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SMOOTH NORMS THAT DEPEND LOCALLY
ON FINITELY MANY COORDINATES
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(Communicated by Dale Alspach)

Abstract. We characterize separable normed spaces that admit equivalent

C°°-smooth norms depending locally on finitely many coordinates. It follows,

in particular, that such norms exist on any normed space with countable alge-

braic basis.

We use the method of Talagrand operators developed by Haydon in [8]
and certain integral convolution techniques [2], [13] to characterize separable
normed spaces that admit C°° -smooth norms depending locally on finitely many

coordinates as spaces that admit norms with countable boundaries. As corollar-
ies we obtain improvements on some results of Fonf [3] and Vanderwerff [14]

and a new simple proof of a result of Haydon on C00-smooth renormings of

spaces of continuous functions on countable compact sets.
Our results should be compared to the result of Godun, Lin, and Troyanski in

[5] where it is shown that every separable Banach space can be given an equiv-
alent norm, the unit ball of which contains countably many strongly extreme

points. From this result and Theorem 1 below it follows that strongly extreme

points need not necessarily form a boundary of Bx- ■
We will use the notation standard in Banach space theory. In particular, Bx

and Sx will denote respectively the unit ball and the unit sphere of a Banach
space X. We say that || • || depends locally on finitely many coordinates if

for each x e Sx there exist an open neighbourhood O of x, a finite set

{x*,... ,x£}cX*, and a function / : Rk -» R such that

\\y\\=f(x*x(y),...,x*k(y))   for y e O.

If (X, || • ||) is a normed space, the set B c Sx- is called a boundary of

(X, || • ||) if for each x e Sx there exists x* e B such that x*(x) - 1.

Theorem 1. Let (X, || • ||) be a normed space. TFAE:

(i)   X admits an equivalent norm having a countable boundary.

(ii)   X admits an equivalent norm with a boundary B, such that there is a se-

quence {K„}n(EN of norm compact sets in X* satisfying B c\JneNKn.
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(iii)   X is separable and admits an equivalent norm depending locally on

finitely many coordinates.
(iv)  X is separable and admits an equivalent norm that is C00 -smooth except

at the origin and depends locally on finitely many coordinates.

Proof,  (iv) =$■ (iii) is trivial.
(iii) => (ii) Let || -II be a norm on X that depends locally on finitely many

coordinates. Since Sx is separable, it is Lindelöf. Therefore there exist a

system {Sn}neN of open sets in Sx, a system {®n}„€N of finite subsets of

Sx*, Q>n = {<PX, ■ ■ ■ , <p\ } , and a system of functions {fn}neN , fn '■ Rfc" -* R

such that the following hold true:

(a) Sx c\JneNS„.
(b) \\y\\ = M9nx(y),...,<Pl(y)) foryeSn.

Consider the duality mapping J : Sx —» e\p(Sx* ) • Denote

K„ = span(p" , ... , cpln) n Sx*    for n e N.

Kn 's are norm compact sets. For arbitrary x e S„ , x* e J(x) we have x*(y) <

\\y\\ < 1 for y e S„. So x*(y) < /(ff(y),..., ^(y)) < 1 for y e Sn. If

h € D/íiKer^ and \\h\\ is small enough, then

\\x±h\\=f(<p1(x±h),...,(pln(x±h)) = f((p1(x),...,(pl(x))=l.

Thus
x*(x±h) = l±x*(h)< 1

and we have h e Kerx*. Altogether, fj^j Kerç?" c Kerx*, therefore x* e
K„ . Hence J(y) c Kn for y e S„ . In combination with (a) we obtain J(Sx) C

\J„eN Kn and we are done.
(ii) => (i) Let || «|| be a norm as in (ii). First note that we can replace each

K„ by Kn n Bx*, so we can wlog assume that K„ c Bx* for each n e N.
Take a decreasing sequence {en}neN such that ex < 1, e„ | 0. Then there

exist an increasing sequence {in}n€N of integers with ix = 1 and a mapping

i : 7Y —» 5^. such that /([/'„, zn+i]) forms an ^-net in K„ . This mapping

gives rise to a linear mapping M : X —* /»(N) defined by the formula

Ai(x)(n) = (1 + ek)I(n)(x),    where n e [ik, ik+x).

Take an arbitrary x e X, \\x\\ = 1. Then |i(n)(jc)| < 1 for each n e N and
thus limsup„_00 M(x)(n) < 1. In particular, |]Af(jc)||oo < l+«i • On the other

hand there exist n0 eN and an element b e B such that b 6 ÜT„0, 6(x) = 1.
Hence for some m e [i„0, ino+x) we have

\\I(m)-b\\*<ef,

and so I(m)(x) > 1 - e-f-. Consequently

M(x)(m)>(l+eno)(l-^)>l + ^.

This proves that M is an isomorphism from X onto some linear subspace

of loo(N) ■ Since limsup„^00M(x)(n) < 1, we have that M(x) is always an

element of loo(N) attaining its norm on N. If we define

IMI, = ||M(x)||
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then the set {M*(e*)}n€n , where e* are the dual functionals in /¿(N), is a
countable boundary of (X, || • II i ) •

(i) =>■ (iv) The separability of X follows from a result of Gilles Godefroy
[4]. Recall that in the course of our proof of (ii) =>• (i) we showed that X is
isomorphic to some Y c /»(N) such that every y e Y attains its norm, i.e.,
y(n) = ||y||oo for some n e N. Consider a decreasing sequence S„ j 0 and an

isomorphism S : Y -» Z, Z c /<x>(N) defined by

S(y)(n) = (l+Sn)y(n).

We will renorm the space (Z, || • H,») by the desired C°°-smooth norm.

Note that for each y e Y with \\y\\oo = 1 there is an n e N satisfying |y(n)| =

1. Therefore for each z e Z there exists nz e N satisfying |S-1(z)(nr)| =

||5-'(z)||O0 and thus

wioi-a+Mis-'wiu
and

\z(k)\ < (1 + ¿Br+,)||5-1(z)||0O   for k > nz.

Take a sequence {ôn}neN of C°°-smooth bump functions è„:i-»l,6„>

0, J^bn^dt = 1, supp(¿>„) c [(Sn+X -ôn)/4, (ô„ -Sn+x)/4]. Define a non-

decreasing sequence {F„}£10 of convex functions on loo(N) by the inductive

formula

Fo = || • llco ,
r(S„-s„+l)/4/■(Ö„-Ö„+|j/t

'„(z) = / Fn-X(z + te„)bn(t)dt.
J(S.±,-S„)/4l(ô„+l-â„)/4

Suppose HS-'^Hoo > 1 and p = (ô„2 -ô„2+x)/4, \\y - z]^ < p. Then for
k > nz we have

Fk(y)= ■••/
•/(4+i-4)/4 J(á„; + ,-á„3)/

/•(á,-á2)/4

• / \\y + txex + --- + tkek\\oabx(tx)---bk(tk)dtx---dtk
i(á2-á,)/4

Since -p <t¡ < p for nz < I < k and y(«z) - y(/) > 4p, we have that

||y + ii<?i +--- + ^^l|oo = ||y + *i*i ■■• + t„zen.Woo.

Consequently

r(S„t-S„2+t)/4

Fk(y) = Fn:(y)= f
Ja

7"
(<5„J+i-<5nz)/4

(<5,-<52)/4

max{|y(l) + i,|, |y(2)+i2|,..., |y("z)+^.|}
(á2-á,)/4

for || z - y||oo < p and k > nz. It follows that the convex function F on Z

defined by F = sup„6N(F„) is locally dependent on finitely many coordinates

(namely the functionals e*,... , e*_) and C°°-smooth on {z e Z; ||z||oo >
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1 + ôx}. Notice that Fk(z) < Hz^ + ¿^ for arbitrary z e l^N) and

k e N. Applying the Implicit Function Theorem, we obtain that the Minkowski

functional of the set {z e Z, F(z) < 1 + 23x} introduces a C°° norm on Z
that locally depends on finitely many coordinates.

Corollary 2 (Fonf). Suppose that any of the equivalent statements (i)-(iv) is

satisfied for a normed space (X, ||-||). In particular, suppose that the set extBx-

is countable. Then X contains an isomorphic copy of Co ■

Proof. The space satisfies (iii). By the result of Pechanec, Whitfield, and Zizler

[11] we obtain the conclusion immediately.

Corollary 3 (Haydon). Every space C(K) where K is a countable compact set

admits an equivalent C°°-smooth norm.

Proof. Immediate from Theorem 1, since the Dirac functionals form a count-

able boundary for the supremum norm on C(K).

Corollary 4. Every normed space (X, ||-||) with countable algebraic basis admits

an equivalent C°°-smooth norm.

Proof. Let {x„}„eN be an algebraic basis. Following Vanderwerff[ 14] and [9],

we imbed X into C[0, 1] and renorm this latter space by a norm | • | so that

there exists a sequence of finite-dimensional projections {Q„}neN, \Qn\ < 1,

QkQj = QjQk = Ömin^j) such that

y^lspan{X| ,... ,x„] — *d |span{xi ,...,z„}

for k larger than k(n), n arbitrary. This allows us to cover the boundary of

(X, | • |) by the sequence of compacts {-rv„}„6N , K„ = Q*(C[0, l]*)nSx*. By

our theorem, we are done.
Recall that the Talagrand operator on Co(K) space, K a compact set, is a

continuous linear mapping T : Co(K) —<■ Co(K) such that for every / e Co(K)

there exists some k e K so that

\f(k)\ = H/IU    and   \f(k) + Tf(k)\>\f(k)\.

It follows easily that the norm ||| • ||| defined on C0(K) by |||/||| = ||/||oo +

||7y||oo depends locally on finitely many coordinates. This fact allows us to

drop the assumption of scatteredness of K in the result of Haydon [6].

Corollary 5. Suppose the space Cq(K) , where K is a locally compact set, admits

a Talagrand operator into c0(K). Then C0(K) has an equivalent Cx-smooth

norm.

Proof. Every separable subspace of C0(K) admits a norm depending locally

on finitely many coordinates. By Theorem 1, such a space can be renormed by

an equivalent C°°-smooth norm, therefore it is an Asplund space. Hence the
whole Co(K) is an Asplund space. Thus K is a scattered locally compact set
(see [1], Lemma 8.3, page 258) and we are ready to use Haydon's result [6] on

such spaces, which guarantees the existence of C°° -smooth renorming.
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