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SMOOTH PARAMETRIC SURFACES AND n-SIDED PATCHES 

JOHN A. GREGORY, VINCENT K.H. LAU, JIANWEI ZHOU 
Department of Mathematics and Statistics 
Brunel University, Uxbridge, UB8 3PH, 
England. 

ABSTRACT. The theory of 'geometric continuity' within the subject of 
CAGD is reviewed. In particular, we are concerned with how parametric 
surface patches for CAGD can be pieced together to form a smooth Ck 

surface. The theory is applied to the problem of filling an n-sided hole 
occurring within a smooth rectangular patch complex. A number of 
solutions to this problem are surveyed. 

1. Introduction 

The topics addressed by these tutorial lectures are those of polygonal 
patches and the theory of geometrically smooth parametric surfaces. In 
particular, we will consider the problem of filling a polygonal hole 
occurring within a smooth rectangular patch complex. This problem, which 
is frequently encountered by current 'free-form' or 'sculptured' surface 
modellers, illustrates the need for the theory of 'geometric continuity' 
within the subject of CAGD (Computer Aided Geometric Design). This 
theory is concerned with how parametric surface patches can be pieced 
together to give a smooth Ck surface. 

A Ck surface is one which locally admits a Ck parameterization. Thus 
the surface can be considered as a collection of overlapping patches, 
each defined as a Ck map from an open domain in IR 2 into IR 3. In CAGD, 
however, the surface is composed of a number of non-overlapping patches, 
each defined on a closed domain in IR 2. We are thus concerned with how to 
join together such closed patches in order to obtain a ck surface. 

The simplest type of join between two patches is that of a 
'parametric continuous' Ck join, where the parameter domains of two 
patches abut along a common edge and the surface is Ck on the composite 
domain. In effect, the surface is one composite patch, the domain being 
the union of the individual patch domains. This is the situation most 
frequently encountered when composing a surface of rectangular patches, 
where the patch complex can be considered as a mapping from a parameteric 
domain subdivided by a regular rectangular mesh. More generally, two 
patches can have a 'geometric continuous' GCk join. Here we will see 
that, locally, there is a Ck reparameterization in which the composite 
surface is parametrically Ck. A parametric continuous join is then the 
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special case of where the reparameterization is defined by the identity 
map. 

Whilst current surface modellers use almost entirely rectangular 
patches, it is impossible to model a complex surface as a single map from 
a regular rectangular meshed domain. More complex surface topologies 
will require n-sided polygonal holes within the rectangular patch complex 
to be filled in. This situation typically arises where two or more 
rectangularly meshed surfaces are to be blended together. One solution 
might be to allow n rectangular patches to meet at a common vertex in R3, 
whilst another solution might be the construction of a special polygonal 
patch. In either case the concept of a geometrically continuous join of 
the patches is necessary. 

The lectures are organised as follows.      Section 2 develops the 
geometric continuity tools needed for the study of smooth parametric 
surface patch complexes. In section 3, rectangular patch representations 
are briefly reviewed and the n-sided polygonal hole problem is described. 
Solutions to the polygonal hole problem are then discussed in sections 4 
and 5. 

2. Geometrically Smooth Parametric Surfaces 

The geometric continuous GCk join of two surface patches is a terminology 
that is now well established in CAGD. However, the differential geometer 
might well prefer to state that two such patches meet with ' contact of 
order k' . The idea will be explained through that of a reparameter- 
ization of the surface, see, for example, DeRose [21], Hollig [52], 
Gregory and Hahn [39],and Hahn [48]. Here we will summarize some of the 
material contained in Gregory [37] which is based on the exposition of 
Hahn [48]. We first introduce the reparameterization approach by 
considering the simpler case of planar curves. 

2.1 Geometric continuous curves 

Consider the two planar curve segments 
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Clearly p(2t), -1 < t < 0, describes the same curve segment as p(t) but 
with different parameterization. Moreover, p(2t) and q(t) are (para- 
metrically) C2 at t = 0. We thus say that the orginal parameterizations 
p(t) and q(t) have a geometric continuous GC2 join. This idea will be 
formalized in the definition below but first the need for the use of 
'regular' parametric representations is explained. 

A univariate parameterization p : [a,b]→ IR 2 is said to be a regular 
parametric representation of class Ck, k ≥ 1, if the first derivative 
tangent vector p(1)(t) does not vanish and if the component functions of 
p are k times continuously differentiable on [a,b]. Regularity, that is 
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a non-vanishing first derivative, is in general essential for the smooth- 
ness of the curve. For example,consider the parametric curve 

p(t) = (t3,t2) , -1 ≤ t ≤ 1 , (2.2) 

as shown in figure 2.1. Here p(t) is infinitely differentiable on [-1,1] 

 

Figure 2.1. A non-regular parametric curve 

but the curve does not have a continuous unit tangent vector at (0,0), 
where t = 0. This behaviour is possible because the first derivative 
vanishes at t = 0, where the parameterization is said to be singular. 
Thus we restrict the discussion to parameterizations that are regular. 

We now define and give appropriate conditions for the geometric 
continuous join of two regular parametric curves, see Barsky and DeRose 
[8] and Goodman [31]. 

Definition 2.1. Let p : [a,b] → IR 2 and q : [c,d] → IR 2 be two regular 
parametric representations of class Ck,  k ≥ 1. Then p and q join with 
geometric continuity GCk, at b and c respectively, if there exists a Ck 

mapping φ : IR → IR, defined in a neighbourhood of c, which is such that 
(see figure 2.2) 

 

 
Figure 2.2. Reparameterization for a Ck curve. 
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Here φ(t) defines the reparameterization function and the condition 
(c) > 0 means that φ is monotonic increasing in a neighbourhood of c. 
This ensures that the reparameterization is orientation preserving and 
hence that the composite curve will not have a cusp at the join. For our 
planar curves, conditions (2.3) mean that the composite curve is a Ck 

function in a neighbourhood of the join, with respect to the projection 
onto the tangent line. The conditions are also equivalent to the 
composite curve being of class Ck with respect to the arc length 
parameterization. Thus the terminology of a 'geometric continuous arc 
length join' is sometimes used to distinguish this case from another type 
of geometric join, see Hagen (45] and Dyn and Micchelli [26], which is 
referred to in [37] as a 'geometric continuous Frenet frame join'. 

Conditions (2.3) can be expressed in a form which avoids explicit 
reference to the mapping φ. For example, the curves join with GC2 

continuity if 
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(2.4)

These conditions are obtained using the chain and product rules in (2.3), 
giving the identifications 

β 1 = φ (c) , ( 1 ) β 2 = φ (c) . ( 2 )

They are given as k'th order contact of curve conditions for k ≤ 6 in 
Geise [30] and their general form, Goodman [31], is given in the 
following proposition. 

Proposition 2.2. The curves p and q join with geometric continuity GCk 

if and only if there exist constants ß1 > 0 and ß2, . . .,ßk  such that 
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Here the summation in (2.6) is over positive integers, where if 
{il,..ij} comprise r distinct elements with multiplicities m1,--.,mr' 
then 

   
!.r!...m1m!j!...i1i

i!
j..i

i
.1i =⎥⎦
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The construction of geometric continuous parametric curves has been 
considered by a number of authors, see for example Manning [60], Nielson 
[61], and Barsky and Beatty [7]. Much of this work has motivated the 
interest in geometric continuity within the subject of CAGD. Our 
interest here is in generalizing the reparameterization approach to that 
of considering the join of two surface patches. 

2.2 Geometric continuous surfaces 

Given a parametric representation p : Ω → R3 of class ck on the closed 
domain Ω  R  2, we use the notation of the derivative multi-linear map ⊂
∂i p|x at X = (u,v). Directional derivatives are then denoted by 

0
i
s...

1
s )iUi...s1U1sP(X

is...1s

i
iU...1U

P(X)i
)iU,...,1(UX|Pi

===++
∂∂

∂
=

∂∂
∂

=∂

(2.8)

 

where u j, j = l,...,i, are i vectors (directions) in R2. In particular, 
first partial derivatives of p(X),X=(u,v),will be denoted variously 
by 
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A derivative along U(X) = ( α (X), β (X)) is then 
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Given φ : Ω2 → Ω1 and p : Ω1 → R3, which are of class C1, then the 
chain rule 

       x|o(x)|px|)o(p ϕϕϕ ∂∂=∂           (2.11)           

applies. This can be expressed as a multiplication of the Jacobian 
matrix representations 
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Here we have assumed a column vector representation φ = (φ1,φ2)T, 
p = (P1,P2 ,P3)'T of the maps and then, for example, U in (2.10) would be 
expressed in column vector form U(X) = (α(X),ß(X))T. 

The parameterization p(X) is said to be 'regular' if ∂ 1, op(x) and 
∂ 0 lP(x) are linearly independent, that is if the Jacobian matrix (2.13) 
has rank 2. This regularity assumption corresponds to that for the case 
of curves and guarantees that a well defined tangent plane exists at each 
point X of the surface. This implies that cones, cusp ridges and other 
types of singularity are avoided. 

Following Hahn [48], we now define a Ck patch and consider how two Ck 

patches should join to give a surface. For our purposes, we restrict 
the discussion to patches defined on polygonal domains which hence have 
straight line edges. 

Definition 2.3 (Ck patch). A Ck patch, k ≥ 1, is a mapping p : Ω → R3 

of a closed polygonal domain Ω ⊂ R2 into R3 which is a regular 
parametric 
representation of class Ck. Thus p is k-times continuously differentiable 
on Ω and p|x has rank 2 for all X ∂ ∈ Ω. 

Definition 2.4 (GCk join). Let p : Ω1 → R3 and q : Ω2 → R3 be two 
patches defined on closed polygonal domains Ω1 and Ω2 Also, let 
E2 : [0,1] → R2 be a regular Ck parameterization of an edge of Ω2 Then 
p joins q with geometric continuity GCk (along the edge E2) if there 
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exists a Ck diffeomorphism φ : R2 → R2, defined in a neighbourhood of E2, 
such that 

(i) (Domain continuation) 

E1(s) = φ(E2(S)) , s ∈ [0,1] ,                        (2.14) 

is an edge of Ω1 and interior points of Ω1 in a neighbourhood of E1 are 
mapped from exterior points of Ω2
(ii) (Patch continuation) For s ∈ [0,1} 
 

          .k,...,0i,)S(2E)op(i)S(2Eqi =ϕ∂=∂                         
(2.15)

 

Figure 2.3. Reparameterization for a Ck surface. 

The mapping φ defines a reparameterization of p for which the 
composite surface is parametrically Ck. The conditions on φ in (i) 
ensure that the reparameterization is orientation preserving.The 
continuity conditions (2.15) can be replaced by the requirement that for 
s ∈ [o,l]  

               ,k....,0i,))s(E(
iU

)po(i))s(E(
iU

qi
22 =

∂

ϕ∂
=

∂

∂                      (2.16)

where U = U(s) is any non-zero Ck-1 transversal vector field defined 
along the edge E2(s) in an outward direction, say. Applying the chain 
and product rules then gives, for example, the GC2 surface analogue of 
(2.4), namely 
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Here V1(s) will be a C1 non-zero vector field transversal to E1(s) in an 
inward direction and V2(s) will be a C° vector field. More generally we 
have (cf. Proposition 2.2): 

Proposition 2.5. Let U : [0,1] → R2 be an (outward) transversal vector 
field to the edge E2. Then the patches p and q join with geometric 
continuity GCk if and only if there exist Ck-1 vector fields 
Vi : {0,1] → R2 such that 
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where V1 is an (inward) transversal vector field to the edge E1  . 

Given the Ck diffeomorphism φ such that (2.16) holds, the necessity 
of this proposition is demonstrated by application of the chain and 
product rules. This gives (2.18) where 

.k,...,1i,))s(E(
iU

i
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Conversely, given CK vector fields satisfying (2.18) then a CK diffeo- 
morphism (p, satisfying (2.19), is defined by the Taylor interpolant. 

 (s).ivi!
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A more general construction for the case of the ck-i vector fields of the 
proposition is given in Hahn [48]. 

2.3 A particular parameterization 

Consider the case where p : Ω1 → R3 and q : Ω1 + R3 are parameterized 
such that they have the C° join 

-9- 

q(s,0) = p(0,s) , s ∈ [0,1] . 



Thus E1(S) = (0,s) and E2(s) = (s,0), see Figure 2.4. 

 

Figure 2.4. A particular parameterization 

Furthermore, let 
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where the positivity of α(s) and γ ( s ) ensuresthe orientation condition 
on U(s) and V1(s) (more generally α(S) γ  (S) > 0). Then given γ (S), the 
GC2 conditions are that there exist α(s), β (s),σ( s ) and υ (s) such that 

(2.22)
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The diffeomorphism φ, given by (2.20), is then defined by 
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We may let γ( S )  ≡ 1 without loss of generality and hence, for 
example, may replace the GC1 condition by 
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-  ∂1 ,0q(s,0) =  (s) ∂
^

α 1 , 0  p(0,s) + (s) ∂
^

β 0 ,  1(0,s) . (2.24) 

In the case of polynomial patches, however, (2.24) can lead to the 

mistaken assumption that 
^
α(s) and (s) must be polynomial,whereas taking 

^

β
the cross product with 1∂ ,0P(0,s) and ∂ 0,1P(0's) shows these to be 
rational with identical denominators. Hence the form (2.22) is more 
appropriate. This was observed in Liu [57], Liu and Hoschek [59] and 
more recently Peters [66]. 

The GC1 condition in (2.22) is sometimes replaced by the necessary 
determinant condition 

 
                  det [q1,0 p1,0 p0,1 ] =0 .                    (2.25)

For example, DeRose [22] uses this condition to develop a method for 
verifying  the  GC1  join  between  two  Bernstein-Bézier  patches. The 
determinant condition does net preclude cusp like joins, however, since 
the orientation requirement α(s) γ(s) > 0 is not included. 

2.4 Continuity at a vertex 

In the two previous subsections, conditions for the smooth join of two 
patches were developed, either via the existence of a diffeomorphism φ 
defining a reparameterization as in (2.15) or, equivalently, via explicit 
consistency conditions of the form (2.17)/(2.22). In order to build 
surfaces, however, we must consider the situation where a number of 
patches join subsequently and surround a common vertex in R3. In this 
situation, the GCk joins around the vertex must be consistent. More 
concretely, consider n patches pj:Ωj→ R3,j=0,...,n-l, parameterized 
such that they have the C0 joins 

Pj+1(s,0) = pj(0,s) , s ∈ [0,1] , j = 0, . . . ,l ,     (2.26) 

 

Figure 2.5 Patches surrounding a vertex



-11- 

as in subsection 3.3, see figure 2.5. Thus the n patches meet at the 
common vertex 

Pj(0,0) = Q , j = 0,...,n-l ,            (2.27) 

say, and we call such a vertex an n-vertex. 
The GCk condition between pj and pj+i has the representation in terms 

of diffeomorphisms φj as 

,1n....,,0jand,k,...0.,0i,)0,s()jojp(i
)0,s(1jPi −==ϕ∂=+∂   (2.28)       

where φj(s,0) = (0,s). The requirement that on marching around the 

vertex one gets back to the starting point then leads to the vertex 

condition (Hahn [47] and [48]) 

  (2.29),k,0,........i,(0,0)|)1n....100(pi
(0,0)|0p

i =−∂=∂ ϕϕϕ oooo

Hahn shows that this is equivalent to 

 

 .k,...,0i,)0,0(idi
)0,0()1no...o1o0(i =∂=−ϕϕϕ∂      (2.30)

In particular, with the matrix representation (2.12) we obtain the GC1 

vertex condition 

       .
10
01

)0,0(1no...o)0,0(1o)0,0(0 ⎥
⎦

⎤
⎢
⎣

⎡
=−ϕ∂ϕ∂ϕ∂    (2.31)

An explicit representation of these matrices is given in Hahn [47]. 
Suppose that the n patches surround the vertex Q with GC1 continuity and 
let 

 1,n0,...,j,jQ(0,0)1jp1,0(0,0)jp0,1 −==+∂=∂            (2.32)  

denote the first partial derivative vectors at the vertex. These vectors 
will form a star in the tangent plane at Q. The GC1 condition for i = 1 
in (2.28) at the vertex can be written, using the chain rule, as 
  

(0,0)j0(0,0)
j

p(0,0)1j
p ϕ∂∂=

+
∂  

          

that is 



-12- 
 
 

  [ (0,0)jo]jQ1j[Q]1jQjQ ϕ∂−=+            (2.33) 
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                    (2.34)

say, represents the matrix of the coordinate change from the basis 
[Qj Qj + 1] to [Qj-1 Qj ] and the GC1 vertex condition takes the form 

Qj+1 = µjQj-i + λjQj, = 0 , ….n-1  (2.35) 

A simple calculation gives 

               ,
1jsinjr

)1jjsin(1jr
j,

1jsin1jr
jsin1jr

j
−θ

−θ+θ+
=λ

−θ−

θ+
−=μ                (2.36)

where rj = jQ  and θ j is the angle between Qj and Qj+i Conversely, if 
we wish to construct jλ and µj satisfying the GC1- vertex constraint 
(2.35), then the general solution takes the form (2.36) where Σ θj = 2л. 
A particular symmetric solution is given by rj =1and θj = 2 л /n so that 

µj = -1 , ٨j. = 2cos(2 л /n) ,                (2.37) 

see Hahn [48] and van Wijk [76]. 
The GC1 vertex condition (2.35) can clearly also be obtained via the 

explicit GC1 condition between the patches of the form 

αj(s) ∂l,0Pj(0,s) + βj(s)∂0,1Pj(0,s) + γj(s) ∂0,1Pj + 1(s,0) = 0 , 

j = 0,...,n-l , (2.38) 

where jα (s) jγ (s) > o. letting γ j(0) = 1 without loss of generality then 
gives, at s = 0, 

αj(0)Qj_1 + βj(0)Qj + Qj + 1 = 0 , j = 0 .... n-l  (2.39) 

Thus αj(0) = -µj and β j(0) = -λj in terms of our previous notation. 

2.5 Some general problems in constructing smooth surfaces 

The construction of geometric continuous patch complexes involves the 
development of patch methods which either explicitly or implicitly 
satisfy the conditions for geometric continuous joins. In the previous 
subsections we have tri d to present some of the tools which are required 
in the study of such j ins. Before considering the particular case of 
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the polygonal hole problem, we conclude this section by describing three 
general difficulties that can arise in the construction of geometrically 
smooth patch complexes. The first two of these involves the vertex 
conditions. 

2.5.1 Twist constraint: Suppose the individual patches pj : Ωj → IR 3

surrounding a vertex Q, are of class C2 and let 

∂1.1 Pj(0,0) = Qj-1.j , j = 0,...,n-l , (2.40) 

denote the 'twist vectors' at the vertex Q. Differentiating (2.38) with 
respect to s and evaluating at s = 0 then gives the constraints 

            ,1n,....,0j,jR1j,jQj,1jQ)0(j −==
+

+−α
                    

(2.41) 

where 

 

 
.)0,0(jp2,0)0(j1jQ)0( ) 1 ( 

j j Q ) 0 ( )1( 
j 1 j Q ) 0 ( ) 1 ( 

j j R ∂ β + + γ + β + − α = − 

             
 (2.42)

Equations(2.41), considered as a system in the twist variables Qj-1,j, 
generates a cyclic matrix with determinant 
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1n

0j
1n1)(1 ∏

−

=
−−+                            (2.43)

where 

 

                   

                      

  (2.44).1)j(
1n

0j
)0(j

1n

0j
=μ−

−

=
=α

−

=
∏∏

Thus the system is singular if n is even and non-singular when n is odd. 
The observation that an even number of vertices can give rise to 
difficulties in the analysis has been noted by van Wijk [76], Watkins 
[81], Jones [54] and Peters [65]. It does not imply that analysis in the 
even vertex case is impossible but that this rank deficient case must be 
treated with care. An alternative approach which avoids the twist 
condition is to consider patches which are of class C1 but not C2. For 
example, the rationally corrected patches of section 3 have such a 
property, as do patches whose domain is split into subdomains at a vertex 
(for example, the 'Clough Tocher' triangle split). It should be noted 
that the case of parametric C1'1 continuity on a regular rectanglular 
grid patch network, where n = 4 at the vertices, is a special one. Here 
the constraint (2.41) simplifies and is identically satisfied. 

2.5.2 A non-regular GC1 constraint for rectangular patches 

Consider the GC1 constraint (2.38), where s = 0 corresponds to an 
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n-vertex and s = 1 corresponds to an m-vertex. The theory of subsection 
2.4 suggests the particular symmetric conditions 

                                (2.45)
⎪
⎭

⎪
⎬

⎫

=−=

===

/m).2cos(2π(1)jβ1,(1)jγ(1)jα

/n),2cos(2π(0)jβ1,(0)jγ(0)jα

Hence, linear interpolation on 0 ≤ s ≤ 1 gives a sufficient condition for 
a GC1 join as 

∂ l,0Pj(0,S) - {(1-s)cos(2Tπ/n)-scos(2π/m)}∂2
0,1pj(0,s) + ∂0,1 pj+1 (s ,0) = 0 

                                                   (2.46) 

This is a particularly simple and attractive condition but it leads to a 
non-regular parameterization if one (but not both) of the vertices is a 
4-vertex and the rectangular patch is C2, for example, a polynomial 
patch. Thus suppose n. ≠ 4 and m = 4 so that cos(2π/m) = 0 in (2.46). 
Differentiating(2.46) with respect to s then gives, at s = 1, 

      .0)0,1(1jP1,1)1,0(jP1,0)n/2(cos2)1,0(jP1,1 =+∂+∂π+∂  (2.47)

Since ə 1 ,1Pj(0 , l )  = -ə1,1Pj + l ( l , 0 )  at the 4-vertex, we thus have 
∂1,0Pj (0,1) = 0 (unless n = 4 when both vertices are 4-vertices). 

We will see later that this problem can be avoided by use of higher 
degree polynomial coefficients in (2.47). This approach is also used by 
Goodman [32] in the construction of spline spaces for closed surfaces of 
rectangular patches. Alternatively, the use of C1 rationally corrected 
patches avoids this problem, see subsection 4.2. 

2.5.3 Blending geometric smooth surfaces 

Suppose that a patch p has GCk joins k ≥ 1, with patches q1 : Ω → IR 3 a nd 
q2 : Ω → IR 3  along an edge E(s) of ft in the sense that, for j = 1,2, 

                ,k,...,0i,)s(E)jpo(i
)s(Ejqi =ϕ∂=∂  (2.48)

where the diffeomorphisns are such that φ1(E(s)) = φ2 (E(s)). Then the 
blended surface 

q(X) = ω1(X)q1(X, + ω2(X)q2(X) , , ω1(X) + ω2(X) = 1 ,       (2.49) 

where ω  : Ω → IR , j = 1. , are Cj
k functions, does not, in general, have a 

GCk join with p for a  k > 1. This occurs because of the different 
connecting diffeomorp s φj, j = 1,2, in (2.48) or equivalently 
different vector fields  the right hand sides of derivative conditions 
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of the form (2.18). A simple example is provided by  

⎪
⎭

⎪
⎬

⎫

≥+=

≤=

,0v,)v,2u4,u2(
2
1)v,2u,u(

2
1)v,u(q

,0u,)v,2u,u()v,u(p
          (2.50)

which only join GC1 along (0,v), whilst the individual components of the 
average q have GC∞ joins with p. 

The example does provide an illustration of the following result, 

however. Suppose the connecting diffeomorphisms agree up to order 
^

k  < k 
along E(s), that is the vector fields in the equivalent derivative 
conditions agree up to order k. Then the blended surface (2.49) will 

have a  + 1' st order continuous join with p. Thus, since 
^

k
φl(E(s)) = φ2(E(s)), the blended surface will always have at least a GC1 

join with p. 
The fact that blending GCk surfaces does not automatically result in 

GCk surface for k > 1, causes difficulty in the construction of high 
order continuous blended parametric surfaces. We will consider the 
blending function technique as one method of treating the polygonal hole 
problem. The difficulty of using blends for the specific polygonal hole 
problem is discussed in Gregory and Hahn [39]. 

3. Rectangular Patches and the Polygonal Hole Problem 

We briefly review some standard rectangular patch methods from 
Approximation Theory and CAGD and then introduce the polygonal hole 
problem. In particular, we will need to consider some representations of 
bicubic tensor product patches and their associated 'rationally 
corrected' forms. For further details see, for example, the survey 
papers of Barnhill [5], Boehm et al [14], Pratt 168], or the book of 
Farin [29]. For simplicity of presentation, most of the patch functions 
p(u,v) are defined on the unit square 0 ≤ u,v ≤ 1 so that 
p : [0,1]2 → IR 3. For (s,t) ∈ [a,b] × [ c,d] the transformation 

u = (s-a)/(b-a) , v = (t-c)/(d-c) (3.1) 

can be made. 

3.1 Bicubic Hermite patch 

The bicubic Hermite patch p : [0,1]2 → IR 3 is defined by 

p{u,v) = , (v)]T3
3H(v),3

2H(v),3
1H(v),3

0(u)]Q[H3
3H(u),3

2H(u),3
1H(u),3

0[H  

(u,v)∈ [0,1]2 .   (3.2) 

where 
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 Q

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎣ 

⎡ =  

)1,1(uvp)0,1(uvp)1,1(u p ) 0 , 1 ( u p
)1,0(uvp)0,0(uvp)1,0(u p ) 0 , 0 ( u p

)1,1(vp)0,1(vp)1, 1 ( p ) 0 , 1 (p
)1,0(vP)0,0(vP)1, 0 ( P ) 0 , 0 (P

               (3.3) 

 

Here, the cubic Hermite basis on [0,1] is defined by 

]M,3u,2uu,[1,(u)]3
3H(u),3

2H(u),3
1H(u),3

0[H = (3.4) 

where 

                       

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢ 
⎢ 
⎢ 
⎢ 

⎣ 

⎡ 

−
−−− 

= 

1122 
1233 
0100
0001M 

       

(3.5)

The coefficients of the matrix Q define the interpolation data. The 
boundary curves p(u,0), p(u,l), p(0,v), p(l,v) and the cross bouydar 
tangent vector derivatives Pv(u,0), Pv(u,1) Pu(0,v), Pu(1,v)ar 
univariate cubic Hermite functions. Thus, for example. 

 

v

Pv 
Pu 

u

p 
Puv P 

Figure 3.1 Bicubic Hermite patch 
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⎪
⎭

⎪
⎬

⎫

+++=

+++=

.)0,1(uvP)u(3
3H)0,0(uvP)u(3

2H)0,1(vP)u(3
1H)0,0(vP)u(3

0H)0,u(vP

)0,1(up)u(3
3H)0,0(up)u(3

2H)0,1(p)u(3
1H)0,0(p)u(3

0H)0,u(P

 

            

 (3.6) 

3.2 Bicubic Bernstein-Bézier patch 

The bicubic Bernstein-Bezier patch is defined by 

  j,iQ)v(3
jB)u(3

iB)u(3
jB

3

0j

3

0i
)v,u(P ∑∑

==
=

 [ ]21,0)v,u(
T

)u(3
3B),u(3

2B),u(3
1B),V(3

0BQ)u(3
3B),u(3

2B),u(3
1B,)u(3

0B ∈⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡=

 

  
                                                            (3.7) 

where 
 

                                               (3.8)i3)u1(iu3
i)u(3

iB −−⎟
⎠
⎞⎜

⎝
⎛=

Thus 

             
                   

 (3.9),M3u,2u,u,1)u(3
3B),u(3

2B),u(3
1B,)u(3

0B ⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

where 

                

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−− 
− 

− 

133 1 
036 3 
003 3 
000 1 M= 

                          (3.10)

The coefficient matrix Q = [Qi,j] is the control point matrix of the 
Bernstein-Bezier patch and the boundary curves and the cross boundary 
derivatives are univariate Bernstein-Bézier cubics. For example 
 

                

 

(3.11)

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

−
=

=

=
=

∑

∑

)0,iQ1,iQ()u(3
iB

3

0i
3)0,u(vp

0,iQ)u(3
IB

3

0i
)0,u(P
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Figure 3.2 cubic Bernstein-Bezier patch 

3.3 Bicubic -spline patch 

The bicubi spline surface p : IR 2 → IR 3 is defined by 

                

 
,m,Q)t(m

^
N)s(N

z m z 
)t , s ( p ll

l

∑  ∑  
∈  ∈  

= 
                         (3.12)

where N,ℓ(s m(t) denote the normalized cubic B- splines with the 
^
N

local suppc    (sℓ-2'Sℓ+2) and (tm-2,tm+2) respectively, on the non- 
decreasing        partitions {sℓ}, .ℓ ∈  Z and {tm}, m ∈  z. The B-spline 
surface ha;:    metric continuity C2'2, that is continuity up to and 
including c  in each of the independent variables. The restriction 
(s,t) ∈  [Si       x[tj,tj +2] gives the bicubic B-spline patch 

 
[ ] [ ] ,T)t(2jN),t(1jN),t(jN,)t(1jNQ)s(2iN,)s(1iN),s(iNN)t,s(p ++−++=  

 

(3.13) 

where Q = [(,  = i-l,...,i+2, m = j-1,...,j+2, is the control point 
matrix of t       tch. A calculation in terms of the Bernstein-Bezier 
form, follow,     construction of Boehm [10], gives the explicit B-spline 
basis repress     ion 

 

      [ ] W)u(3
3B),u(3

2B),u(3
1B),u(3

0B)s(2iN,)s(1iN,)s(1iN ⎥⎦
⎤

⎢⎣
⎡=++−

 
= [l,u,u2 ,u3 ]MW ,               (3.14) 

where M is c by (3.10) and 

u = (s-si.)/hi. , hi = si+1 - si.              (3.1.5) 

Here W is th isformation matrix 



-19- 

 

[ ] 

[ ] )17 . 3 ( 

. ) 1 i h i h 1 i h ( / 1 hi i 

, ) 1 i h i h 1 i h ( / 1 i h i 

, ) 1 i h i h 1 i h ( ) i h 1 i h ( ( / 2 
1 i h i 

, i h 1 i h 2 i h ( ) i h 1 i h ( / 2 
i h i 

with 

) 16 . 3 ( 

1 i 1 i 1 i 1 1 i 0 
0 i 1 i 0 
0 i i 1 0 

0 i i i 1 i w 

⎪ 
⎪ 
⎪ 

⎭ 

⎪ ⎪ 
⎪ 

⎬ 

⎫ 

+ + + − + = β 
+ + + − − = α 

+ + + − + − − = μ 

+ − + − + − = λ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

⎦ 

⎤ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎣ 

⎡ 

+ μ + μ − + λ − + λ 
β − β 

α α − 
μ μ − λ − λ = 

 

The basis functions m (t), m = j-l,...,j+2, are defined similarly in 
^
N

terms of the variable 

v = (t-tj)/
^
h j , 

^
h j. = tj+1. . tj. .          (3.18)      

For equal intervals, the familiar basis matrix 

               

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢ 
⎢ 
⎢ 
⎢ 

⎣ 

⎡ 

−− 
−

− 
= 

1331 
0363 
0303 
0141 

6 
1 MW 

                  (3.19)

is obtained in (3.12) for the case of uniform B-splines. 

 
Figure 3.3 Bicubic B-spline patch 
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3.4 Coons' bicubically blended patch 

The Coons' bicubically blended patch is defined by 

 p(u,v) = [H {u),H  (u),H  (u),H 3
3  (u)][p(0

3
0

3
1

3
2 /v)/p(l,v),pu(0,v),pu(l/v)]T

+ [p{u,0),p(u,l),pv(u,0)/Pv(u,l)][H  (v),H 3
1  (v),H  (v),H  (v)]3

0
3
2

3
3

T

  - [H  (u),H  (u) H 3
2  (u),H  (u)]Q[H  (V),H  (V),H  (V),H3

3  (V)]
3
0

3
1 /

3
3

3
0

3
1

3
2

T         (3.20) 

where Q is defined as in (3.3) and the cubic Hermite basis functions are 
defined in (3.4) and (3.5). The Coons' patch is sometimes referred to as 
a 'Boolean sum' blend of two 'lofted' surface patches and the bicubic 
Hermite 'tensor product1 patch (3.2). The boundary curves p(u,0), 
p(u,l), p(0,v), p(l,v) and the cross boundary derivatives Pv(u,0), 
Pv(u'1)' Pu(0'v)' Pu(1'v) are not restricted to be cubics. However for 
(3.20) to be meaningful, we must assume that these boundary terms are 
consistent with a C1,1 surface. In particular, we have the necessary 
twist condition that 

Puv ≡ ∂ p/∂u∂v = ∂ p/∂v∂u = pvu 2 2

   
(3.21) 

at the four corners of the patch. Otherwise (3.20) is not well defined. 
In particular, Pv(u,0) and Pv(u,l) are not interpolated by the patch. 

3.5 Rationally corrected patches 

The rationally corrected form of the Coons' bicubically blended patch 
allows for different twist terms PuV and pvu at the corners of the patch. 
Thus, for example 

                     (3.22)
⎪⎭

⎪
⎬

⎫

=∂∂=

=∂∂=

0v|v)(0,uvP/(0,0)vuP

0u|(u,0)vPu/(0,0)uvP

are not necessarily the same. The rationally corrected form of the 
Coons' patch, see Gregory [34,35] and Barnhill [5}, is defined as in 
(3.20) but with the lower right 2 x 2 'twist partition' block in the 
definition of Q, equation (3.3), replaced by 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−
−+−

+−
−+

−+
+−

+
+

v1u1
)1,1(vup)u1()1,1(uvp)v1(

vu1
)0,1(vup)u1()0,1(uvvp

v1u
)1,0(vuup)1,0(uvp)v1(

vu
)0,0(vuup)0,0(uvvp

       (3.23) 

 

It should be noted that the rational forms introduce singularities in 
order to allow for the possibility that puv ≠ pvu at the corners. 
However, these singularities are removable up to first order (the patch 
is C1). For numerical stability, the patch should not be evaluated at 
the corners. Instead, the given corner values should be used directly. 

Replacement of the boundary functions and derivatives in the 
rationally corrected Coons' patch, with univariate cubic Hermite forms, 
gives the rationally corrected bicubic Hermite patch. This is defined as 
(3.2) but with the 'twist partition' in (3.3) replaced by 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−+−
−+−

+−
+−

−+
−+

+
+

v1u1
vup)v1()1,1(uvp)u1(

vu1
)0,1(vuvp)0,1(uvp)u1(

v1u
)1,0(vuP)v1()1,0(uvup

vu
)0,0(vuvp)0,0(uvup

 (3.24)

The cubic Hermite boundary derivatives Pv(u,0), Pv(u'1) and the 
derivatives Pu (0,v) and Pu(l,v) now have the different twist parameters 
Puv and Pvu respectively in their definitions. For example Pv (u,0) is 
defined as in (3.6) but pu(0,v) is defined by 
 

.)1,0(vup)V(3
3H)0,0(vuP)V(3

2H)1,0(uP)v(3
1H)0,0(up)v(3

0H)v,0(up +++=   

                                                                 (3.25) 

A rationally corrected form of the bicubic Bernstein-Bézier patch can 
also be derived, by introducing two different control points for each of 
the four interior control points of the patch, as shown in Figure 3.4, 
see Chiyokura and Kimura [19] and Chiyokura [18]. Cross boundary 
derivatives are then defined in terms of the appropriate control points. 

 
Figure 3.4 Control points of rationally corrected B-B patch 
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For example, 

)1,0Qv
1,1(u)(Q3

1B)0,0Q0,1(u)(Q3
13[B(u,0)vp −+−=   

⎥⎦
⎤−+−+ )0,3Q1,3Q()u(3

3B)0,2Qv
1,2Q()u(3

2B          (3.26)
 

where  and  denote the interior control points to be associated v
1,1Q v

2,1Q

with the boundary' derivative Pv(u,0). The rationally corrected form of 
the bicubic Bernstein-Bëzier patch is then derived of the form (3.7) with 
the control point matrix 
 

)27.3(

3,3Q2,3Q1,3Q0,3Q

3,2Q
v1u1

u
2,2VQv

2,2Q)u1(

vu1

u
1,2VQv

1,2Q)u1(
0,2Q

3,1Q
v1u

u
2,2Q)V1(V

2,1uQ

vu

u
1,1VQV

J,1uQ
0,1Q

3,0Q2,0Q1,0Q0,0Q

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+−

+−

+−

+−

++

−+

+

+

Other types of rational schemes are described in the survey paper of 
Barnhill [5) and Worsey [82] has derived the appropriate rational 
corrections for the C2 biquintic blended patch. 

3.7   The polygonal hole problem 

The rectangular patches described above are typically used to form 
surface patch complexes defined on regular, rectangular meshed domains. 
Thus the bicubic Hermite and Bernstein-Bézier patch representations are 
usually joined to give C1 surface patch complexes, whilst the bicubic 
B-spline gives C2 surface patch complexes. In the following sections we 
will consider the situation where a rectangular patch complex surrounds 
an n-sided hole described in the following manner. 

Let qj= : δ → IR 3, j = 0,..,n-l, = [0,2] x [-1,0], denote a 
rectangular patch complex surrounding an n-sided hole, where qj(s,0), 
0 ≤ s ≤ 1, defines the j' th edge of the hole, see Figure 3.5. The 
patches are assumed to form a Ck patch complex in the sense that the 
composite maps 

                       (3.28)
⎪⎩

⎪
⎨
⎧ −−

→
)v,u(jq

)u,v1(1jq
)v,u(
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Figure 3.5 Polygonal hole problem 

are Ck continuous on [-1,0] × [-1,1] U [0,2]× [-1,0] for j = 0,...,n-l, 
see also figure 3.5. In practice, for tensor product patches, this 
composite map will usually also be Ck,k continuous, particularly at the 
corner (0,0), and this will be assumed in sections 4 and 5. 

The qj will normally consist of a sub-complex of two or more patches, 
although for mathematical purposes it has been denoted by one parametric 
surface here. For example, qj could consist of two bicubic patches 
defined on [0,1] x [-1,0] and [1,2] × [-1,0], respectively, where 
qj(u,v), (u,v)  [0,1] x [-1,0] defines the patch adjacent to the hole. ∈
The patch surface can then be used to give a C1 surface about the hole. 
Alternatively, qj could consist of a sub-complex of eight patches, where 

qj{u,v), (u,v) ∈  [0, 2
1
] × [-

2
1
,0] and (u,v) ∈ [

2
1
,1] x [-

2
1
,0] define the two 

patches adjacent to the hole. It is then possible to surround the hole 
with a C2 surface by appropriate choice of a bicubic B-spline 
representation. 

We now consider how such polygonal holes can be filled in, making use 
of the geometric continuity tools developed in section 2. 
4. Filling Polygonal Holes with Rectangular Patches 
In subsections 4.1 - 4.3 we consider methods of filling an n-sided hole 
with n rectangular patches p j, j = 0,...,n-l, parameterized as in sub- 
section 2.4. Thus the patches have the C0 joins pj + 1{s,0) = Pj(0,s) and 
meet at the common vertex Pj(0,0) = Q, j = 0,...,n-l. Along the j ' th 
edge of the hole we assume that 

                1,s0
s/2,0)(1/2jqs)(1,ijp

s/2,0),(1/2jq(s,1)jp

≤≤
⎪
⎭

⎪
⎬

⎫

+=+

−=

 (4.1)



-24- 

where qj is parameterized as in subsection 3.7. This situation is 
illustrated by figure 4.1. In subsection 4.4, a recursive subdivision 
technique for filling the hole is discussed. 

 

P
j

V

u V u

jφ  
pj+1 q

j 
v u

Figure 4.1 Filling an n-sided hole with rectangular patches 

4.1 A bicubic Hermite scheme 

Consider the situation where either qj(u,v), (u,v)€ [0,1] × [-1,0] is a 
bicubic patch or qj(u,v), (u,v) ∈[0,½] x [-½,0] and (u,v) � [½,l) x [-½,0] 
are two bicubic patches, adjacent to the j'th edge of the hole. Then we 
consider the pj, j = 0,...,n-l as bicubic patches, which along the j'th 
edge of the hole satisfy the C0 conditions (4.1) and the GC1 conditions 

             

⎪
⎪
⎭

⎪⎪
⎬

⎫

+∂−=+∂

−∂−=∂

,)0,2/s2/1(jq1,02
1)1,s(1jp0,1

,)0,2/s2/1(jq1,02
1)1,s(jp1,0

 (4.2)

 (Here there is a 1/2 scaling factor due to the choice of the parameter- 
izations of the qj and p j.) These conditions will be satisfied by an 
appropriate identification of the Hermite data along the edge, see, for 
example, (3.6). In particular, at the 'mid-point' of the edge we define 

 

    

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

+∂=∂−=∂=

+∂=∂−=∂=

+∂=∂−=∂=

+===

.)0,1(1jp1,1)1,0(jp1,1)0,2/1(jq1,12
1v,u

jB

)0,1(1jp0,1)1,0(jp1,0)0,2/1(jq1,02
1v

jB

)0,1(1jp1,0)1,0(jp0,1)0,2/1(jq0,12
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At the n-vertex we define 

                                       (4.4) 

⎪
⎪
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⎬

⎫

∂=−

+∂=∂=
+==

(0,0)jP1,1j1,jQ

(0,0)1jP1,0(0,0)jp0,1jQ

(0,0)1jP(0,0)jPQ

as in subsection 2.4. 
It follows that pj+1(s,0) = p-i(0,s), since these two univariate 

functions share common Hermite data. Thus, for a C1 surface patch 
complex, it remains to satisfy the GC1 constraints 

0)0,s(1jP1,0)s(j)s,0(jP1,0)s(j)s,0(jP0,1)s(j)s(j β+∂α=φ ∂ + γ ∂ =+
 

j = 0,...,n-l , (4.5) 

where αj (s)γ j ( s) > 0, see subsection 2.4. Some difficulties in 
satisfying such a condition have been discussed in subsection 2.5.2. In 
particular the simple choice of coefficients (see (2.46) with m=4) 

α(s) = 1 = γj (s) , β j.(s) = -2(l-s)cos(2π/n) ,    (4.6) 

was observed to lead to a non-regular parameterization. An alternative 
quadratic choice which avoids this problem is 

αj(s) = 1 = γj(s) , β j(s) = -2(l-s)2cos(2π/n) . (4.7) 

Gregory and Zhou [43] show that equating coefficients in (4.5) then leads 
to the following solutions for the polygonal hole problem: 

(i) For n = 3, a triangular hole, 
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  where 
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(ii) For n > 4, a general polygonal hole. 

Where
    

)11.4(.1n,....,0j,01jQjQ)n/2(cos21Qj

)10.4(
.)n/2(cos/)1j,jQj,1jQ(

2
1Q3v
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⎭

⎪⎪
⎬

⎫

π++−−−=

π++−++=

In the triangular hole case (4.8), the 3-vertex values are defined in 
terms of the boundary edge information. For n > 4, there are not enough 
degrees of freedom at the n-vertex to give such a solution in terms of 
the surrounding edge information. Thus in (4.10) we propose a solution 
whereby the Hermite edge values Bj and Bvj are not given a priori but are 
determined in terms of the degrees of freedom at the n-vertex. In this 
case Q and the twists Qj-i,j can be chosen arbitrarily. The first 
derivative vectors must be chosen such that (4.11) holds. This approach 
of treating Bj and BY as the unknowns, with the twists being given, also 
avoids the twist constraint problem of having to distinguish between odd 
and even n-vertices as described in subsection 2.5.1. 

Goodman [32] uses an identical constraint to (4.5), (4.7) in the 
development of local support bases for GC1 spline spaces over closed 
surfaces of rectangular patches. Van Wijk [75] has also considered the 
geometric join of bicubic patches. He either assumes that all vertices 
are odd or assumes a mixture of three and four-vertices. Jones [54] uses 
higher degree patches to fill n-sided holes, again restricting the 
discussion to the case of n being odd so that the twist constraints 
(2.38) are not rank deficient. Biquintic patches are used for the GC1 

case and Jones also presents a GC2 solution using biseptic patches. A 
biquartic solution to the GC1- problem is provided by a special case of a 
result of Peters [65]. 

4.2 A rationally corrected scheme 

Consider the situation of subsection 4.1, where the surrounding 
rectangular patch network consists of bicubic patches.      The p j , 
j = 0,...,n-l, which are to fill the hole, are chosen as rationally 
corrected bicubic patches. The rationally corrected forms introduce 
additional degrees of freedom. These are used in the solution of the GC1 

constraint equations for the edges around the n-vertex. The rationally 
corrected forms avoid both the twist constraint problem of subsection 
2.5.1 and the non-regular GC1 constraint problem of subsection 2.5.2. 

The use of rationally corrected forms for filling a polygonal hole is 
suggested by Chiyokura [17,18], using the Bernstein-Bézier 
representation. For simplicity and uniformity of presentation, we assume 
here that the pj are represented as rationally corrected bicubic Hermite 
patches, see subsection 3.9. Thus we have the possibility of two twist
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parameters ∂u∂vp  and p  at each vertex. j v u j∂ ∂
The GC1 conditions (4.2) along the j'th edge of the hole are satisfied 

by appropriate identification of the Hermite data along the edge, in a 
similar way to subsection 4.1. In particular, at the 'mid-point' of the 
j'th edge we define Bj. Buj  B

v
j . as in (4.3)and the twists across the j'th 

edge of the hole as  
 

   (1,0)1jPuv(0,1)jpvu(1/2,0)jq1,12
1vu,

jB +∂∂−=∂∂=∂=            (4.12)

The twists 9v9upj(0,l) and 9u9vPj+i(l,0) are yet to be determined. At 
the n-vertex we define Q and Qj as in (4.4) and the two twists 

          .(0,0)jPuv1jj,Q,(0,0)jPvuj1,jQ ∂∂=−∂∂=−            (4.13) 

The problem is now to satisfy GC1 constraint equations j(s) = 0, of the 
form (4.5), for j = 0,...,n-l. The use of rationally corrected patches 
allows the simple choice of coefficients (4.6) in (4.5), which for 
polynomial patches would lead to a non-regular parameterization. With 
this choice we proceed in the following asymmetric way: 
For the patch pj, assume the equal twists 

              vu,
jB(0,1)jpuv(0,1)jpuv =∂∂=∂∂  (4.14)

and for the patch p. define the twist parameter 

                                                 (4.15))0,1(1jPvu
u,v

jB +∂∂−=

which differs from the other twist parameter Bju,v = əv əu pi+1. ,(1,0). The 
constraint φj (s) = 0 is a cubic equation and hence is uniquely determined 
by the conditions 

φj.(0) =φ j (1) = φ'j.(0) = φ'j.(1)=0  (4.16) 

The condition φ(l) = 0 is identically satisfied and the other conditions 
give 

Where
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These conditions can be satisfied for j = 0,...,n-l, giving a rationally 
corrected rectangular patch solution to the polygonal hole problem. Note 
that for polynomial patches B vu,

j .= B uv,
j .and then Bvj .= 0 which results in 

the non-regular parameterization described in subsection 2.5.2 (compare 
(2.47) with the third equation of (4.17)). 

4.3 A GCk scheme 

For arbitrary k, it is clearly impossible to construct a rectangular 
patch solution to the polygonal hole problem based on equating 
coefficients in GCk edge consistency constraints of the form (2.18). 
Hahn [47] thus tackles the problem by constructing explicit diffeo- 
morphisms φj for the constraint equations 

,
)0,s(

jojp(i
)0,s(1jPi ϕ∂=+∂ i=0,...,k,andj=0,...,n-l, (4.19)

 (see (2.28) and figure 4.1). The surrounding rectangular patch network 
is assumed to be In particular, the composite map (3.28) is assumed 
to be Ck'k. 

From subsection 2.4 we have, at (0,0), 

         
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∂=

j

j
µ

λϕϕ
1

0

(0,0)j,(0,0)(0,0)j            (4.20)

Similarly, at (1,0) we obtain 

              ⎥⎦
⎤

⎢⎣
⎡ −

=∂= 0
1

1
0

(1,0)j,(0,1)(1,0)j ϕϕ              (4.21)

The properties (4.20) and (4.21) are respectively satisfied by the affine 
maps 

(u,v) → (u.v,u + A v) ,                      (4.22) 

(u,v) → (-v,u) .                         (4.23) 

Hence Hahn defines ϕj as the blended map 

φj(u,v)= a(u)(μj v,u+λj v) + β(u)(-v,u) ,            (4.24) 

where 

α(u) + β(u) = 1 , α(0) = 1 , ß(l) = 1 .             (4.25) 

In order to generate consistent Ck data, the α and β are constrained to 
have zero derivatives up to appropriate orders at 0 and 1, so that, up to 
order k, φj behaves like (4.22) and (4.23) at (0,0) and (1,0) 
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respectively. This means that 1'st derivatives of φj at (0,0) and (1,0) 
satisfy the derivative equations in (4.20) and (4.21), whilst higher 
derivatives are zero. Thus a special solution of the vertex constraints 
(2.30) has been constructed. (Hahn also imposes further constraints on 
the α and ß in order to generate consistent Ck data at the n-vertex so 
that the patches can be constructed using Boolean sum interpolation.) 
  Given the data for one patch, say P0,and consistent vertex values Q, 
Qj, j = 0,...,n-l the procedure is to march around the vertex. The data 
for the other patches is thus generated via the connecting diffeo- 
morphisms φj and from the surrounding rectangular patch network. 

4.4 A recursive subdivision scheme 

The final rectangular patch method we consider for filling an n-sided 
hole has a very different structure to the previously proposed methods. 
It is based on a recursive subdivision technique suggested by Catmull and 
Clark [15] and Doo and Sabin [24]. The method generalizes the sub- 
division technique for a bicubic B-spline surface over a regular 
rectangular grid. Such subdivision techniques should be covered else- 
where in these proceedings and we will only give a brief description of 
the method here, following the notation of Ball and Storey [1,2,3,4], 

Consider the bicubic B-spline patch of figure 3.3 with its 16 control 
points. This patch can be subdivided into 4 sub-patches, each defined by 
a subset of 16 control points from the 25 points shown in figure 4.2. 
The new control points are defined by formulae which are special cases of 

 

Figure 4.2 Subdivision of bicubic B-spline 

those given below. Repeated application of this procedure gives a 
sequence of control point networks which converges to the B-spline patch. 
We wish to generalize this subdivision process for control points 
which are arranged in a network about an n-vertex control point V as 
shown in figure 4.3. This structure is equivalent to a polygonal hole 
problem since, away from the n-vertex, the control points define a 
bicubic B-spline surface around an n-sided hole. 



 

                                 30 

 

Figure 4.3 Subdivision at an n-vertex 

          The formulae for the subdivision  process are given by 

Where         
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                                                              1nγnβnα =++                                                                         (4.27) 

The formulae for the subdivision process are given by 
 
In [15] and [24] the simple choice of coefficient weights 

αn = βn = 1/n , = γn (n-2)/n                     (4.28) 

is suggested, which for n = 4 accords with the values required for the 
bicubic B-spline subdivision. 

The procedure is equivalent to generating a sequence of rectangular 
B-spline surface patch complexes about an 'extraordinary point' defined 
by the limit of the sequence of V's. Away from the extraordinary point 
the surface is C2. At the extraordinary point geometric considerations 
apply. Doo and Sabin [24] suggest a matrix eigenproperty analysis of the 
behaviour at the extraordinary point and this behaviour has been studied 
in the series of papers by Ball and Storey [1,2,3,4]. In particular, a 
method of optimizing the coefficient weights in (4.26) is suggested. (It 
should be noted that the coefficients in (4.26) are different from those 
used by Ball and Storey due to a rearrangement of the last equation in
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(4.26).) Finally, in Storey and Ball [75] it is shown that the above 
recursive subdivision technique can be applied to fill a polygonal hole 
within a C1 bicubic Hermite patch complex. 

5. Filling Polygonal Holes with Polygonal Patches 

In this section we consider methods which have been devised to fill an 
n-sided hole with a single patch. We thus refer to such a patch as a 
polygonal patch although a polygonal domain will not always be explicitly 
defined. For example, subsection 5.3 considers a technique for defining 
a patch on a non-planar domain. The first technique described is that of 
blending function interpolation. 

5.1 Blending function methods 

Given the n-sided hole problem, a blending function method of filling the 
hole takes the general form 

                 (5.1),V,)V(jP)V(j
1n

0j
)v(p Ω∈α

−

=
= ∑

where Ω is a polygonal domain. The pj;, pj : Ω → R3, are interpolants 
which match the surrounding rectangular patch network along certain of 
edges of the domain. The αj(v), αj : Ω → R, are the 'blending functions' 
which are chosen such that the patch (5.1) matches the rectangular patch 
network around the entire boundary. In practice, the blend will be a 
convex combination, that is 

                    .ΩV0,(V)jα,1(V)jα
1n

0j
∈≥=∑

−

=
U  (5.2)

Blending function methods for defining polygonal patches have been 
considered by Charrot and Gregory [-16,38], Gregory and Hahn [39,40,41] 
and Hagen [45]. We illustrate the technique by describing a GC1 method, 
where the surrounding patch complex is a C1 surface. 

Let the polygonal domain ft be a regular n-gon in R2 with sides of 
length unity and centre the origin 0. Its vertices are denoted by Vj and 
its edges are Ej, parameterized as 

Ej(S) = (l-s)Vj + sVj+1. ,  (5.3) 

j = 0,...,n-l. The perpendicular distance dj of a point V  from the Ω
side Ej is given by 

                ,2
1

0jZ,0jZ/0jZ,VjV)V(jd >−−<>−−<=                (5.4)
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where Zj is the point of intersection of Ej-1 and Ej+1, and <.,.> is the 
Euclidean scalar product in IR 2. We then make use of either of the 
following local Cartesian coordinate systems ('coordinate charts') 
(uj,vj) about each vertex Vj, j = 0,...,n-l, see figures 5.1. 

 
Figures 5.1 Construction of the coordinate charts 

(i) Central (radial) projection coordinate charts. Let 

        .
)V(jd)V(2jd

)v(jd
,

)V(1jd)V(1jd

)V(1jd
))v(jV),V(ju(

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+−−++

−
=                (5.5)

Then Ej(uj) = (l-uj)vj + ujvj+1 and Ej-1(l-vj) = (1-vj)Vj+vjVj-1 . are the 
projections onto the sides of the rays from V to Zj and V to Zj-i 
respectively. 

(ii) Parallel projections. Let 

(uj(v),vj(v))=(
^
d j_1(v), 

^
d j(v)) , 

^
d j(v) = dj(V)/sin(2 /n) .       (5.6) π

Then Ej(uj) and E-j-1(l-vj) are the projections onto the sides of the rays 
from V parallel to the sides Ej_i and Ej respectively. 

For n > 4 we prefer the use of the central projections, whilst for 
n = 3 (when the central projections have singularities at the vertices) 
we prefer the use of the parallel projections. In the latter case, dj, 
j = 0,1,2, are the barycentric coordinates of the triangle with an 
unconventional index notation, due to the labelling used for the general 
polygon. Thus, for n = 3, 
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Consider now the rectangular patch complex qj, j = 0,...,n-l, about 
the n-sided hole and, in particular, the C1 composite map (3.28). Let 
Pj(u,v), u ≥ 0, v ≥ 0, denote a C1 extension of this map into the 
positive quadrant. (In the papers [16], [38], [40] and [41] this is 
achieved by Boolean sum Taylor interpolation.) Then 

Pj(V) = P j (u j (V),v j (V)) (5.8) 

defines a function which has GC1 joins with qj-i and qj along the edges 
Ej-1 and Ej of the polygonal domain. The joins are geometric continuous 
ones since pj matches the rectangular patches under a reparameterization 
defined by the coordinate chart map. 

The polygonal patch is now defined by (5.1), where the blending 
functions are given by 

 

             2
id

1,i

1n
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2
id

1j,ji
)V(j ∏∑∏

−≠

−

=−≠
=α

lll

                      (5.9)

Thus the αj satisfy (5.2) and vanish up to first order along the edges 
Ei i ≠j-1,j. Thus p has a GC1 join with qj along the edge Ej since along 
this edge p is a convex combination of pj and Pj+1 both of which have GC1 

joins with q . j
Whilst the above method will work to first order, a blend of k'th 

order components, k > 1, does not guarantee a GCk result, see subsection 
2.5.3. This difficulty is resolved in Gregory and Hahn [40] by 
constructing a reparameterization of the surface around the hole which is 
parametrically Ck around the hole. Also, a specific GC2 construction is 
proposed in Gregory and Hahn [41]. Alternatively, a scheme will be 
proposed in [42], whereby pj is defined as a reparameterization of a Ck 

extension of the composite map (3.28) into the positive quadrant. The 
mapping defining the reparameterization will be a blend of the vertex 
coordinate charts and by this means pj and pj+i will have identical GCk 

joins with qj. 
Another technique, not described here, is that of blending one-sided 

interpolants, see, for example, Gregory [36]. Hagen [45] describes such 
a GC2 scheme for the triangle and the method is readily generalized to 
polygonal domains. 

5.2 Overlap patches 

The following approach, due to Varady [77,78], assumes the situation 
where qj(u,v), (u,v) ∈ [0,1] × [-1,0], is one bicubic patch adjacent to 
the j'th edge of the hole. The bicubic patch is represented in Hermite 
form and Varady observes that this patch can be written as a sum of four 
components, each defined with respect to a coordinate chart about a 
vertex. Polygonal patches are then defined which have the same structure 
of a simple linear combination of vertex maps. The method is thus of a 
similar form to the blending function technique of the previous 
subsection. However, it differs from it in that the components of the 
blend only match the adjoining data at one vertex, rather than along 
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edges, and the blending functions are all unity. It is the choice of the 
coordinate charts at each vertex which play the important role of 
producing geometric continuous joins with the adjoining rectangular 
patches. 

The bicubic Hermite patch (3.2) can be written as 

                                          (5.10) ,)jv,ju(jP
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Here we have the coordinate charts (U0,V0) = (u,v) about V0 = (0,0); 
(u1V1) = (v,l-u) about V1 = (1,0); (u2,v2) = (l-u,l-v) about V2 = (1,1); 

(u3,v3) = (l-v,u) about V3 = (0,1). Also Pj, P
ju
j , p jv

j ' p  represent j
vju

j
the function and derivative data at the vertex Vj, with respect to the 
coordinate chart at Vj. The boundary behaviour is then given, for 
example, by 
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Let Ω be the regular n-gon with vertices Vj and edges 
Ej(s) = (l-s)Vj+ sVj+1, j = 0,...,n-l, defined as in subsection 5.1. 
Then the overlap patch takes the form 
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Here θ  is the 'origin' of the patch, which in the case n = 4 cancels from 
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(5.13) and (5.14) to give (5.10) and (5.11). Varady calls (5.13) the 
'overlap patch' since it is a summation of individual patches which have 
an overlapping domain of influence within the polygon. 

The choice of the coordinate charts (uj (V),vj(V) ), V , about each Ω∈
vertex Vj is crucial to the success of the method. The choice must be 
made such that the overlap patch has a GC1 join with its bicubic Hermite 
patch neighbours. Assume that Ej(Uj) maps to (uj,0) and Ej-1(1-Vj) maps 
to (0,Vj) in the coordinate chart (u j,v j). Consider without loss of 
generality the behaviour of p on the side E0. Assume that p j(U j,V j), 
j ≠ 0,1, are zero to first order on E0. (This is achieved either by 
constraining uj = 1 or Vj = 1 on E0 for j ≠ 0,1, or by a zero extension 
of Pj(uj,vj) outside [0,1]2.) Then 

 

Figure 5.2 The coordinate charts at V0 and V1
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where ∂sp = ∂p/∂s denotes differentiation along the side. Furthermore, 
differentiating along the inward normal to the side gives 
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where we assume the coordinate charts are such that 
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Thus p has a GC1 join with its neighbour qo (compare (5.16) with (5.12)). 
     Varady proposes two constructions of the coordinate charts which 
satisfy conditions of the above form and which hence produce GC1 

polygonal patch schemes. (The central and parallel projection coordinate 
charts of the previous subsection are not appropriate.) 

5.3 Non-planax domains 

Hosaka and Kimura [51] and Sabin [69,70,71] have approached the polygonal 
patch problem by defining surfaces on non-planar domains. The use of 
non-planar domains introduces degrees of freedom which can be used in the 
construction of appropriate geometric continuity constraints between 
patches. We will consider, in particular, the example of a triangular 
patch derived both by Sabin [71] and Hosaka and Kimura [51]. This patch 
fills a three-sided hole within a biquadratic Bernstein-Bezier patch 
complex. 

Given an n-sided hole, a "multi-linear' domain is defined by the n-2 
constraint equations 

     ,3n0,...,k,u
1n

0kAk2nju
k

0

1n

0j
−=∏

−

=
+−−=+∏

=
∑
−

= llll
          (5.18)

where the uℓ ≥ 0 are the parameters of the patch and the Ak are 
constants. The domain edges are defined by uj = 0, j = 0,...,n-l. The 
uj vary linearly along the adjacent edges uj-1 = 0 and uj+1 = 0. On all 
other edges u  = 1. j

For the triangular patch the domain is defined by the one constraint 
equation 

u0 + ul + u2 = 1 + A0 u0 u1u2 , ui ≥ 0 , i = 0, 1, 2. (5.19) 

If A0 = 0, the domain is a planar triangle. Sabin sets A0 = 2 and 
defines a 'tricubic' patch by 

 p(u0,u1,u2) = u  (l-2u2
0 1u2)A + 2u0u1(l-u2)B 

+ u  (1-2u2
1 2u0)C + 2u1u2(1-u0)D 

+ u  (l-2u2
2 0u1)E + 2u0u2(l-u1)F 

+ u   0u2
3 1u2G '                          (5.20)

where A - G define the         atrol points of the patch and (uo,u1,u2) 
satisfies (5.19). 

Along any edge uj = 0 the patch is a univariate Bernstein-Bezier 
quadratic and hence can used to fill a triangular hole within a 
biquadratic rectangular Bernstein-Bezier patch complex. We now show that 
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it is appropriate for a C1 patch complex by considering the behaviour 
across the edge u2 = 0 say. Let 

P̂ (ul,u2) = p(u0,u1,u2) , u0 = (l-u1-u2)/(l-2u1u2) ,  (5.21) 

be the representation of p as a rational patch  in the coordinate chart p̂
(u1,u2). Then along the edge u2 = 0, where u0 = 1-u1, it can be shown 
that 

                 C21uB1u02uA20u,0)1(up ++=ˆ                         (5.22) 

,)(2
12)(104)(2

02)0,1(0,1ˆ
2
1)0,1(1,0ˆ CDuBGuuAFuupuuP −+−+−=−  (5.23)

 
Figure 5.3 The tricubic patch 

quadratic along the edge. The second equation is a cross boundary 
derivative which is compatible with the cross boundary derivative of a 
biquadratic Bernstein-Bezier patch. Thus the control points of the 
patches can be chosen such that GC1 constraints are satisfied across the 
edges. 

Pentagonal patch constructions are given in [5] and [71] but Sabin 
[72,73] has observed difficulties in using 'multi-linear' domains defined 
by (5.18) for n ≥ 6. Thus  a  generalization  of  the domain may be 
appropriate. 

6. Concluding Remarks 

In this survey of geometric continuity methods, we have concentrated on 
the specific problem of filling an n-sided hole within a 'regular' 
rectangular patch complex. A recent polygonal patch method of DeRose and 

see figure 5.3. The first of these equations is the Bernstein-Bezier
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Loop [23] has not been included. This method constructs a Bernstein- 
Bezier polynomial defined on an n-1 dimensional simplex. A projection of 
the simplex into IR 2 then defines the polygonal patch. However, geometric 
continuous joins, particularly around a vertex, have not yet been 
developed for this method. 

We have also omitted the discussion of the creation of parametric 
surfaces over more general patch complexes, for example, complexes of 
triangular patches and 'irregular' complexes of rectangular patches. A 
number of methods for such complexes having GC1 joins have been proposed, 
see for example Herror [49], Jensen [53], Nielson 162], Peters [66], 
Piper [67] and Saraga. [74]. An extended list of papers involving 
geometric continuity of surfaces is given in the references [1 - 82]. 
Recursive subdivision methods for defining surfaces over general mesh 
networks should be covered elsewhere in these proceedings. 

Finally, a comparative study of the methods discussed here has not 
been made. Some methods are clearly easier than others to implement and 
the bias of current surface modelling systems towards rectangular patches 
might seem to favour rectangular patch methods for filling polygonal 
holes. However, it is a simple matter to reparameterize a given 
polygonal patch as a complex of rectangular patch mappings. This is 
achieved by quadrilateral subdivision of the polygonal domain about its 
centre. 
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	The lectures are organised as follows.      Section 2 develops the 
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