
SMOOTH OPTIMIZATION

WITH APPROXIMATE GRADIENT

ALEXANDRE D’ASPREMONT∗

Abstract. We show that the optimal complexity of Nesterov’s smooth first-order optimization
algorithm is preserved when the gradient is only computed up to a small, uniformly bounded error. In
applications of this method to semidefinite programs, this means in some instances computing only a
few leading eigenvalues of the current iterate instead of a full matrix exponential, which significantly
reduces the method’s computational cost. This also allows sparse problems to be solved efficiently
using sparse maximum eigenvalue packages.

1. Introduction. In [13] it was shown that smooth convex minimization prob-
lems of the form:

minimize f(x)
subject to x ∈ Q,

where f is a convex function with Lipschitz continuous gradient and Q is a sufficiently
simple compact convex set, could be solved with a complexity of O(1/

√
ǫ), where ǫ

is the precision target. Furthermore, it can be shown that this complexity bound
is optimal for that class of problems (see [14] for a dicussion). More recently, [15]
showed that this method could be combined with a smoothing argument to produce
an O(1/ǫ) complexity bound for non-smooth problems where the objective has a
saddle-function format. In particular, this meant that a broad class of semidefinite
optimization problems could be solved with significantly lower memory requirements
than interior point methods and a better complexity bound than classic first order
methods (bundle, subgradient, etc).

Here, we show that substituting an approximate gradient, which may allow sig-
nificant computation and storage savings, does not affect the optimal complexity of
the algorithm in [13]. It is somewhat intuitive that an algorithm which exhibits good
numerical performance in practice should be robust to at least some numerical error
in the objective function and gradient computations since all implementations are
necessarily computing these quantities up to some multiple of machine precision. Our
objective here is to make that robustness explicit in order to design optimal schemes
using only approximate gradient information.

For non-smooth problems, when the objective function f(x) can be expressed as a
saddle function on a compact set, the method in [15] starts by computing a smooth (i.e.
with Lipschitz continuous gradient), uniform ǫ-approximation of the objective function
f(x), it then uses the smooth minimization algorithm in [13] to solve the approximate
problem. When this smoothing technique is applied to semidefinite optimization,
computing exact gradients requires forming a matrix exponential, which is often the
dominant numerical step in the algorithm.

Although there are many different methods for computing this matrix exponential
(see [11] for a survey), their complexity is comparable to that of a full eigenvalue de-
composition of the matrix. In problem instances where only a few leading eigenvalues
suffice to approximate this exponential, the per iteration complexity of the algorithm
described here becomes comparable to that of classical first-order methods such as the
bundle method (see [6]) or subgradient methods (see [19] for example), which have a

∗ORFE Department, Princeton University, Princeton, NJ 08544. aspremon@princeton.edu

1

global complexity bound of O(1/ǫ2) (see [14]), while keeping the optimal complexity
of O(1/ǫ) of the algorithm in [15].

We apply this result to a maximum eigenvalue minimization problem (or semidef-
inite program with constant trace). We first recall the complexity bound derived in
[16] based on a smoothing argument, using exact gradients. We produce a rough
theoretical estimate of the number of eigenvalues required for convergence when ap-
proximate gradients are used. We then derive an explicit condition on the quality of
the gradient approximation to guarantee convergence and compute a bound on the
number of iterations. We show both on randomly generated problem instances and
on problems generated from biological data sets that actual computational savings
vary significantly with problem structure but can be substantial in some cases.

The paper is organized as follows. In the next section, we prove convergence of
the algorithm in [13] when only an approximate gradient is used. In Section 3 we
describe how these results can be applied to semidefinite optimization. Finally, in
the last section we test their performance on semidefinite relaxation and maximum
eigenvalue minimization problems.

2. Smooth optimization with approximate gradient. Following the results
and notations in [15, §3], we study the problem:

minimize f(x)
subject to x ∈ Q,

(2.1)

where Q ⊂ Rn is a compact convex set and f is a convex function with Lipschitz
continuous gradient, such that:

‖∇f(x) −∇f(y)‖∗ ≤ L‖x− y‖, x, y ∈ Q,

for some L > 0, which also means:

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
1

2
L‖y − x‖2, x, y ∈ Q.(2.2)

The key difference here is that the oracle information we obtain for ∇f is noisy.
Note that the function values are not required to compute iterates in the algorithm
described here, so even if our knowledge of function values f(x) is noisy, we will
always use exact values in the proofs that follow. At each iteration, we obtain ∇̃f(x)
satisfying:

|〈∇̃f(x) −∇f(x), y − z〉| ≤ δ x, y, z ∈ Q,(2.3)

for some precision level δ > 0. Throughout the paper, we assume that Q is simple
enough so that this condition can be checked efficiently. As in [13], we also assume
that certain projection operators on Q can be computed efficiently and we refer the
reader to the end of this section for more details. Here, d(x) is a prox-function for
the set Q, i.e. continuous and strongly convex on Q with parameter σ (see [14] or [7]
for a discussion of regularization techniques using strongly convex functions). We let
x0 be the center of Q for the prox-function d(x) so that:

x0 , argmin
x∈Q

d(x),

assuming w.l.o.g. that d(x0) = 0, we then have:

d(x) ≥ 1

2
σ‖x− x0‖2.(2.4)

2

We denote by T̃Q(x) a solution to the following subproblem:

T̃Q(x) , argmin
y∈Q

{

〈∇̃f(x), y − x〉 +
1

2
L‖y − x‖2

}

(2.5)

We let y0 = T̃Q(x0) where x0 is defined above. We recursively define three sequences

of points: the current iterate {xk}, the corresponding yk = T̃Q(xk), together with

zk , argmin
x∈Q

{

L

σ
d(x) +

k
∑

i=0

αi[f(xi) + 〈∇̃f(xi), x− xi〉]
}

(2.6)

and a step size sequence {αk} ≥ 0 with α0 ∈ (0, 1] so that

xk+1 = τkzk + (1 − τk)yk

yk+1 = T̃Q(xk+1)
(2.7)

where τk = αk+1/Ak+1 with Ak =
∑k

i=0 αi. We implicitly assume here that the
two subproblems defining yk and zk can be solved very efficiently (in the examples
that follow, they amount to Euclidean projections). We will show recursively that
for a good choice of step sequence αk, the iterates xk and yk satisfy the following
relationship (denoted by Rk):

Akf(yk) ≤ ψk +Akg(k, δ) (Rk)

where g(k, δ) measures the accumulated gradient approximation error and will be
bounded in Lemma 2.1, and

ψk , min
x∈Q

{

L

σ
d(x) +

k
∑

i=0

αi[f(xi) + 〈∇̃f(xi), x− xi〉]
}

.

First, using d(x) ≥ 1
2σ‖x− x0‖2, then inequality (2.2) and condition (2.3), we have:

ψ0 = min
x∈Q

{

L

σ
d(x) + α0[f(x0) + 〈∇̃f(x0), x − x0〉]

}

≥ α0f(y0) − α0δ

which is R0. We can then bound the approximation error in the following result.
Lemma 2.1. Let αk be a step sequence satisfying:

0 < α0 ≤ 1 and α2
k ≤ Ak, k ≥ 0,(2.8)

suppose that (Rk) holds with xk+1 and yk+1 are defined as in (2.7), then (Rk+1) holds
with:

g(k + 1, δ) = (1 − τk)g(k, δ) + τk3δ,

where τk ∈ [0, 1] and g(0, δ) = α0δ.
Proof. Let us assume that (Rk) holds. Because d(x) is strongly convex with

parameter σ, the function:

L

σ
d(x) +

k
∑

i=0

αi[f(xi) + 〈∇̃f(xi), x− xi〉]

3

is strongly convex with parameter L. Using this property and the definition of zk we
obtain:

ψk+1 = min
x∈Q

{

L

σ
d(x) +

k+1
∑

i=0

αi[f(xi) + 〈∇̃f(xi), x− xi〉]
}

≥ min
x∈Q

{

ψk +
1

2
L‖x− zk‖2 + αk+1[f(xk+1) + 〈∇̃f(xk+1), x− xk+1〉]

}

.

Now, using (Rk) then the convexity of f(x), we get:

ψk +Akg(k, δ) + αk+1[f(xk+1) + 〈∇̃f(xk+1), x− xk+1〉]
≥ Akf(yk) + αk+1[f(xk+1) + 〈∇̃f(xk+1), x− xk+1〉]
≥ Ak[f(xk+1) + 〈∇f(xk+1), yk − xk+1〉] + αk+1[f(xk+1) + 〈∇̃f(xk+1), x− xk+1〉],

and condition (2.3), together with (2.7) imply that:

Ak[f(xk+1) + 〈∇f(xk+1), yk − xk+1〉] + αk+1[f(xk+1) + 〈∇̃f(xk+1), x− xk+1〉]
≥ Ak+1f(xk+1) + 〈∇f(xk+1), Akyk −Akxk+1 + αk+1(x − xk+1)〉 − αk+1δ

= Ak+1f(xk+1) + αk+1〈∇f(xk+1), x− zk〉 − αk+1δ.

Because αk satisfies (2.8), we have τ2
k ≤ A−1

k+1 and can combine the last three inequal-
ities to get:

ψk+1 ≥ Ak+1f(xk+1) −Akg(k, δ) − αk+1δ

+ minx∈Q

{

1
2L‖x− zk‖2 + αk+1〈∇f(xk+1), x− zk〉

}

≥ Ak+1[f(xk+1) − (1 − τk)g(k, δ) − τkδ

+ minx∈Q

{

1
2Lτ

2
k‖x− zk‖2 + τk〈∇f(xk+1), x− zk〉

}

].

(2.9)

Let us define y , τkx+ (1 − τk)yk so that y − xk+1 = τk(x− zk), with:

minx∈Q

{

1
2Lτ

2
k‖x− zk‖2 + τk〈∇f(xk+1), x− zk〉

}

= min{y∈τkQ+(1−τk)yk}

{

1
2L‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}

.

Combining condition (2.3) with the fact that y−xk+1 = τk(x−zk) for some x, zk ∈ Q,
we get:

min{y∈τkQ+(1−τk)yk}

{

1
2L‖y − xk+1‖2 + 〈∇f(xk+1), y − xk+1〉

}

≥ min{y∈τkQ+(1−τk)yk}

{

1
2L‖y − xk+1‖2 + 〈∇̃f(xk+1), y − xk+1〉

}

− τkδ

Now, because Q is convex, we must have τkQ+ (1 − τk)yk ⊂ Q and:

min{y∈τkQ+(1−τk)yk}

{

1
2L‖y − xk+1‖2 + 〈∇̃f(xk+1), y − xk+1〉

}

− τkδ

≥ miny∈Q

{

1
2L‖y − xk+1‖2 + 〈∇̃f(xk+1), y − xk+1〉

}

− τkδ.

4

By the definition of yk+1 = T̃Q(xk+1) and using condition (2.3), we get:

miny∈Q

{

1
2L‖y − xk+1‖2 + 〈∇̃f(xk+1), y − xk+1〉

}

− τkδ

= 1
2L‖T̃Q(xk+1) − xk+1‖2 + 〈∇̃f(xk+1), T̃Q(xk+1) − xk+1〉 − τkδ

≥ 1
2L‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉 − 2τkδ,

and inequality (2.2) gives:

1
2L‖yk+1 − xk+1‖2 + 〈∇f(xk+1), yk+1 − xk+1〉 − 2τkδ,

≥ f(yk+1) − f(xk+1) − 2τkδ.

Combining these inequalities with the inequality on ψk+1 in (2.9), we finally get:

ψk+1 ≥ Ak+1 [f(yk+1) − (1 − τk)g(k, δ) − 3τkδ]

which is the desired result.
We can use this result to study the convergence of the following algorithm given

only approximate gradient information.

Smooth minimization with approximate gradient.

Starting from x0, the prox center of the set Q, we iterate:
1. compute ∇̃f(xk),
2. compute yk = T̃Q(xk),

3. compute zk = argminx∈Q

{

L
σ d(x) +

∑k
i=0 αi[f(xi) + 〈∇̃f(xi), x− xi〉]

}

,

4. update x using xk+1 = τkzk + (1 − τk)yk,

Again, because solving for yk and zk can often be done very efficiently, the dom-
inant numerical step in this algorithm is the evaluation of ∇̃f(xk). If the step size
sequence αk satisfies the conditions of Lemma 2.1, we can show the following conver-
gence result:

Theorem 2.2. Suppose αk satisfies equation (2.8), with the iterates xk and yk

defined in (2.6) and (2.7), then for any k ≥ 0 we have:

f(yk) − f(x⋆) ≤ Ld(x⋆)

Akσ
+ 3δ

where x⋆ is an optimal solution to problem (2.1).
Proof. If αk satisfies the hypotheses of lemma 2.1 we have:

Akf(yk) ≤ ψk +Akg(k, δ)

where Ak =
∑k

i=0 αi and g(k, δ) ≤ 3δ. Now, because f(x) is convex, we also have:

ψk ≤ L

σ
d(x⋆) +Akf(x⋆) +Ak3δ

which yields the desired result.

5

When d(x⋆) < +∞ (e.g. if Q is bounded), if we set the step sequence as αk =
(k + 1)/2 and δ to some fraction of the target precision ǫ (here ǫ/6), Ak grows as
O(k2) and Theorem 2.2 ensures that the algorithm will converge to an ǫ solution in
less than:

√

8Ld(x⋆)

σǫ
(2.10)

iterations. In practice of course, d(x⋆) needs to be bounded a priori and L is often
hard to evaluate. A notable exception is when f(x) is a smooth approximation (as in
[15, 16] for example), in which case L is know explicitly as a function of the precision.
We have implicitly assumed, as in [13], that the set Q is simple enough so that
the complexity of solving the two minimization subproblems in steps 2 and 3 of the
algorithm is low relative to that of approximating the gradient. We also implicitly
assumed that the set Q is simple enough so that condition (2.3) can be checked
efficiently. In the numerical experiments of Section 4 for example, steps 2 and 3 are
Euclidean projections on the unit box and condition (2.3) is a simple inequality on
the leading eigenvalues of the current iterate.

3. Semidefinite optimization. Here, we describe in detail how the results of
the previous section can be applied to semidefinite optimization. We consider the
following maximum eigenvalue problem:

minimize λmax(AT y + c) − bT y
subject to y ∈ Q,

(3.1)

in the variable y ∈ Rm, with parameters A ∈ Rm×n2

, b ∈ Rm and c ∈ Rn2

. Let
us remark that when Q is equal to Rm, the dual of this program is a semidefinite
program with constant trace written:

maximize cTx
subject to Ax = b

Tr(x) = 1
x � 0,

(3.2)

in the variable x ∈ Rn2

, where Tr(x) = 1 means that the matrix obtained by reshap-
ing the vector x has trace equal to one and x � 0 means that this same matrix is
symmetric, positive semidefinite.

3.1. Smoothing technique. As in [12], [16], [3] or [2] we can find a uniform
ǫ-approximation to λmax(X) with Lipschitz continuous gradient. Let µ > 0 and
X ∈ Sn, we define:

fµ(X) = µ log

(

n
∑

i=1

eλi(X)/µ

)

= µ log

(

e
λmax(X)

µ

(

1 +

n
∑

i=2

e
λi(X)−λmax(X)

µ

))

where λi(X) is the ith eigenvalue of X . This is also:

fµ(X) = λmax(X) + µ logTr

(

exp

(

X − λmax(X)I

µ

))

(3.3)

which requires computing a matrix exponential at a numerical cost of O(n3). We then
have:

λmax(X) ≤ fµ(X) ≤ λmax(X) + µ logn,

6

so if we set µ = ǫ/ logn, fµ(X) becomes a uniform ǫ-approximation of λmax(X). In
[16] it was shown that fµ(X) has a Lipschitz continuous gradient with constant:

L =
1

µ
=

log n

ǫ
.

The gradient ∇fµ(X) can also be computed explicitly as:

exp
(

X−λmax(X)I
µ

)

Tr
(

exp
(

X−λmax(X)I
µ

))(3.4)

using the same matrix exponential as in (3.3). Let ‖y‖ be some norm on Rm and
d(x) a strongly convex prox-function with parameter σ > 0. As in [16], we define:

‖A‖ = max
‖h‖=1

‖ATh‖2,

where ‖ATh‖2 = maxi |λi(A
Th)|. The algorithm detailed in [15], where exact function

values and gradients are computed, will find an ǫ solution to (3.1) after at most:

2‖A‖
ǫ

√

logn

σ
d(y⋆)(3.5)

iterations, each iteration requiring a matrix exponential computation.

3.2. Spectrum & expected performance gains. The complexity estimate
above is valid when the matrix exponential in (3.3) is computed exactly, at a cost of
O(n3). As we will see below, only a few leading eigenvalues are sometimes required to
satisfy conditions (2.3) and obtain a comparable complexity estimate at a much lower
numerical cost. To illustrate the potential complexity gains, let us pick a matrix
X ∈ Sn whose coefficients are centered independent normal variables with second
moment given by σ2/n. From Wigner’s semicircle law, λmax(X) ∼ 2σ as n goes
to infinity and the eigenvalues of X are asymptotically distributed according to the
density:

p(x) =
1

2πσ2

√

4σ2 − x2,

which means that, in the limit, the proportion of eigenvalues required to reach a
precision of γ in the exponential is given by:

Pλ , P

(

e
λi(X)−λmax(X)

µ ≤ γ

)

=

∫ 2σ+ǫ log γ
log n

−2σ

1

2πσ2

√

4σ2 − x2dx.

Since the problems under consideration are relaxations of sparse PCA, we can also
consider the case where X ∈ Sn is sampled from the Wishart distribution. In that
case, the eigenvalues are distributed according to the Marc̆enko-Pastur distribution
(see [10]) and the above proportion becomes:

Pλ = P

(

e
λi(X)−λmax(X)

µ ≤ γ

)

=

∫ 2σ+ǫ log γ
log n

−2σ

√

x(4σ − x)

2πx
dx.

With n = 5000, γ = 10−6 and ǫ = 10−2, we get nPλ = 2.3, so the approxima-
tions above would suggest that, in theory, it is only necessary to compute about
three eigenvalues per iteration to get an approximation with precision γ = 10−6. In
practice however, the results of Section 4 show that these rough estimates should be
significantly tempered.

7

3.3. Global complexity bound. Let us now focus on the following program:

minimize λmax(AT y + c)
subject to ‖y‖ ≤ β,

(3.6)

where the set Q is here explicitly given by :

Q = {y ∈ Rp : ‖y‖ ≤ β} ,

for some β > 0 with ‖.‖ the Euclidean norm here. We can pick ‖x‖2/2 as a prox
function for Q, which is strongly convex with convexity parameter 1. Let λ(X) ∈ Rn

be the eigenvalues of the matrix X = AT y+ c, in decreasing order, with ui(X) ∈ Rn

an orthonormal set of eigenvectors. The gradient matrix of exp(X/µ) is written:

∇fµ(X) =

(

n
∑

i=1

e
λi(X)

µ

)−1 n
∑

i=1

e
λi(X)

µ ui(X)ui(X)T ,

Suppose we only compute the first m eigenvalues and use them to approximate this
gradient by:

∇̃fµ(X) =

(

m
∑

i=1

e
λi(X)

µ

)−1 m
∑

i=1

e
λi(X)

µ ui(X)ui(X)T ,

we get the following bound on the error:

‖∇fµ(X) − ∇̃fµ(X)‖ ≤
√

2(n−m)e
λm(X)−λ1(X)

µ

(

∑m
i=1 e

λi(X)−λ1(X)

µ

) .

In this case, with X = AT y − c here, condition (2.3) means that we only need to
compute m eigenvalues with m such that:

√
2(n−m)e

λm(X)−λ1(X)
µ

(

∑m
i=1 e

λi(X)−λ1(X)

µ

) ≤ δ

σmax(A)
,(3.7)

where σmax(A) is the largest singular value of the matrix A. Using the result in [16],
if we define ‖A‖ = max‖h‖=1 ‖Ah‖2 and set δ = ǫ/6, the algorithm in Section 2 will
then converge to an ǫ-solution of problem (3.6) in at most:

4‖A‖β
ǫ

√

logn(3.8)

iterations. This bound on the number of iterations is independent of m in condition
(3.7), i.e. the number of eigenvalues required at each iteration. The cost per itera-
tion however varies with problem structure as each iteration requires computing m
leading eigenvalues, which can be performed in O(mn2) operations. Note that par-
tial eigenvalue decompositions only access the matrix through matrix-vector products
(see [8]), hence can handle sparse problems very efficiently. The threshold δ can be
adjusted empirically to tradeoff between the number of iterations and the numerical
cost of each iteration. Unfortunately, we can’t directly infer a bound on m from the
structure of A, so in the next section we study the link between m and the matrix
spectrum in numerical examples.

8

4. Examples & numerical performance. In this section, we illustrate the
behavior of the approximate gradient algorithm on various semidefinite optimization
problems. Overall, while there appears to be a direct link between problem structure
and complexity (i.e. the number of eigenvalues required in the gradient approxi-
mation) in the first sparse PCA example discussed below, we will observe on ran-
dom maximum eigenvalue minimization problems that predicting complexity based
on overall problem structure remains an open numerical question in general.

4.1. Sparse principal component analysis. Based on the results in [3], the
problem of finding a sparse leading eigenvector of a matrix C ∈ Sn can be written:

maximize xTCx
subject to ‖x‖2 = 1

Card(x) ≤ k,
(4.1)

where Card(x) is the number of nonzero coefficients in x, and admits the following
semidefinite relaxation:

maximize Tr(CX) − ρ1T |X |1
subject to Tr(X) = 1

X � 0,
(4.2)

which is a semidefinite program in the variable X ∈ Sn, where ρ > 0 is the penalty
controlling the sparsity of the solution. Its dual is given by:

minimize λmax(C + U)
subject to |Uij | ≤ ρ, i, j = 1, . . . , n,

(4.3)

which is of the form (3.1) with

Q = {U ∈ Sn : |Uij | ≤ ρ, i, j = 1, . . . , n} .

The smooth algorithm detailed in Section 2 is explicitly described for this problem
in [3] and implemented in a numerical package called DSPCA which we have used in
the examples here. To test its performance, we generate a matrix M with uniformly
distributed coefficients in [0, 1]. We let e ∈ R250 be a sparse vector with:

e = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, . . .).

We then form a test matrix C = MTM + veeT , where v is a signal-to-noise ratio.
In Figure 4.1 on the left, we plot duality gap versus CPU time used for values of

the signal to noise ratio v ranging from 10 to 100. In Figure 4.1 on the right, we plot
number of eigenvalues required against computing time using a covariance matrix of
dimension n = 500 sampled from the colon cancer data set in [1], and a noisy rank
one matrix. Finally, we measure total computing time versus problem dimension n on
this same data set, by solving problem (4.2) for increasingly large submatrices of the
original covariance matrix. In each of these examples, we stop after the duality gap has
been reduced by 10−2, which is enough here to identify sparse principal components.
In Figure 4.2 on the left, we plot computing time versus target precision in loglog
scale, on a sparse PCA problem of size 200 extracted from the colon cancer data set.
In the previous section, we have seen that precision impacts computing time both
through the total number of iterations in (3.5) and through condition (3.7) on the
number of eigenvalues required in the gradient approximation. In this example, we

9

0 1 2 3 4 5 6 7 8 9
10

−4

10
−3

10
−2

10
−1

10
0

v=10
v=50
v=100

CPU time (in sec.)

D
u
a
li
ty

g
a
p

0 50 100 150 200 250 300 350 400 450
0

2

4

6

8

10

12

14

Rho = 32
Rho = 30
Rho = 28
Rho = 24

CPU time (in sec.)

%
ei

g
s.

Fig. 4.1. Left: Duality gap versus CPU time for various values of the signal to noise ra-
tio v. Right: Percentage of eigenvalues required versus CPU time, for various values of the penalty
parameter ρ controlling sparsity.

10
−3

10
−2

10
−1

10
0

Precision target

C
P

U
ti
m

e
(i
n

se
c.

)

10
−3

10
−2

10
−1

0.5

1

1.5

2

2.5

3

3.5

Precision target

%
ei

g
s.

Fig. 4.2. Left: CPU time (in seconds) versus target precision in loglog scale. Right: average
percentage of eigenvalues required at each iteration versus target precision, in semilog scale.

observe that CPU time increases a little bit slower than the upper bound of O(1/ǫ)
given in (4.2). In Figure 4.2 on the right, we plot the average percentage of eigenvalues
required at each iteration versus target precision, in semilog scale. We observe, on
this example of dimension 200, that for low target precisions, one eigenvalue is often
enough to approximate the gradient, but that this number quickly increases for higher
precision targets. Note that in all cases, the precision targets are significantly lower
than those achieved by interior point methods (usually at least 10−8) but the cost per
iteration and storage requirements of the first-order algorithms detailed here are also
significantly lower.

In Table 4.1, we then compare total CPU time using a full precision matrix
exponential, against CPU time using only a partial eigenvalue decomposition to ap-
proximate this exponential. Note that other classic methods for computing the matrix
exponential such as Padé approximations (see [11]), did not provide a significant per-
formance benefit and are not included here. Both exact and approximate gradient
codes are fully written in C, with partial eigenvalue decompositions computed using
the FORTRAN package ARPACK (see [8]) with calls to vendor optimized BLAS and
LAPACK for matrix operations. To improve stability, the size of the Lanczos basis
in ARPACK was set at four times the number of eigenvectors required. We observe
that, on these problems, the partial eigenvalue decomposition method is about ten
times faster.

10

n = 100 n = 200 n = 500
Rank one, Full 3.2 8.0 14.7

Rank one, Partial 0.4 0.75 1.6
Colon, Full 2.6 18.1 274.3

Colon, Partial 0.3 1.3 17.7
Table 4.1

CPU time (in seconds) versus problem dimension n for full and partial eigenvalue matrix
exponential computations.

4.2. Matrix structure and complexity: open numerical issues. The pre-
vious section showed how the spectrum of the current iterate impacts the complexity
of the algorithm detailed in this paper: a steeply decreasing spectrum allows fewer
eigenvalues to be computed in the matrix exponential approximation, and a wider
gap between eigenvalues improves the convergence rate of these eigenvalue compu-
tations. In this section, we study the number of eigenvalues required in randomly
generated maximum eigenvalue minimization problems. Because of the measure con-
centration phenomenon, there is nothing really random about the spectrum of large-
scale, naively generated semidefinite optimization problems so we begin by detailing
a simple method for generating random matrices with a given spectrum.

Generating random matrices with a given spectrum. Suppose X ∈ Sn is a matrix
with normally distributed coefficients, Xij ∼ N (0, 1), i, j = 1, . . . , n. If we write its
QR decomposition, X = QR with Q, R ∈ Rn×n, then the orthogonal matrix Q is
Haar distributed on the orthogonal group On (see [4] for example). This means that
to generate a random matrix with given spectrum λ ∈ Rn, we generate a normally
distributed matrix X , compute its QR decomposition and the matrix Q diag(λ)QT

will be uniformly distributed on the set of symmetric matrices with spectrum λ.
Maximum eigenvalue minimization. We now form random maximum eigenvalue

minimization problems, then study how the number of required eigenvalues in the
gradient computation evolves as the solution approaches optimality. We solve the
following problem:

minimize λmax(AT y + c)
subject to ‖y‖ ≤ β,

in the variable y ∈ Rm, where c ∈ Rn2

, A ∈ Rm×n2

and β > 0 is an upper bound
on the norm of the solution. In Figure 4.3 we plot percentage of eigenvalues required
in the gradient computation versus duality gap for randomly generated problem in-
stances where n = 50 and m = 25. The first two plots use data matrices with Gaus-
sian and Wishart distributions, whose spectrum are distributed according to Wigner’s
semicircle law and the Marc̆enko-Pastur distribution respectively. The last two plots
use the procedure described above to generate matrices with uniform spectrum on
[0, 1], and uniform spectrum on [0, 1] with one eigenvalue set to 5. We observe that
the number of eigenvalues required in the algorithm varies significantly with matrix
spectrum.

Problem structure and effective complexity. The results on sparse PCA in §4.1
and on the random problems of this section show that problem structure has a sig-
nificant impact on performance. Predicting how many eigenvalues will be required
at each iteration based on structural properties of the problem is an important but
difficult question. In particular, the number of eigenvalues required in the Gaus-
sian case is much higher than what the asymptotic analysis in Section 3.2 predicted.

11

Furthermore, in the sparse PCA example, complexity seems to vary with problem
structure somewhat intuitively: higher signal to noise ratio means lower complexity
and a higher sparsity target means higher complexity. However, this is not the case in
the random problems studied here, two unstructured problems (uniform and Wishart)
have low complexity while one requires computing many more eigenvalues per itera-
tion (Gaussian) and a more structured example (uniform plus rank one) also requires
many eigenvalues. Overall then, predicting effective complexity (i.e. the number of
eigenvalues required at each iteration) based on problem structure remains a difficult
open question at this point.

Also, it is well known empirically (see [17], [9] and [18] among others) that the
largest eigenvalues of AT y− c in (3.1) tend to coalesce near the optimum, thus poten-
tially increasing the number of eigenvalues required when computing ∇̃f(x) and the
number of iterations required for computing leading eigenvalues (see [5] for example),
but in these references too, no a priori link between coalescence and problem struc-
ture is established. This coalescence phenomenon is never apparent in the numerical
examples studied here, perhaps because it only appears at the much higher precision
targets reached by interior point methods.

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

10
−3

10
−2

10
−1

10
0

0

20

40

60

80

100

10
−2

10
−1

10
0

0

20

40

60

80

100

10
−2

10
−1

10
0

0

20

40

60

80

100

gapgap

gapgap

%
ei

g
.

%
ei

g
.

%
ei

g
.

%
ei

g
.

Gaussian Wishart

Uniform Uniform +1

Fig. 4.3. Average percentage of eigenvalues required (solid line) versus duality gap on randomly
generated maximum eigenvalue minimization problems, for various problem matrix distributions.
Dashed lines at plus and minus one standard deviation.

Acknowledgements. The author would like to thank Noureddine El Karoui for
very useful comments and to acknowledge support from NSF grant DMS-0625352,
ONR grant number N00014-07-1-0150, a Peek junior faculty fellowship and a gift
from Google, Inc.

12

REFERENCES

[1] A. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine,
Broad patterns of gene expression revealed by clustering analysis of tumor and normal
colon tissues probed by oligonucleotide arrays, Cell Biology, 96 (1999), pp. 6745–6750.

[2] A. Ben-Tal and A. Nemirovski, Non-Euclidean restricted memory level method for large-scale
convex optimization, Mathematical Programming, 102 (2005), pp. 407–456.

[3] A. d’Aspremont, L. El Ghaoui, M.I. Jordan, and G. R. G. Lanckriet, A direct formulation
for sparse PCA using semidefinite programming, SIAM Review, 49 (2007), pp. 434–448.

[4] P. Diaconis, Patterns in eigenvalues: The 70th Josiah Willard Gibbs lecture, Bulletin of the
American Mathematical Society, 40 (2003), pp. 155–178.

[5] G.H. Golub and C.F. Van Loan, Matrix computation, North Oxford Academic, (1990).
[6] C. Helmberg and F. Rendl, A spectral bundle method for semidefinite programming, SIAM

Journal on Optimization, 10 (2000), pp. 673–696.
[7] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal, Convex Analysis and Minimiza-

tion Algorithms, Springer, 1993.
[8] R.B. Lehoucq, D.C. Sorensen, and C. Yang, ARPACK: Solution of Large-scale Eigen-

value Problems with Implicitly Restarted Arnoldi Methods, Society for Industrial & Applied
Mathematics, 1998.

[9] A.S. Lewis and M.L. Overton, Eigenvalue optimization, Acta Numerica, 5 (1996), pp. 149–
190.

[10] V.A. Marc̆enko and L.A. Pastur, Distribution of eigenvalues for some sets of random ma-
trices, Mathematics of the USSR - Sbornik, 1 (1967), pp. 457–483.

[11] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later, SIAM Review, 45 (2003), pp. 3–49.

[12] A. Nemirovski, Prox-method with rate of convergence O(1/T) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems,
SIAM Journal on Optimization, 15 (2004), pp. 229–251.

[13] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Mathematics Doklady, 27 (1983), pp. 372–376.

[14] , Introductory Lectures on Convex Optimization, Springer, 2003.
[15] , Smooth minimization of non-smooth functions, Mathematical Programming, 103

(2005), pp. 127–152.
[16] , Smoothing technique and its applications in semidefinite optimization, Mathematical

Programming, 110 (2007), pp. 245–259.
[17] M. L. Overton, Large scale optimization of eigenvalues, SIAM Journal on Optimization, 2

(1992), pp. 88–120.
[18] G. Pataki, On the rank of extreme matrices in semidefinite programs and the multiplicity of

optimal eigenvalues, Mathematics of Operations Research, 23 (1998), pp. 339–358.
[19] N. Z. Shor, Minimization Methods for Non-differentiable Functions, Springer-Verlag, Berlin,

1985.

13

