inf

m→∞
1
m
If
(∑

k

pkρ
(k)
m , Hm

)
≥ Cdist

(∑
k

pkρ̂
(k), Ĥ

)
. (95)

C Smooth metric adjusted skew information rates in the i.i.d. regime
We here explicitly calculate the smooth metric adjusted skew information rates in the i.i.d. regime.
For this purpose, we here prove Lemma 3:

Lemma (Restatement of Lemma 3). Let ψ be a pure state with period 2π with a Hamiltonian H.
Assume that the absolute third moment is finite, i.e., 〈ψ||H|3|ψ〉 < ∞. Fix ε be a sufficiently small
real parameter. Let ρ̂ = {ρm}m be a sequence of states such that ρm ∈ Bε(ψ⊗dRme) for all sufficiently
large m with a real parameter R > 0, where Bε(ρ) is the ε-ball in the state space defined by Bε(ρ) :=
{σ : states | D(ρ, σ) ≤ ε}. Then there exists a real function δf (ε) of ε such that limε→0 δ

f (ε) = 0 and

If
(
ρm, Hiid,dmRe

)
≥ If

(
ψ⊗dRme, Hiid,dmRe

)
−mδf (ε) + o(m) (m→∞), (96)

where Hiid,k :=
∑k
i=1 I⊗i−1 ⊗H ⊗ I⊗k−i.

To prove this lemma, let us first derive a general behavior of metric adjusted skew informations for
states close to a pure state. The following lemma is an extension of claims in Corollary 1 in [20].

Lemma 9. Let Φ denote the eigenstate with the largest eigenvalue of an arbitrary state ρ. For a pure
state Ψ, the infidelity of ρ and Ψ is defined by δ := 1− 〈Ψ | ρ |Ψ〉. Then it holds

| 〈Φ|Ψ〉 | ≥ 1− 2δ. (97)

Furthermore, when δ < 1/2, the metric adjusted skew informations If (ρ,H) are lower bounded as

If (ρ,H) ≥ f(0)
f
(

δ
1−δ

)(1− 2δ)2Var(Φ, H). (98)
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Proof. Equation (97) is proven in Corollary 1 in [20]. We here prove Eq. (98). Let

ρ = p |Φ〉 〈Φ|+
k∑
i=1

λi |i〉 〈i| =:
k∑
i=0

λk |i〉 〈i| (99)

be the eigenvalue decomposition, where we defined λ0 := p and |0〉 := |Φ〉. Since

〈Ψ|ρ|Ψ〉 =
k∑
i=0

λk| 〈Ψ|i〉 |2 ≤ p
k∑
i=0
| 〈Ψ|i〉 |2 = p, (100)

we have

1− δ ≤ p. (101)

By using 1 = p+
∑k
i=1 λi, we get λi ≤ 1− p ≤ δ for all i = 1, 2, · · · , k.

Equation (98) is derived as

If (ρ,H) = f(0)
2

k∑
i,j=0

(λi − λj)2

λjf(λi/λj)
| 〈i|H|j〉 |2 (102)

= 2× f(0)
2

k∑
i=1

(λi − p)2

pf(λi/p)
| 〈i|H|Φ〉 |2 + f(0)

2

k∑
i,j=1

(λi − λj)2

λjf(λi/λj)
| 〈i|H|j〉 |2 (103)

≥ f(0)
k∑
i=1

(λi − p)2

pf(λi/p)
| 〈i|H|Φ〉 |2. (104)

From λi ≤ δ and 1 − δ ≤ p, we have p − λi ≥ 1 − 2δ. Since δ < 1/2 implies 1 − 2δ > 0, it holds
(p − λi)2 ≥ (1 − 2δ)2. On the other hand since f is an operator monotone and hence a monotonic
function, we get

f

(
λi
p

)
≤ f

(
δ

1− δ

)
, (105)

where we used λi/p ≤ δ/(1− δ). From these inequalities and p ≤ 1, we obtain a lower bound of metric
adjusted skew informations as

If (ρ,H) ≥ f(0)
f
(

δ
1−δ

)(1− 2δ)2
k∑
i=1
| 〈i|H|Φ〉 |2 (106)

= f(0)
f
(

δ
1−δ

)(1− 2δ)2Var(Φ, H) (107)

Consider a case where a state ρ is close to a pure state Ψ. Equation (98) shows that metric adjusted
skew informations If (ρ,H) of are lower bounded by the variance of the eigenstate Φ of ρ with largest
eigenvalue. Furthermore, Eq. (97) shows that Φ is also close to Ψ in the trace distance. Therefore,
a lower bound of If (ρm, HdRme) in Lemma 3 can be derived by analyzing the asymptotic behavior of
the energy variances of pure states that are close to ψ⊗dRme.

For this purpose, let us briefly review the asymptotic behavior of the energy distribution of ψ⊗dRme.
Let us define the energy distribution

pψ⊗dRme(E) :=
〈
ψ⊗dRme

∣∣∣Πm
E

∣∣∣ψ⊗dRme〉 , E ∈ Spec(Hiid,dRme), (108)
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where Spec(A) denotes the set of all eigenvalues of an operator A and Πm
E denotes the projectors to

the eigenspace of Hiid,dRme with eigenvalue E. Since ψ has a period 2π, pψ⊗dRme(E) = 0 if E /∈ Z.
In the asymptotic limit of m → ∞, it is known that the energy distribution pm := {pψ⊗dRme(E)}E
converges to the Poisson distribution up to a shift. Precisely, under the assumption that the absolute
third moment is finite, i.e., 〈ψ||H|3|ψ〉 <∞, it is shown [45, 47, 77] that there exists km ∈ Z for each
m such that

lim
m→∞

dTV
(
pψ⊗dRme ,ΥkmPmRVar(ψ,H)

)
= 0, (109)

where dTV denotes the total variation distance and Υk for k ∈ Z denotes the shift operation for a
probability distribution defined by (Υkp)(n) := p(n− k).

Now, let us prove an asymptotic behavior of the variance of random variables which approximately
follows the Poisson distribution:

Lemma 10. Fix a positive parameter λ > 0. Let q = {qm}m be a sequence of probability distributions
such that

∃M > 0, ∀m > M, ∃km ∈ Z, dTV (qm,ΥkmPmλ) ≤ ε (110)

for a sufficiently small parameter ε. Then there exists a function γλ(ε) such that

lim
ε→0

γλ(ε) = 0 (111)

and

Var (qm) ≥ Var (Pmλ)− γλ(ε)m (112)

holds for all sufficiently large m.

Proof. For simplicity, we hereafter assume that the probability distributions qm are defined on integers
1. Since the variance is invariant under the translation operation Υk, we can assume that km = 0
without loss of generality. Let us introduce the following notations:

δm(n) := Pmλ(n)− qm(n), (113)
µPmλ :=

∑
n

nPmλ(n) = mλ (114)

µqm :=
∑
n

nqm(n), (115)

∆µm := µPmλ − µqm =
∑
n

nδm(n). (116)

From Pmλ(n) ≥ 0 and qm(n) ≥ 0, we have

Pmλ(n) ≥ δm(n) ≥ −qm(n). (117)

Defining Am := {n ∈ Z|δm(n) > 0}, we have∑
n∈Am

δm(n) = dTV (qm,Pmλ) . (118)

The variance of qm is decomposed into

Var (qm) =
∑
n

(n− µqm)2qm(n) (119)

=
∑
n

(n− µqm)2 (Pmλ(n)− δm(n)) (120)

= Var(Pmλ) + ∆µ2
m −

∑
n

(n− µqm)2δm(n). (121)

1The proof is valid for a general case if we replace the equalities in Eqs. (118) and (119) with ≤ and ≥, respectively.
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To provide a lower bound of this quantity, let us introduce an interval Im := [µPmλ−am, µPmλ+am]∩Z,
where am = αε

√
m. Here, αε > 0 for ε > 0 is defined by αε

√
λ := g−1 (1− ε), where

g(x) :=
∫ x

−x
dβ β2
√

2π
e−

β2
2 = Erf

(
x√
2

)
− 2x√

2π
e−

x2
2 . (122)

Note that αε is uniquely determined since g(x) is monotonic and takes any values in [0, 1] for x ≥ 0.
Defining Īm := Z \ Im, we have∑
n

(n− µqm)2δm(n) (123)

=
∑
n∈Im

(n− µqm)2δm(n) +
∑
n∈Īm

(n− µqm)2δm(n) (124)

≤
∑

n∈Im∩Am
(n− µqm)2δm(n) +

∑
n∈Īm

(n− µqm)2Pmλ(n) (125)

≤ (|∆µm|+ am)2 ε+
∑
n∈Īm

(n− µqm)2Pmλ(n) (126)

= (|∆µm|+ am)2 ε+ ∆µ2
m

∑
n∈Īm

Pmλ(n) + 2∆µm
∑
n∈Īm

(n− µPmλ)Pmλ(n) +
∑
n∈Īm

(n− µPmλ)2Pmλ(n).

(127)

By using the Stirling formula

n! ∼
√

2πn
(
n

e

)n
, (128)

it holds

Pmλ(mλ+ k) = (mλ)mλ+k

(mλ+ k)! e
−mλ (129)

∼ 1√
2π(mλ+ k)

(
mλ

mλ+ k

)mλ+k
ek (130)

∼ 1√
2πmλ

e−
β2
2λ (131)

for k = β
√
m as m→∞.

With this formula, we have

lim
m→∞

1√
m

∑
n∈Im

(n− µPmλ)Pmλ(n) =
∫ αε

−αε
dβ β√

2πλ
e−

β2
2λ = 0, (132)

and

lim
m→∞

1
m

∑
n∈Im

(n− µPmλ)2Pmλ(n) =
∫ αε

−αε
dβ β2
√

2πλ
e−

β2
2λ = λg(αε

√
λ) = λ(1− ε). (133)

implying that ∑
n∈Īm

(n− µPmλ)Pmλ(n) = o(
√
m) (134)

∑
n∈Īm

(n− µPmλ)2Pmλ(n) = λεm+ o(m). (135)
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Therefore, for any positive constants u and v which are independent of m,∑
n∈Īm

(n− µPmλ)Pmλ(n) ≤ u
√
m (136)

∑
n∈Īm

(n− µPmλ)2Pmλ(n) = (λε+ v)m (137)

hold for all sufficiently large m. For future convenience, we take u = εαε
√
λ and v = λε, which implies

that ∑
n∈Īm

(n− µPmλ)Pmλ(n) ≤ εαε
√
mλ (138)

∑
n∈Īm

(n− µPmλ)2Pmλ(n) ≤ 2λεm (139)

hold for all sufficiently large m.
On the other hand, by using Chebyshev’s Inequality we have∑

n∈Īm

Pmλ(n) ≤ λ

α2
ε

. (140)

By using these results, the variance of qm is lower bounded as

Var (qm) = Var(pm) + ∆µ2
m −

∑
n

(n− µqm)2δm(n) (141)

≥ Var(pm) + ∆µ2
m −

((
|∆µm|+ αε

√
m
)2
ε+ ∆µ2

m

λ

α2
ε

+ 2∆µmεαε
√
mλ+ 2λεm

)
. (142)

Since the right hand side is quadratic in ∆µm, we get

∆µ2
m −

((
|∆µm|+ αε

√
m
)2
ε+ ∆µ2

m

λ

α2
ε

+ 2∆µmεαε
√
mλ+ 2λεm

)
(143)

≥
(

1− ε− λ

α2
ε

)
|∆µm|2 − 4αεε

√
mλ|∆µm| −

(
α2
ε ε+ 2λε

)
m (144)

≥ −

(α2
ε ε+ 2λε

)
+ 4α2

ε ε
2λ(

1− ε− λ
α2
ε

)
m (145)

where we have assumed that

1− ε− λ

α2
ε

> 0 (146)

in the last line. This assumption is true for a sufficiently small ε since limε→0 αε = limε→0 g
−1(1 −

ε)/
√
λ =∞ holds.

We now introduce

γλ(ε) :=
(
α2
ε ε+ 2λε

)
+ 4α2

ε ε
2λ(

1− ε− λ
α2
ε

) . (147)

From Fig. 2, it holds

lim
ε→0

εαε = lim
ε→0

εg−1(1− ε)/
√
λ = 0 (148)

lim
ε→0

εα2
ε = lim

ε→0
ε
(
g−1(1− ε)

)2
/λ = 0. (149)

Therefore, we get limε→0 γλ(ε) = 0, completing the proof.

Accepted in Quantum 2023-05-08, click title to verify. Published under CC-BY 4.0. 22



0.2 0.4 0.6 0.8 1.0
ϵ

0.2

0.4

0.6

0.8

1.0

1.2

ϵ g-1(1-ϵ )

ϵ (g-1(1-ϵ ))2

Figure 2: The behaviors of εg−1(1− ε) and ε(g−1(1− ε))2 for ε ∈ [0, 1].

Combining these lemmas, we here prove Lemma 3:

Proof of Lemma 3. We denote ψm := ψ⊗dRme. Let ρ̂ = {ρm}m be an arbitrary sequence of states such
that ρm ∈ Bε(ψm). From the Fuchs-van de Graaf inequalities, an upper bound of the infidelity of ρm
and ψm is derived as

1− 〈ψm | ρm |ψm〉 ≤ 1− (1−D(ρm, ψm)) ≤ 1− (1− ε)2 =: δ1. (150)

Let Φm be the eigenstate of ρm with the largest eigenvalue. From Eq. (97), we get

|〈Φm |ψm〉| ≥ 1− δ1. (151)

For the probability distribution pΦm of Φm, it holds

dTV(pΦm , pψm) ≤ D (Φm, ψm) ≤
√

1− (1− δ1)2. (152)

By using Eq. (109), for any ε > 0,

∃km ∈ Z, dTV(pψm ,ΥkmPmλ) ≤ ε (153)

holds for all sufficiently large m, where λ := RVar(ψ,H). Therefore, from the triangle inequality, we
get

∃km ∈ Z, dTV(pΦm ,ΥkmPmλ) ≤
√

1− (1− δ1)2 + ε =: δ2 (154)

for all sufficiently large m. Note that limε→0 δ1 = limε→0 δ2 = 0 holds. From Lemmas 9 and 10, we
get

I(ρm, Hiid,dmRe) ≥
f(0)

f
(

δ
1−δ1

)(1− 2δ1)2Var(Φm, Hm) (155)

≥ m (λ− γλ(δ2)) f(0)
f
(

δ1
1−δ1

)(1− 2δ1)2 (156)

as m→∞, where γλ is defined in Lemma 10. Defining

δf (ε) := (λ− γλ(δ2)) f(0)
f
(

δ1
1−δ1

)(1− 2δ1)2 − λ, (157)

we have limε→0 δ
f (ε) = 0 and

I(ρm, Hiid,dmRe) ≥ mλ−mδf (ε) = mRVar(ψ,H)−mδf (ε) (158)
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for all sufficiently large m. Since

lim
m→∞

1
m
I
(
ψ⊗dRme, Hiid,dmRe

)
= RVar(ψ,H), (159)

this result can also be written as

I(ρm, Hiid,dmRe) ≥ I
(
ψ⊗dRme, Hiid,dmRe

)
−mδf (ε) + o(m) (m→∞). (160)

As an immediate corollary, we get Theorem 2:

Theorem (Restatement of Theorem 2). Let ψ be a pure state having period 2π for a Hamiltonian
H. Assume that the third absolute moment of the Hamiltonian is finite, i.e., 〈ψ||H|3|ψ〉 < ∞. For a
positive parameter R > 0, define ψ̂iid(R) := {ψ⊗dRme}m and Ĥiid(R) := {Hiid,dRme}m, where Hiid,k :=∑k
i=1 I⊗i−1 ⊗H ⊗ I⊗k−i. The smooth metric adjusted skew information rates for this i.i.d. sequence

are given by

If+(ψ̂iid(R), Ĥiid(R)) = If−(ψ̂iid(R), Ĥiid(R))

= lim
m→∞

1
m
If (ψ⊗dRme, HdRme) = If (ψ,H)R. (161)

Proof. From Lemma 3, we get

If+(ψ̂iid(R), Ĥiid(R)) ≥ If−(ψ̂iid(R), Ĥiid(R)) ≥ I(ψ,H)R. (162)

A straightforward calculation shows

lim
m→∞

1
m
If (ψ⊗dRme, Hiid,dRme) = lim

m→∞
1
m
dRmeI(ψ,H) = I(ψ,H)R. (163)

Since

lim
m→∞

1
m
If (ψ⊗dRme, Hiid,dRme) ≥ I

f
+(ψ̂iid(R), Ĥiid(R)) ≥ If−(ψ̂iid(R), Ĥiid(R)) (164)

holds by definition of If±, we get

If+(ψ̂iid(R), Ĥiid(R)) = If−(ψ̂iid(R), Ĥiid(R)) = I(ψ,H)R. (165)

As another corollary, we obtain an alternative proof of the converse part of the conversion theory
for i.i.d. pure states [47]:

Corollary 11. Let ψ and φ be pure states with period 2π with Hamiltonians H and H ′, respectively.
If (ψ̂, Ĥiid)

cov
� a (φ̂(R), Ĥ ′iid(R)) holds for ψ̂ = {ψ⊗m}m and φ̂(R) = {φdRme}m, then it holds

Var(ψ,H) ≥ Var(φ,H ′)R. (166)

i.e.,

R ≤ Var(ψ,H)
Var(φ,H ′) = F(ψ,H)

F(φ,H ′) . (167)

Proof. From the monotonicity of the smooth metric adjusted skew information rates, we get

If±(ψ̂, Ĥ) ≥ If±(φ̂(R), Ĥ ′(R)). (168)

From Theorem 2, this inequality implies

I(ψ,H) ≥ I(φ,H ′)R. (169)
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D Review of the spectral quantum Fisher information rates
We here briefly review the results in [45]. For a pure state ψ and a Hamiltonian H, the period is
defined as

τ := inf
t>0

{
t
∣∣∣ | 〈ψ|e−itH |ψ〉 | = 1

}
. (170)

We assume that H is bounded below and 0 < τ <∞. Without loss of generality, we can set the period
to be 2π by rescaling the Hamiltonian as H → τ

2πH. In the following, we always assume that pure
states have period 2π for simplicity. In this case, the pure state ψ has support in the eigenspaces of
the Hamiltonian with eigenvalues given by n+E0, where n is a positive integer and E0 is a constant.
Shifting the Hamiltonian by a constant, we can assume that E0 = 0. We define the energy distribution
of a pure state ψ by

pψ(n) := 〈ψ|Πn|ψ〉 (n ∈ Z≥0), (171)

where Πn is a projector to the eigenspace of the Hamiltonian with eigenvalue n. An essential fact is
that the exact convertibility among pure states is fully characterized by the energy distribution [14].
This is because (ψ,H)

cov
� (ψ′HO, HHO) and (ψ′HO, HHO)

cov
� (ψ,H) holds for a state

|ψ′HO〉 :=
∞∑
n=0

√
pψ(n) |n〉 (172)

of a harmonic oscillator system with Hamiltonian HHO =
∑∞
n=0 n |n〉 〈n|. This observation can also be

extended to the convertibility with vanishing error in the asymptotic regime. For further detail, see
also [45].

To define the max- and min-quantum Fisher information, we introduce several notations. For a real
number λ ∈ R, we define a generalized Poission distribution Pλ = {Pλ(n)}n∈Z by

Pλ(n) :=
{
e−λ λ

n

n! (n ≥ 0)
0 (n < 0)

. (173)

For λ ≥ 0, this is an ordinary Poisson distribution. However, for λ < 0, it is not a probability
distribution since some of the element becomes negative. For sequences of numbers a = {a(n)}n∈Z
and b = {b(n)}n∈Z, we define the convolution sequence (a ∗ b) = {(a ∗ b)(n)}n∈Z by (a ∗ b)(n) :=∑
k∈Z a(n − k)b(k). For a given sequence q, q̃ denotes its “inverse" sequence with respect to ∗ in the

sense that (q ∗ q̃)(n) = δn,0, where δn,m is the Kronecker delta. We denote a ≥ 0 for a = {a(n)}n if
and only if a(n) ≥ 0 for all n. The max- and min-quantum Fisher information are defined by [45]

Fmax (ψ,H) := inf {4λ | Pλ ∗ p̃ψ ≥ 0} , (174)
Fmin (ψ,H) := sup {4λ | pψ ∗ P−λ ≥ 0} . (175)

To define the smooth max- and min-quantum Fisher information, let us first assume that the system
of interest is a harmonic oscillator. The max-quantum Fisher information is extended to a mixed
state ρ by Fmax(ρ,HHO) = infΦρ Fmax (Φρ, HHO +HA), where the infimum is taken over the set of all
purification Φρ of ρ and HA is a Hamiltonian of an ancillary system with integer eigenvalues. The
ε-smooth max- and min-quantum Fisher information are then defined as

F εmax(ψ,HHO) := inf
ρ∈Bε(ψ)

(ρ,HHO), F εmin(ψ,HHO) := sup
φ∈Bεpure(ψ)

F εmin(φ,HHO), (176)

where ε-balls are defined by Bε(ψ) := {ρ: states | D(ρ, ψ) ≤ ε} and Bε
pure(ψ) := {φ: pure states |

D(φ, ψ) ≤ ε}.
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For a system with a generic Hamiltonian, the ε-smooth max- and min-quantum Fisher information
are defined by

F εmax(ψ,H) := F εmax(ψ′HO, HHO), F εmin(ψ,H) := F εmin(ψ′HO, HHO), (177)

where ψ′HO is defined in Eq. (172).
Let (ψ̂, Ĥ) = ({ψm}m, {Hm}m) be any sequences of pure states and Hamiltonians with period 2π.

The spectral sup- and inf- quantum Fisher information rates are defined as [45]

F(ψ̂, Ĥ) := lim
ε→0

lim sup
m→∞

1
m
F εmax (ψm, Hm) , (178)

F(ψ̂, Ĥ) := lim
ε→0

lim inf
m→∞

1
m
F εmin (ψm, Hm) . (179)

These quantities are shown to be equal to the coherence cost and the distillable coherence [45], i.e.,

Ccost(ψ̂, Ĥ) = F(ψ̂, Ĥ), Cdist(ψ̂, Ĥ) = F(ψ̂, Ĥ). (180)
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