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Abstract

We describe a scalable approach to 3D smooth object re-

trieval which searches for and localizes all the occurrences

of a user outlined object in a dataset of images in real time.

The approach is illustrated on sculptures.

A smooth object is represented by its material appear-

ance (sufficient for foreground/background segmentation)

and imaged shape (using a set of semi-local boundary de-

scriptors). The descriptors are tolerant to scale changes,

segmentation failures, and limited viewpoint changes. Fur-

thermore, we show that the descriptors may be vector quan-

tized (into a bag-of-boundaries) giving a representation that

is suited to the standard visual word architectures for imme-

diate retrieval of specific objects.

We introduce a new dataset of 6K images containing

sculptures by Moore and Rodin, and annotated with ground

truth for the occurrence of twenty 3D sculptures. It is

demonstrated that recognition can proceed successfully de-

spite changes in viewpoint, illumination and partial occlu-

sion, and also that instances of the same shape can be re-

trieved even though they may be made of different materials.

1. Introduction

Recognizing specific objects, such as buildings, paint-

ings, CD covers etc is to some extent a solved problem

– provided that they have a light coating of texture. This

success is a result of extensive research into viewpoint and

lighting invariant feature detection [14, 18], feature de-

scription [14, 17], and the introduction of scalable meth-

ods based on bags of visual words [25]. There have been

several large scale demonstrations [11, 21, 22] with Google

Goggles as a commercial application. The focus of research

in this area has largely moved on from feature detection de-

velopment, to learning feature descriptors [24, 27] and over-

coming various failings of the recognition pipeline such as

the vector quantization into visual words and the problem

of regular patterns [7, 8, 11, 12, 16, 19, 23].

However, as has been noted for quite some time [18, 20],

there are two classes of specific objects for which cur-

rent methods fail completely: wiry objects [6] and smooth

Figure 1. Smooth sculpture retrieval using a bag of boundaries

(BoB). Top row: (left) a sculpture by Henry Moore selected by a

user-outlined query; (middle) automatically segmented sculpture

(section 2.1); (right) the boundary and internal edges are repre-

sented using semi-local descriptors (section 2.2) and indexed us-

ing a BoB (section 3). Bottom three rows: 18 of the retrieved im-

ages in rank order (before any false positives) showing the BoB’s

robustness to scale, viewpoint, lighting, colour and material varia-

tions. Note, at least seven different instances of the sculpture are

retrieved, made out of at least three different materials.

(fairly textureless) objects. This paper addresses the smooth

object class.

Our goal is to raise smooth objects to the first class sta-

tus that lightly textured specific objects have: to be able to

recognize these objects under change of lighting; and un-

der change of scale and viewpoint; and to be able to build

scalable retrieval systems. In this work we consider smooth

objects that are three dimensional (3D), and will use sculp-

tures as our illustration. We are interested in matching ob-

jects of the same shape, and for sculptures, where the same

form may be produced multiple times, this means that two



instances may have the same shape but differ in size and

even material. For example, Henry Moore routinely made

the same sculptural form in bronze and marble.

3D smooth objects also bring with them the additional

issue that their boundaries (internal and external) depend

on viewpoint since they are defined by tangency with the

line of sight [13]. This means that the imaged shape can

vary continuously with viewpoint, and we address this for

the moment by a view based representation.

To this end we develop a new representation for smooth

objects that encodes their boundaries (internal and external)

both locally and at multiple scales (section 2.2). This rep-

resentation is inspired by the shape context descriptors of

Belongie and Malik [5] and also by the silhouette represen-

tation used by Agarwal and Triggs [3]. We show that this

representation is suitable for matching smooth 3D objects

over scale changes, and is tolerant to viewpoint change and

segmentation failures.

However, the representation cannot be employed directly

for objects in an image due to the overwhelming number of

edges and boundaries in the background (from clutter, trees,

people etc). Instead it is first necessary to improve the signal

to noise (where signal is the sculpture) by segmenting the

image to isolate the sculpture as foreground. We show that

this can be accomplished quite successfully using a com-

bination of unsupervised segmentation into regions [4] and

supervised classification of the regions [10] (section 2.1).

Finally, section 3, we show that the boundary represen-

tation can be vector quantized into a form suitable for large

scale retrieval in a manner analogous to visual words [25].

As in the case of a bag of visual words, a bag-of-boundaries

(BoB) can be used to retrieve a short list of images contain-

ing the object via an inverted index, and the images can then

be re-ranked on spatial consistency in the manner of [22].

Since there are no existing datasets with ground truth for

sculptures we introduce (in section 4) a new dataset – sculp-

tures 6K – with ground truth annotation for twenty sculp-

tures and their viewpoints, and consisting of works princi-

pally by Moore and Rodin. Figure 2 shows a random sam-

ple of the images. The dataset specifies a training/test split

and this is used to assess the performance of the retrieval

system. We compare to a number of baselines using con-

ventional visual words based on viewpoint invariant detec-

tors and descriptors (section 5).

2. Sculpture representation

In this section we describe the representation of the ob-

ject boundary by a set of semi-local descriptors. In order

to obtain this representation from a (cluttered) image it is

first necessary to partition the image into sculpture and non-

sculpture regions. This segmentation has two benefits: it

improves the signal to noise, and also it provides an approx-

imate scale for the descriptor computation. We begin with

the segmentation, and then develop the boundary represen-

Figure 2. Random samples from the Sculptures test dataset.

Note the variety of sculptures. Many of the images do not con-

tain a sculpture while some contain people imitating the pose of a

sculpture (e.g. bottom right image where a man is impersonating

Rodin’s Thinker).

tation in section 2.2.

2.1. Segmentation

The goal of the segmentation is to separate sculptures

as foreground from the background. This is quite a chal-

lenging task since sculptures can be made from various ma-

terials including bronze, marble and other stone, and plas-

tics. Their surface can be natural or finished in some way

such as polishing (for stone) or buffered (for bronze) or

even a light texture (e.g. deliberate chisel textures). The

colour can include white, brown, specular highlights (on

bronze), and even green (for algae or moss on outdoor in-

stallations). These must be distinguished from backgrounds

that can have quite similar appearances including texture-

less sky, pavements and walls.

To achieve this segmentation we employ a supervised

classification approach, engineering a feature vector that

represents the appearance, shape and position of sculptures

(relative to the image boundary). The segmentation pro-

ceeds in three steps: first, an over-segmentation of the im-

age into regions (super-pixels); second, each super-pixel is

classified into foreground (sculpture) or background to give

an initial segmentation; and third, post-processing is used

to filter out small connected components and obtain the fi-

nal segmentation. Figure 3 illustrates these steps. Note, we

do not attempt to group the super-pixels but simply classify

them independently. We now describe these steps in more

detail.

1. Super-pixels. We use the method and code from [4]

which generates a hierarchy of regions based on the output

of the gPb contour detector [15] This provides a partition

of the image into a set of closed regions for any threshold.

We use a threshold of 50 (out of 255) which yields about

58 super-pixels per image on average. A typical example of

the super-pixels is shown in figure 3(b).



(a) Original image (b) Over-segmentation [4] (c) Classifier output, scaled for display (d) Final segmentation

Figure 3. Automatic sculpture segmentation. The image is in the Sculptures 6K test set.

Figure 4. Examples of automatic sculpture segmentation. Top row shows images from the Sculptures 6K test set, bottom row shows the

fully automatic segmentation.

(a) (b) (c)

Figure 5. Boundary descriptor extraction. (a) original image;

(b) automatically segmented image (section 2.1) overlaid with the

centres for the boundary descriptors; (c) boundary image with

three different scaled descriptors centred at the same point. See

section 2.2 for details.

2. Classification. For training and testing of the super-

pixel classifier, 300 random images are selected from the

Sculptures 6K training set, and segmented into super-pixels.

The images are divided randomly into a training and vali-

dation set, each containing 150 images. Each super-pixel

is then manually labelled into one of three classes: con-

tained within a sculpture (positive example), not containing

any sculpture pixels (negative example), or containing both

sculpture and non-sculpture pixels (ignored completely).

Small segments (less than 50 × 50 pixels) are also ignored

in order to emphasize the correct classification of large seg-

ments.

Each super-pixel is described by a 3208 dimensional fea-

ture vector. This represents the appearance (colour, texture),

shape and position of the segment (see below). A linear

SVM classifier is trained on the annotated super-pixels from

the training images, and its performance measured on the

validation images. The histogram parts of the feature vector

are compared using a χ2 kernel, but using the efficient lin-

ear approximation of [26] enables a linear SVM to be used

for these as well. The linear SVM leads to both fast training

and testing.

The feature vector consists of: (i) the median gradient

magnitude – this feature is typically very informative as its

value is usually small for smooth object segments; (ii) four

binary features indicating whether the segment is touching

one of the image boundaries – in order to more easily dis-

tinguish sky, ceiling, wall and floor from smooth sculptures;

(iii) colour represented by vector-quantized (using k-means,

dictionary size 1600) HSV, and the mean HSV of the seg-

ment – this helps to identify the materials that sculptures

are made of; and (iv) a bag of SIFT [14] visual words com-

puted densely at multiple scales (dictionary size 1600, im-

age patches with sides of 16, 24, 32 and 40, spacing of

2 pixels) – used for texture description, and also useful to

identify sculpture material.

The super-pixel classifier has an accuracy of 96% on the

training images, and 87% on the validation images. This

results in a segmentation overlap score (intersection over

union) of 0.78 on the training and 0.70 on the validation

images.

3. Post-processing. The positive super-pixels are grouped

using connected components, and small connected compo-

nents (less than 50 × 50 pixels) of the foreground are re-

moved. This does not significantly change the mean over-

lap score, but it removes many ‘floating’ and erroneous seg-

ments.

Examples of automatically segmented images are given

in figure 4. These results show quantitatively and qualita-

tively that the automatic segmentation succeeds in its main

objective of significantly increasing the signal (sculpture) to

noise (other clutter) ratio.



2.2. Boundary descriptor

We develop a new shape descriptor suited for smooth

object representation. Constructing such a descriptor is a

challenging task as it needs to represent shape rather than

texture or colour, be robust enough to handle lighting, scale

and viewpoint changes, but simultaneously discriminative

enough to enable object recognition. Additionally it should

be extracted locally in order to be robust to occlusions and

segmentation failures.

For an object, two types of descriptors are computed by

sampling the object boundaries (internal and external) at

regular intervals in the manner of [5]. They are (i) a HoG [9]

descriptor, and (ii) a foreground mask occupancy grid. The

scale of the descriptor is determined from the scale of the

object. In order to represent the boundary information lo-

cally (e.g. the curvature, junctions) and also the boundary

context (e.g. the position and orientation of boundaries on

the other side of the object), the descriptors are computed at

multiple scales. We use HoG computed on the gPb image

here (rather than shape-context or SIFT for example) as we

wish to represent both the position and orientation of the

boundaries, and also their magnitude. Figure 5 illustrates

the sampling and scales used.

In order to extract this representation from an image, it is

first segmented into foreground (sculpture) and background

as described above in section 2.1; and then the descriptor

centres are obtained by sampling prominent foreground ob-

ject boundaries and internal gPb edges at uniform intervals.

The multiple scales of the descriptor are computed relative

to the size of the foreground segmentation.

Implementation details. The first part of the descriptor

uses 4× 4 HoG cells, each containing 8× 8 pixels (i.e. gPb

patches are scaled to 32 × 32 pixels for HoG computation)

and contrast insensitive spatial binning into 9 orientations,

making the HoG part of the boundary description 324 di-

mensional (9 blocks each with 2 × 2 cells with 9 orienta-

tions). The HoG descriptor is L2 normalized in order to be

able to compute similarities using Euclidean distance.

The second part of the descriptor is a 4 × 4 occupancy

grid, where the value of a cell represents the proportion of

pixels belonging to the foreground. The Hellinger kernel is

used to compute similarities between these descriptors, i.e.

the 16 dimensional descriptor is L1 normalized followed by

square rooting each element thus producing a L2 normal-

ized vector; the similarities are then computed using Eu-

clidean distance.

The two parts of the descriptor are simply concatenated

together making a 340 dimensional L2 normalized vector

(the L2 norm being equal to 2).

The descriptor centres are obtained by sampling promi-

nent (stronger than 30 out of 255) foreground object bound-

aries at uniform intervals. The interval lengths are deter-

mined as the maximum of 10 pixels and 1/50 of the fore-

Figure 6. Boundary descriptor matches. Two examples of cor-

rectly matched sculptures using the semi-local boundary descrip-

tor (section 2.2). Significant lighting, scale and viewpoint changes

are handled well. Note that the images contain different sculp-

ture instances but the shapes are identical and are successfully

matched. Matches shown are after spatial verification (section 3).

ground object perimeter. The descriptor scales are set to be

1, 4 and 16 times 1/10 of the foreground object area. Note
that even though the largest scale descriptor is 1.6 larger

than the object it does not in general cover the entire object

as it is often computed at the external boundary, objects are

usually elongated or not convex. The number of extracted

descriptors per image is 450 on average.

Descriptor properties and matching. As the descriptor

operates purely on boundary and segmentation data it is

fairly unaffected by light, colour and texture changes. Scale

invariance is obtained by computing the descriptor at mul-

tiple scales relative to the size of the foreground object they

belong to. The descriptor is not rotation invariant but this

can easily be alleviated by orienting the patch according to

the boundary curve tangent.

The descriptors are matched between images using Eu-

clidean distance. Note, even though three descriptors

(at different scales) are computed at each of the sampled

boundary points, these descriptors are matched indepen-

dently in the subsequent processing – we do not explic-

itly enforce consistency between them. Figure 6 shows two

examples of correctly matched sculptures, while figure 7

shows three typical retrieval results. Apart from illustrating

robustness to lighting, colour, texture and scale differences,

they also show that the descriptor is quite insensitive to sig-

nificant viewpoint changes. There are three main reasons

for this behaviour, firstly, the description is semi-local and

even under significant viewpoint change it can be expected

that some boundaries (and thus the descriptors) remain un-

changed. Secondly, even though the object silhouette can

change drastically between views, internal edges, which our

method takes into account, can be unaffected. Finally, HoG

cells inherently allow for some deformation in the position

and orientation of boundaries.

The semi-local descriptors can be matched directly be-



Figure 7. Viewpoint invariance. Each row shows one query (the left image), and the other five images are samples from the retrieved

results. These results are typical, and demonstrate the viewpoint tolerance of the semi-local boundary representation.

tween object boundaries. However, in the following section

we describe how this set of descriptors is represented as a

histogram (by vector quantization and counting) in the man-

ner of [3].

3. Retrieval procedure

Here we use the standard retrieval pipeline of Philbin et

al. [22], but instead of representing the image as bag-of-

visual-words (BoW) based on SIFT descriptors [14] com-

puted at affine covariant regions [18], we develop a bag-of-

boundaries (BoB) representation. For each image, bound-

ary descriptors are extracted as described in section 2.2 and

vector quantized using k-means; a histogram of these quan-

tized descriptors (which we will also refer to as ‘words’) is

then used to represent an image. Note, this is a bag rep-

resentation as no information about the spatial position of

the descriptors is recorded in the histogram. A query BoB

is compared to other BoBs in the dataset using the standard

tf-idf [22] measure. The tf-idf scores can be computed ef-

ficiently for each image in the database using an inverted

index, which enables real-time retrieval in large databases.

As shown in [22] spatial verification and re-ranking of

the top tf-idf retrieved results can be done efficiently and

proves to be useful as it improves precision by ensuring spa-

tial consistency between query and retrieved images. We

adopt the same model for the geometry relation, namely an

affine transformation. However, as the objects of interest

are highly three-dimensional the affine model of the trans-

formation is only approximate here, so only a very loose

affine homography is fitted (i.e. large reprojection errors are

tolerated) in order not to reject correct matches. We follow

the procedure of [22] of first using a single (boundary) word

match to determine a restricted affine transformation (in this

case translation and scaling only), followed by fitting a full

affine transformation to the inliers.

3.1. Implementation details

The BoB vocabulary is obtained from the Sculpture 6K

test set descriptors. The test set generates 1.4M descriptors,

we chose the vocabulary size to be 10k.

We spatially verify the top 200 results using a loose

affine homography, tolerating reprojection errors of up to

a 100 pixels. We also propose a new scoring system where

the score of the geometrically verified image for a given

query is computed as follows:

score = tf-idf+ αn+ β
n

nq

n

nr

(1)

where nq and nr are the number of words in the query and

result images, respectively, and n is the number of verified

matches. The proposed score is a generalization of the com-

monly used scoring scheme of [22] which corresponds to

α = 1 and β = 0. Our system accounts for the fact that

images with many features are likely to have many spatially

verified words and removes the bias from these images by

considering the number of matches relative to the total num-

ber of features in the image.

4. Dataset and Evaluation

Sculptures 6K: We have collected a new image dataset

in order to evaluate performance of smooth object retrieval

methods. The dataset was obtained in a similar manner

to the widely used Oxford Buildings dataset [22]: im-

ages containing sculptures were automatically downloaded

from Flickr [1] using queries such as “Henry Moore Re-

clining Figure”, “Henry Moore Kew Gardens” and “Rodin

Thinker”. The dataset has 6340 high resolution (1024×768)

images.

The dataset is split equally into a train and test set, each

containing 3170 images. For each set 10 different Henry

Moore sculptures are chosen as query objects, and for each

of these objects 7 images and query regions are defined,

thus providing 70 queries for performance evaluation pur-

poses. None of the 10 training set sculptures is present in

the test set, whilst for the 10 test set sculptures mostly these

are not present in the training set though there are a few oc-

currences as some images contain more than one sculpture

(e.g. images taken in a museum). As well as the images

containing these 10 sculptures in each set there are many



images containing other sculptures or indeed no sculptures

at all. These images act as distractors in retrieval. A sub-set

of the test set queries is shown in figure 8.

For each query we have manually compiled the ground

truth dividing all images into Positives, Negatives and Ig-

nores: (i) Negative – No part of the queried sculpture is

present. (ii) Positive – More than 25% of the queried sculp-

ture surface is visible. (iii) Ignore – Less than 25% of the

queried sculpture surface is visible, but the queried sculp-

ture is present. Note that our definition of the same sculp-

ture relationship requires two sculptures to have identical

shapes, however it does not require them to be the same

instances – they can be constructed of different materials,

made in different sizes and displayed at different locations.

Sculptures are ‘highly’ three-dimensional, unlike the build-

ing facades used in the Oxford Buildings dataset. For this

reason the ground truth matches are view specific and vary

over the different queries of the same sculpture. For exam-

ple, it is unreasonable to expect to retrieve an image of a

sculpture given an image taken from its opposite side. For

each query the number of positive matches can vary from 5

to a maximum of 112, with a mean of 53.4.

The Sculptures 6K dataset with all the images and

ground truth is available online at [2].

Performance evaluation: As in the case of the Oxford

Buildings dataset, retrieval quality is evaluated using mean

average precision (mAP) over all the queries. As in the

INRIA Holidays [11] evaluation, the query image is not

counted as a positive return (it is in the Oxford Build-

ings evaluation). In the mAP computation Ignores are not

counted as positive or negative.

5. Results

To evaluate the performance of smooth object retrieval

methods we follow the procedure outlined in section 4. The

mean average precision (mAP) is computed over 70 queries

on the test dataset.

Due to the lack of smooth object retrieval systems we use

the standard affine-Hessian/visual word system of Philbin

et al. [22] as a baseline (BL1). As a second baseline (BL2),

we discard all visual words on the background (i.e. visual

words are only included if their centres are in the automat-

ically segmented foreground region). This is in order to

give a fair comparison against our boundary representation

which uses the foreground/background segmentation.

Retrieval performance. The mAP scores for the two

baselines and our method are shown in table 1. As ex-

pected, there is a complete failure of the two baselines for

smooth object retrieval. Note that BL2 perform slightly

worse than BL1 (after spatial reranking with an affine ho-

mography) – this is due to the fact that many true positives

in BL1 are actually obtained by matching the background of

Method name Spat. rerank mAP A.q.t.

Baseline 1 [22] 0.080 0.05 s

Baseline 1 [22]
√

0.094 0.30 s

Baseline 2 (Bg removed) 0.081 0.03 s

Baseline 2 (Bg removed)
√

0.086 0.11 s

BoB without seg. 0.253 0.01 s

BoB without seg.
√

0.323 0.16 s

BoB with segmentation 0.454 0.01 s

BoB with segmentation
√

0.502 0.28 s

Table 1. Retrieval performance. Comparison of two baseline

bag of visual word methods (section 5) and the bag-of-boundaries

(BoB) method (section 3). Mean average precision (mAP) scores

and average query times (A.q.t.) are shown. The mAP scores

correspond to the best choice of parameters (vocabulary size and

reranking parameters α, β) for each method individually.

the sculpture installation instead of the actual queried sculp-

tures. Note that none of the methods which usually improve

retrieval performance can be hoped to help the two base-

lines: (i) query expansion [8] is only possible when the ini-

tial method yields high precision results which is certainly

not the case here, (ii) soft vector quantization [11, 23], and

(iii) learning a better vocabulary using [16, 19] both assume

the descriptors to be appropriate for the task in hand which

we demonstrate is not the case.

Our bag-of-boundaries (BoB) method proves to be very

suitable for the task of smooth object retrieval, achieving

more than a five fold increase in performance (0.502) over

the best baseline (BL1, 0.094). The importance of the seg-

mentation is shown by the ‘with and without’ comparison

(i.e. in the ‘with’ case, only boundaries on the foreground

region are used). There is 55% gain in performance for BoB

when the foreground segmentation is used compared to us-

ing the entire image. On the other hand, the without seg-

mentation performance is still quite respectable and demon-

strates the robustness to background clutter. As would be

expected, in some of the cases where automatic segmenta-

tion fails and the sculpture is assigned to background, the

without case succeeds in retrieving the image. However,

it is more prone to background clutter and less resistant to

scale change as there is no scheme for automatic descriptor

scale selection.

Examples of ranked retrieval results are given in fig-

ures 1, 7 and 9. They illustrate the appropriateness of the

BoB system for the smooth object retrieval task as signif-

icant lighting, scale, viewpoint, colour and material differ-

ences are successfully handled.

Table 1 also gives the retrieval speed, tested on a laptop

with a 2.67 GHz core i7 processor using only a single core.

It can be seen that due to the inverted index implementa-

tion, the BoB representation enables real time retrieval to

the same extent as visual words. The BoB representation is

much sparser than the BoW (450 words per image for BoB

compared to 2600 for BoW) making the entire storage re-



Figure 8. Test dataset query images. 30 query images (out of 70) used for evaluation in the Sculptures 6K test dataset. Each column

shows 3 (out of 7) query images for one sculpture. Note the large variations in scale, viewpoint, lighting, material and background.

Figure 9. Retrieval results. Each column shows one retrieval re-

sult, the query image and ROI are shown in the first row, followed

by the top 7 ranked retrieved images.

quirements for the system (inverted and forward indexes) a

mere 20 MBs (in the BoW case this is 275 MBs). Our ap-

proach is thus much more scalable than the existing BoW

ones as the BoB representation of up to 5 million images

can fit into main memory on a system with 32 GB of RAM.

To further test the resistance to distractors, a larger scale

retrieval test was performed by adding all 5062 images from

the Oxford Buildings dataset to the testset. The mAP per-

formance only dropped to 0.451 (from 0.502) despite the

variety of images in the distractor dataset.

Due to the semi-local HoG boundary description (fig-

ure 5) and the BoB representation, the matching is capable

of handling the significant segmentation failures that are

bound to happen in a fully automatic system. The semi-

local property means that a proportion of the HoG descrip-

tors computed on the boundary will still be valid (the pro-

portion depending on the extent of the segmentation fail-

ure), and the BoB representation enables matches for im-

ages where only a subset of the quantized descriptors are

in common. Thus, as can be seen in figure 10, retrieval

can succeed both in the cases of under-segmentation (where

HoG descriptors will be missing) and over-segmentation

(where additional erroneous boundaries are generated).

Parameter and descriptor variation. The choice of de-

scriptor scales is critical for retrieval performance as reduc-

ing the areas by a factor of 4 reduces the mAP from 0.502 to

0.404. The problemwith using small descriptors is that they

are too local thus mainly capturing the orientation of a sin-

gle edge, which without surrounding boundary information

is completely non-discriminative.

Not using descriptors centred on internal boundaries but

keeping the internal boundary information in the remaining

descriptors reduces the mAP to 0.469, while not taking in-

ternal boundaries into account at all decreases it further to

0.433. This proves that using internal boundaries is very

beneficial for shape representation.

The system is quite insensitive to the number of HoG

and occupancy grid cells, using a coarser grid (3 × 3) de-

creases the mAP from 0.502 to 0.485 while using a finer

one (6 × 6) increases it slightly to 0.509. The slight in-

crease in performance when using a finer grid is not worth

the large increase in descriptor dimensionality (from 340 to

936). Excluding the 16 dimensional occupancy grid part

of the boundary descriptor decreases the mAP from 0.502

to 0.485, so it provides good value for the small descriptor

dimensionality increase (from 324 to 340).

A main source of failure is due to the inevitable auto-

matic segmentation mistakes, it is most prominent when the

sculpture pixels in the query image are assigned to the back-



Figure 10. Robustness to segmentation failures. An example

of a correctly matched sculpture despite significant segmentation

failures. The segmentations are shown above the original images.

ground. This failure can be potentially alleviated by either

segmenting the query image online or keeping descriptors

for multiple alternative segmentations. The second failure

mode is when all matched words occur spatially close to

each other thus only effectively representing one part of the

object which is not necessarily discriminative. A poten-

tial solution is to modify spatial verification to incorporate

the information about the spatial distribution of matches,

but this must be traded against robustness to occlusion and

viewpoint change.

We investigate the effect of varying the reranking (sec-

tion 3.1) parameter β for fixed α = 0 on the mAP scores.

The performance increases monotonically with β which ef-

fectively means the last portion of (1), which accounts for

relative number of matched words, should dominate the

reranking, while the tf-idf scores should be used for tie-

breaking. Our reranking procedure, for the BoB method,

always outperforms the reference reranking method [22]

which uses just the unnormalized number of inliers and tf-

idf. When a 10 times smaller vocabulary is used the benefits

of the proposed reranking method are even more apparent

(0.449 compared to 0.391) – words are less discriminative

allowing the reference reranking method to incorrectly ver-

ify images with many features more easily thus reducing its

precision.

6. Conclusions and further work

We have succeeded in our aim of raising 3D smooth

objects to a first class specific object. This required both

segmentation (a discriminative representation of the mate-

rial appearance) and boundary representation. In doing this

we have demonstrated that HoG can also be used as a de-

scriptor for specific object retrieval (given suitably cleaned

data), rather than solely as a descriptor where learning must

be used. We have also established that 3D sculptures (as

an example of 3D smooth objects) can be successfully re-

trieved using only a bag of boundary representation – with-

out requiring any additional spatial information in the first

instance.

We expect our framework to generalize to other classes

of smooth objects, but new classifiers need to be trained

to segment particular classes, e.g. plastic bottles, semi-

transparent objects, etc.
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