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Abstract. The notion of smooth projective hash functions was proposed
by Cramer and Shoup and can be seen as special type of zero-knowledge
proof system for a language. Though originally used as a means to build
efficient chosen-ciphertext secure public-key encryption schemes, some
variations of the Cramer-Shoup smooth projective hash functions also
found applications in several other contexts, such as password-based au-
thenticated key exchange and oblivious transfer. In this paper, we first
address the problem of building smooth projective hash functions for
more complex languages. More precisely, we show how to build such
functions for languages that can be described in terms of disjunctions
and conjunctions of simpler languages for which smooth projective hash
functions are known to exist. Next, we illustrate how the use of smooth
projective hash functions with more complex languages can be efficiently
associated to extractable commitment schemes and avoid the need for
zero-knowledge proofs. Finally, we explain how to apply these results to
provide more efficient solutions to two well-known cryptographic prob-
lems: a public-key certification which guarantees the knowledge of the
private key by the user without random oracles or zero-knowledge proofs
and adaptive security for password-based authenticated key exchange
protocols in the universal composability framework with erasures.

1 Introduction

In [16], Cramer and Shoup introduced a new primitive called smooth projective
hashing and showed how to use it to generalize their chosen-ciphertext secure
public-key encryption scheme [15]. The new abstraction not only provided a
more intuitive description of the original encryption scheme, but also resulted
in several new instantiations based on different security assumptions such as
quadratic residuosity and N -residuosity [31].

The notion of smooth projective hash functions (SPHF, [16], after slight mod-
ifications [22]) has been proven quite useful and has found applications in several
other contexts, such as password-based authenticated key exchange (PAKE, [22])
and oblivious transfer [27]. In the context of PAKE protocols, the work of Gen-
naro and Lindell abstracted and generalized (under various indistinguishability
assumptions) the earlier protocol by Katz, Ostrovsky, and Yung [28] and has
become the basis of several other schemes [1,3,8]. In the context of oblivious
transfer, the work of Kalai [27] also generalized earlier protocols by Naor and
Pinkas [30] and by Aiello, Ishai, and Reingold [2].
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To better understand the power of SPHF, let us briefly recall what they
are. First, the definition of SPHF requires the existence of a domain X and an
underlying NP language L such that it is computationally hard to distinguish
a random element in L from a random element in X \ L. For instance, in the
particular case of the PAKE scheme in [13], the language L is defined as the
set of triples {(c, �, m)} such that c is an encryption of m with label � under a
public key given in the common reference string (CRS). The semantic security
of the encryption scheme guarantees computational indistinguishability between
elements from L and from X .

One of the key properties that make SPHF so useful is that, for a point x ∈ L,
the hash value can be computed using either a secret hashing key hk, or a public
projected key hp (depending on x [22] or not [16]) together with a witness w
to the fact that x ∈ L. Another important property of these functions is that,
given the projected key hp, their output is uniquely defined for points x ∈ L
and statistically indistinguishable from random for points x ∈ X \L. Moreover,
without the knowledge of the witness w to the fact that x ∈ L, the output of
these functions on x is also pseudo-random.

The first main contribution of this paper is to extend the line of work on
SPHF, the element-based version proposed by [22], to take into account more
complex NP languages. We show how to build SPHF for languages that can
be described in terms of disjunctions and conjunctions of simpler languages for
which SPHF are known to exist. For instance, let Hm represent a family of SPHF
for the language {(c)}, where c is the encryption of m under a given public key.
Using our tools, one can build a family of SPHF for the language {(c)}, where c
is the encryption of either 0 or 1, by combining H0 and H1.

One of the advantages of building SPHF for more complex languages is that
it allows us to simplify the design of the primitives to which they are associated.
To demonstrate this, we consider in this paper the specific case of extractable
commitment schemes. In most protocols in which extractable commitments are
used, the capability of extracting the committed message usually depends on
the commitment being properly generated. To achieve this goal and enforce
the correct generation of the commitment, it is often the case that additional
mechanisms, such as zero-knowledge proofs, may have to be used. This is the
case, for instance, of several protocols where a specific public-key registration
phase is required, such as most of the cryptographic protocols with dynamic
groups (multisignatures [9,29], group signatures [18], etc). Such a framework is
sometimes named registered public-key model, where a proof of knowledge of the
secret key is required before any certification.

To be able to build more efficient extractable commitment schemes and avoid
the use of possibly expensive concurrent zero-knowledge proofs, a second main
contribution of this paper is to generalize the concept of extractable commit-
ments so that extraction may fail if the commitment is not properly generated.
More specifically, we introduce a new notion of L-extractable commitments in
which extraction is only guaranteed if the committed value belongs to the lan-
guage L and may fail otherwise. The main intuition behind this generalization
is that, when used together with a SPHF for the language L, the cases in which
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extraction may fail will not be very important as the output of the SPHF will
be statistically indistinguishable from random in such cases.

Applications
Registered Public-Key Setting. For many cryptographic protocols, for
proving the security even when users can dynamically join the system, the sim-
ulator described in the security proof often needs to know the private keys of
the authorized users, which is called the registered public-key setting, in order to
avoid rogue-attacks [9]. This should anyway be the correct way to proceed for a
certification authority: it certifies a public key to a user if and only if the latter
provides a proof of knowledge of the associated private key. However, in order
to allow concurrency, intricate zero-knowledge proofs are required, which makes
the certification process either secure in the random oracle model [6] only, or
inefficient in the standard model.

In this paper, we show how SPHF with conditionally extractable commitments
can help to solve this problem efficiently, in the standard model, by establishing
a secure channel between the players, with keys that are either the same for the
two parties if the commitment has been correctly built, or perfectly independent
in the other case.

Adaptively-secure PAKE schemes. We thereafter study more involved
key exchange schemes. In 1992, Bellovin and Merritt [7] suggested a method to
authenticate a key exchange based on simple passwords, possibly drawn from
a space so small that an adversary might enumerate off-line all possible values.
Because of the practical interest of such a primitive, many schemes have been
proposed and studied. In 2005, Canetti et al. [13] proposed an ideal functionality
for PAKE protocols, in the universal composability (UC) framework [11,14], and
showed how a simple variant of the Gennaro-Lindell methodology [22] could lead
to a secure protocol. Though quite efficient, their protocol is not known to be
secure against adaptive adversaries, where they can corrupt players at any time,
and learn their internal states. The first ones to propose an adaptively-secure
PAKE in the UC framework were Barak et al. [3] using general techniques from
multi-party computation (MPC). Though conceptually simple, their solution
yields quite inefficient schemes.

Here, we take a different approach. Instead of using general MPC techniques,
we extend the Gennaro-Lindell methodology to deal with adaptive corruptions
by using a non-malleable conditionally-extractable and equivocable commitment
scheme with an associated SPHF family. The new scheme is adaptively secure
in the common reference string model in the UC framework under standard
complexity assumptions with erasures.

Related work
Commitments. Commitment schemes are one of the most fundamental cryp-
tographic primitives, being used in several cryptographic applications such as
zero-knowledge proofs [25] and secure multi-party computation [24]. Even quite
practical protocols need them, as already explained above in the public-key reg-
istration setting, but also in password-based authenticated key exchange [22].
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They allow a user to commit a value x into a public value C, such that the
latter does not reveal any information about x (the hiding property), but C can
be opened later to x only: one cannot change its mind (the binding property).
Various additional properties are often required, such as non-malleability, ex-
tractability and equivocability. Canetti and Fischlin [12] provided an ideal func-
tionality for such a primitive and showed that achieving all these properties
at the same time was impossible in the UC plain model. They also provided
the first candidate in the CRS model. Damgård and Nielsen [17] later proposed
another construction of universally composable commitments, that is more effi-
cient for some applications. Since we want to avoid the use of possibly inefficient
proofs of relations present in the Damgård-Nielsen construction and given that
the Canetti-Fischlin construction is well suited for our purpose of designing an
associated smooth hash function, we opted to use the latter as the starting point
for our constructions.

PAKE. The password-based setting was first considered by Bellovin and Mer-
ritt [7] and followed by many proposals. In 2000, Bellare, Pointcheval, and Rog-
away [5] as well as Boyko, MacKenzie, and Patel [10] proposed security models
and proved variants of the protocol of [7], under ideal assumptions, such as the
random oracle model [6]. Soon after, Katz, Ostrovsky, and Yung [28] and Gol-
dreich and Lindell [23] proposed the first protocols with a proof of security in the
standard model, with the former being based on the decisional Diffie-Hellman as-
sumption and the latter on general assumptions. Later, Gennaro and Lindell [22]
proposed an abstraction and generalization of the KOY protocol and became the
basis of several other variants, including ours in the last section.

Organization of the Paper. In Section 2, we review the basic primitives
needed in this paper. Then, in Section 3, we describe our first contribution:
SPHF families on conjunctions and disjunctions of languages. In Section 4 we
combine that with our second contribution, conditionally-extractable commit-
ments. We focus on the ElGamal-based commitment, since this is enough to
build more efficient public-key certification protocols. Finally, in Section 5, we
add equivocability to the commitment, borrowing techniques from Canetti and
Fischlin [12]. Then, we add the non-malleability property, granted the Cramer-
Shoup encryption scheme, which can then be used to build an adaptively-secure
PAKE in the UC framework, based on the Gennaro and Lindell [22] framework.
Due to space restrictions, formal definitions, proofs, and application details were
postponed to the appendix.

2 Commitments

In the following, we focus on Pedersen commitments, and certification of Schnorr-
like public keys, hence, we work in the discrete logarithm setting. As a con-
sequence, to get extractable commitments, we use encryption schemes from
the same family: the ElGamal encryption [21] and the labeled version of the
Cramer-Shoup encryption scheme [15] (for achieving non-malleability).
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Labeled Public-Key Encryption. Labeled encryption [32] is a variation of
the usual encryption notion that takes into account the presence of labels in the
encryption and decryption algorithms. More precisely, both the encryption and
decryption algorithms have an additional input parameter, referred to as a label,
and the decryption algorithm should only correctly decrypt a ciphertext if its
input label matches the label used to create that ciphertext.

The security notion for labeled encryption is similar to that of standard en-
cryption schemes. The main difference is that, whenever the adversary wishes
to ask a query to its Left-or-Right encryption oracle in the indistinguishability
security game (IND-CPA) [4,26], in addition to providing a pair of messages
(m0, m1), it also has to provide a target label � to obtain the challenge cipher-
text c. When chosen-ciphertext security (IND-CCA) is concerned, the adversary
is also allowed to query its decryption oracle on any pair (�′, c′) as long as �′ �= �
or the ciphertext c′ does not match the output c of a query to its Left-or-Right
encryption oracle whose input includes the label �. For formal security definitions
for labeled encryption schemes, please refer to [1,13].

One of the advantages of using labeled encryption, which we exploit in this pa-
per, is that we can easily combine several IND-CCA labeled encryption schemes
with the help of a strongly unforgeable one-time signature scheme so that the
resulting scheme remains IND-CCA [20].

ElGamal and Cramer-Shoup Encryption. We denote by G a cyclic group
of prime order q where q is large (n bits), and g a generator for this group. Let
pk = (g1, g2, c = gx1

1 gx2
2 , d = gy1

1 gy2
2 , h = gz

1 , H) be the public key of the Cramer-
Shoup scheme, where g1 and g2 are random group elements, x1, x2, y1, y2 and z
are random scalars in Zq, and H is a collision-resistant hash function (actually,
second-preimage resistance is enough), and sk = (x1, x2, y1, y2, z) the associated
private key. Note that (g1, h) will also be seen as the public key of the ElGamal
encryption, with z the associated private key. For the sake of simplicity, we
assume in the following that public keys will additionally contain all the global
parameters, such as the group G.

If M ∈ G, the multiplicative ElGamal encryption is defined as EG×
pk(M ; r) =

(u1 = gr
1 , e = hrM), which can be decrypted by M = e/uz

1. If M ∈ Zq, the
additive ElGamal encryption is defined as EG+

pk(M ; r) = (u1 = gr
1 , e = hrgM ).

Note that EG×
pk(g

M ; r) = EG+
pk(M ; r). It can be decrypted after an additional

discrete logarithm computation: M must be small enough. Similarly, if M ∈ G,
the multiplicative labeled Cramer-Shoup encryption is defined as CS×

pk

�
(M ; r) =

(u1, u2, e, v), such that u1 = gr
1, u2 = gr

2, e = hrM , θ = H(�, u1, u2, e) and
v = (cdθ)r. Decryption works as above, with M = e/uz

1, but only if the ciphertext
is valid: v = ux1+θy1

1 ux2+θy2
2 . If M ∈ Zq, its additive encryption CS+

pk

�
(M ; r) is

such that e = hrgM . The following relation holds CS×
pk

�
(gM ; r) = CS+

pk

�
(M ; r).

The decryption applies as above if M is small enough.
As already noted, from any Cramer-Shoup ciphertext (u1, u2, e, v) of a mes-

sage M with randomness r, whatever the label � is, one can extract (u1, e) as
an ElGamal ciphertext of the same message M with the same randomness r.
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This extraction applies independently of the additive or multiplicative version
since the decryption works the same for the ElGamal and the Cramer-Shoup
ciphertexts, except for the validity check that provides the CCA security level to
the Cramer-Shoup encryption scheme, whereas the ElGamal encryption scheme
achieves IND-CPA security level only.

Commitments. With a commitment scheme, a player can commit to a secret
value x by publishing a commitment C = com(x; r) with randomness r, in such
a way that C reveals nothing about the secret x, which is called the hiding
property. The player can later open C to reveal x, by publishing x and a de-
commitment, also referred to as witness, in a publicly verifiable way: the player
cannot open C to any other value than x, which is the binding property. In
many cases, the decommitment consists of the random r itself or some part of it.
In this paper, we only consider commitment schemes in the common reference
string (CRS) model in which the common parameters, referred to as the CRS,
are generated honestly and available to all parties.

Note that an IND-CPA public-key encryption scheme provides such a com-
mitment scheme: the binding property is guaranteed by the uniqueness of the
plaintext (perfectly binding), and the hiding property is guaranteed by the
IND-CPA security (computationally hiding). In this case, the CRS simply con-
sists of the public-key of the encryption scheme. The Pedersen commitment
C = comPed(x; r) = gxhr provides a perfectly hiding, but computationally bind-
ing commitment under the intractability of the discrete logarithm of h in basis g.

We now present additional properties that can be satisfied by the commit-
ment. First, we say that a commitment is extractable if there exists an efficient
algorithm, called an extractor, capable of generating a new set of common pa-
rameters (i.e., a new CRS) whose distribution is equivalent to that of an hon-
estly generated CRS and such that it can extract the committed value x from
any commitment C. This is of course only possible for computationally hiding
commitments, such as encryption schemes: the decryption key is the extraction
trapdoor. Second, we say that a commitment is equivocable if there exists an
efficient algorithm, called an equivocator, capable of generating a new CRS and
a commitment with similar distributions to those of the actual scheme and such
that the commitment can be opened in different ways. Again, this is possible for
computationally binding commitments only, such as the Pedersen commitment:
the knowledge of the discrete logarithm of h in basis g is a trapdoor that allows
the opening of a commitment in more than one way. Finally, a non-malleable
commitment ensures that if an adversary that receives a commitment C of some
unknown value x can generate a valid commitment for a related value y, then
a simulator could perform as well without seeing C. A public-key encryption
scheme that is IND-CCA provides such a non-malleable commitment [22]. For
formal security definitions for commitment schemes, please refer to [22,19,12].

In the following, we use encryption schemes in order to construct commit-
ments, which immediately implies the hiding, binding and extractable proper-
ties, as said above. However, when one uses the additive versions of ElGamal or
Cramer-Shoup encryption schemes, extractability (or decryption) is only possible
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if the committed values (or plaintexts) are small enough, hence our notion of L-
extractable commitments (see Section 4) which will mean that the commitment
is extractable if the committed value lies in the language L. More precisely, we
will split the value to be committed in small pieces (that lie in the language L),
but we will then need to be sure that they actually lie in this language to guar-
antee extractability. We thus introduce smooth hash functions in order to allow
communications if the commitments are valid only.

3 Smooth Hash Functions on Conjunctions and
Disjunctions of Languages

Smooth Projective Hash Functions. Projective hash function families were
first introduced by Cramer and Shoup [16] as a means to design chosen-ciphertext
secure encryption schemes. We here use the definitions of Gennaro and Lin-
dell [22], who later showed how to use such families to build secure password-
based authenticated key exchange protocols, together with non-malleable
commitments. In addition to commitment schemes, we also consider here fami-
lies of SPHF associated to labeled encryption as done by Canetti et al. [13] and
by Abdalla and Pointcheval [1].

Let X be the domain of these functions and let L be a certain subset of points
of this domain (a language). A key property of these functions is that, for points
in L, their values can be computed by using either a secret hashing key or a
public projected key. While the computation using the secret hashing key works
for all points in the domain X of the hash function, the computation using a
public projected key only works for points x ∈ L and requires the knowledge of
the witness w to the fact that x ∈ L. A projective hash function family is said to
be smooth if the value of the function on inputs that are outside the particular
subset L of the domain are independent of the projected key. Another important
property of these functions is that, given the projected key hp, their output is
uniquely defined for points x ∈ L. Moreover, if L is a hard partitioned subset
of X (i.e., it is computationally hard to distinguish a random element in L from
a random element in X \ L), this output is also pseudo-random if one does not
know a witness w to the fact that x ∈ L [22]. The interested reader is referred
to the full version for more formal definitions.

In the particular case of the Gennaro-Lindell scheme [22], the subset Lpk,m

was defined as the set of {(c)} such that c is a commitment of m using pub-
lic parameters pk: there exists r for which c = compk(m; r) where com is the
committing algorithm of the commitment scheme. In the case of the CHKLM
scheme [13], the subset Lpk,(�,m) was defined as the set of {(c)} such that c is
an encryption of m with label �, under the public key pk: there exists r for
which c = E�

pk
(m; r) where E is the encryption algorithm of the labeled encryp-

tion scheme. In the case of a standard encryption scheme, the label is simply
omitted. The interested reader is referred to [22,13,1] for more details.

Languages. Since we want to use more general languages, we need more de-
tailed notations. Let LPKE be a labeled encryption scheme with public key pk.
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Let X be the range of the encryption algorithm. Here are three useful examples
of languages L in X :

– the valid ciphertexts c of m under pk, L(LPKE,pk),(�,m) = {c|∃r c = E�
pk
(m; r)};

– the valid ciphertexts c of m1 or m2 under pk (that is, a disjunction of two
versions of the former languages), L(LPKE,pk),(�,m1∨m2) = L(LPKE,pk),(�,m1)∪
L(LPKE,pk),(�,m2);

– the valid ciphertexts c under pk, L(LPKE,pk),(�,∗) = {c|∃m ∃r c = E�
pk
(m; r)}.

If the encryption scheme is IND-CPA, the first two are hard partitioned subsets
of X . The last one can also be a hard partitioned subset in some cases: for the
Cramer-Shoup encryption, L � X = G4 and, in order to distinguish a valid
ciphertext from an invalid one, one has to break the DDH problem. However, for
the ElGamal encryption scheme, all the ciphertexts are valid, hence L = X = G2.

More complex languages can be defined, with disjunctions as above, or con-
junctions: the pairs of ciphertexts (a, b) such that a ∈ L(LPKE,pk),(�,0∨1) and
b ∈ L(LPKE,pk),(�,2∨3). This set can be obtained by (L(LPKE,pk),(�,0∨1)) × X) ∩
(X × L(LPKE,pk),(�,2∨3)).

Likewise, we can define more general languages based on other primitives
such as commitment schemes. The definition would be similar to the one above,
with pk playing the role of the common parameters, Epk playing the role of the
committing algorithm, (m, �) playing the role of the input message, and c playing
the role of the commitment.

More generally, in the following, we denote the language by the generic nota-
tion L(Sch,ρ),aux where aux denotes all the parameters useful to characterize the
language (such as the label used, or a plaintext), ρ denotes the public parame-
ters such as a public key pk, and Sch denotes the primitive used to define the
language, such as an encryption scheme LPKE or a commitment scheme Com.
When there is no ambiguity, the associated primitive Sch will be omitted.

We now present new constructions of SPHF to deal with more complex
languages, such as disjunctions and conjunctions of any languages. The con-
structions are presented for two languages but can be easily extended to any
polynomial number of languages. We then discuss about possible information
leakage at the end of this section. The properties of correctness, smoothness and
pseudo-randomness are easily verified by these new smooth hash systems. Due
to the lack of space, the formal proofs can be found in the full version.

Conjunction of two Generic Smooth Hashes. Let us consider an encryp-
tion or commitment scheme defined by public parameters and a public key ag-
gregated in ρ. X is the range of the elements we want to study (ciphertexts,
tuples of ciphertexts, commitments, etc), and L1 = L1,ρ,aux and L2 = L2,ρ,aux

are hard partitioned subsets of X , which specify the expected properties (valid
ciphertexts, ciphertexts of a specific plaintext, etc). We consider situations where
X possesses a group structure, which is the case if we consider ciphertexts or
tuples of ciphertexts from an homomorphic encryption scheme. We thus denote
by ⊕ the commutative law of the group (and by � the opposite operation, such
that c⊕ a� a = c).
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We assume to be given two smooth hash systems SHS1 and SHS2, on the sets
corresponding to the languages L1 and L2: SHSi = {HashKGi, ProjKGi, Hashi,
ProjHashi}. Here, HashKGi and ProjKGi denote the hashing key and the projected
key generators, and Hashi and ProjHashi the algorithms that compute the hash
function using hki and hpi respectively.

Let c be an element of X , and r1 and r2 two elements chosen at random.
We denote by hk1 = HashKG1(ρ, aux, r1), hk2 = HashKG2(ρ, aux, r2), hp1 =
ProjKG1(hk1; ρ, aux, c), and hp2 = ProjKG2(hk2; ρ, aux, c) the keys. A smooth
hash system for the language L = L1∩L2 is then defined as follows, if c ∈ L1∩L2

and wi is a witness that c ∈ Li, for i = 1, 2:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2)

HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)⊕ Hash2(hk2; ρ, aux, c)
ProjHashL(hp; ρ, aux, c; (w1, w2)) = ProjHash1(hp1; ρ, aux, c; w1)

⊕ProjHash2(hp2; ρ, aux, c; w2)

Disjunction of two Generic Smooth Hashes. Let L1 and L2 be two lan-
guages as described above. We assume to be given two smooth hash systems
SHS1 and SHS2 with respect to these languages. We define L = L1 ∪ L2 and
construct a smooth projective hash function for this language as follows:

HashKGL(ρ, aux, r = r1‖r2) = hk = (hk1, hk2)
ProjKGL(hk; ρ, aux, c) = hp = (hp1, hp2, hpΔ = Hash1(hk1; ρ, aux, c)

⊕Hash2(hk2; ρ, aux, c))
HashL(hk; ρ, aux, c) = Hash1(hk1; ρ, aux, c)

ProjHashL(hp; ρ, aux, c; w) = ProjHash1(hp1; ρ, aux, c; w) if c ∈ L1

or hpΔ � ProjHash2(hp2; ρ, aux, c; w) if c ∈ L2

where w is a witness of c ∈ Li for i ∈ {1, 2}. Then ProjHashi(hpi; ρ, aux, c; w) =
Hashi(hki; ρ, aux, c). The player in charge of computing this value is supposed
to know w, and in particular the language which c belongs to (the index i).

Uniformity and Independence. In the above definition of SPHF (contrarily
to the original Cramer-Shoup [16] definition), the value of the projected key
formally depends on the ciphertext/commitment c. However, in some cases, one
may not want to reveal any information about this dependency. In fact, in certain
cases such as in the construction of a SPHF for equivocable and extractable
commitments in Section 5, one may not even want to leak any information
about the auxiliary elements aux. When no information is revealed about aux,
it means that the details about the exact language will be concealed.

We thus add a notion similar to the smoothness, but for the projected key: the
projected key may or may not depend on c (and aux), but its distribution does
not: Let us denote by Dρ,aux,c the distribution {hp | hk = HashKGL(ρ, aux, r)
and hp = ProjKGL(hk; ρ, aux, c)}, on the projected keys. If, for any c, c′ ∈ X ,
Dρ,aux,c′ and Dρ,aux,c are indistinguishable, then we say that the smooth hash
system has the 1-uniformity property. If, for any c, c′ ∈ X , and any auxiliary
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elements aux, aux′, Dρ,aux′,c′ and Dρ,aux,c are indistinguishable, we name it
2-uniformity property.

More than indistinguishability of distributions, the actual projected key hp
may not depend at all on c, as in the Cramer and Shoup’s definition. Then, we say
that the smooth hash system guarantees 1-independence (resp. 2-independence
if it does not depend on aux either). Note that the latter independence notions
immediately imply the respective uniformity notions.

As an example, the smooth hash system associated with the ElGamal cryp-
tosystem (see Section 4 page 680) guarantees 2-independence. On the other hand,
the analogous system associated with the Cramer-Shoup encryption (see the full
version) guarantees 2-uniformity only. For smooth hash systems combinations,
one can note that in the case of disjunctions, one can get, at best, the uniformity
property, since hash computations on the commitment are needed for generat-
ing the projected key. Furthermore, this is satisfied under the condition that the
two underlying smooth hash systems already satisfy this property (see the full
version for more details and proofs).

Finally, one should note that, in the case of disjunction, the view of the
projected hash value could leak some information about the sub-language in
which the input lies, if an adversary sends a fake hpΔ. The adversary could
indeed check whether ProjHashL(hp; ρ, aux, c; w) equals Hash1(hk1; ρ, aux, c) or
hpΔ �Hash2(hk2; ρ, aux, c). But first, it does not contradict any security notion
for smooth hash systems; second, in all the applications below, the projected
hash value is never revealed; and third, in the extractable commitments below,
because of the global conjunction of the languages, an exponential exhaustive
search would be needed to exploit this information, even if the committed value
is a low-entropy one.

4 A Conditionally Extractable Commitment

ElGamal Commitment and Associated Smooth Hash. The ElGamal com-
mitment is realized in the common reference string model, where the CRS ρ
contains (G, pk), as defined in Section 2, for the ElGamal encryption scheme.
In practice, sk should not be known by anybody, but in the security analy-
sis, sk will be the extraction trapdoor. Let the input of the committing algo-
rithm be a scalar M ∈ Zq. The commitment algorithm consists of choosing a
random r and computing the following ElGamal encryption under random r:
C = EG+

pk(M, r) = (u1 = gr
1, e = hrgM ).

The smooth projective hashing, associated with this commitment scheme and
the language L = L(EG+,ρ),M ⊂ X = G2 of the additive ElGamal ciphertexts C
of M under the global parameters and public key defined by ρ, is the family
based on the underlying ElGamal encryption scheme, as defined in [22]:

HashKG((EG+, ρ), M) = hk = (γ1 , γ3)
$← Zq × Zq

Hash(hk; (EG+, ρ), M, C) = (u1)
γ1 (eg−M )γ3

ProjKG(hk; (EG+, ρ), M, C) = hp = (g1)γ1 (h)γ3

ProjHash(hp; (EG+, ρ), M, C; r) = (hp)r
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First, under the DDH problem (semantic security of the ElGamal encryption
scheme), L is a hard partitioned subset of X = G2. Then, for C = EG+

pk(M, r),
and thus with the witness r, the algorithms are defined as above using the same
notations as in [22].

L-extractable Commitments. Note that the value gM would be easily ex-
tractable from this commitment (seen as the multiplicative ElGamal encryp-
tion). However, one can extract M itself (the actual committed value) only if
its size is small enough so that it can be found as a solution to the discrete
logarithm problem. In order to obtain “extractability” (up to a certain point, see
below), one should rather commit to it in a bit-by-bit way.

Let us denote M ∈ Zq by
∑m

i=1 Mi · 2i−1, where m ≤ n. Its commitment is
comEGpk(M) = (b1, . . . , bm), where bi = EG+

pk(Mi · 2i−1, ri) = (u1,i = g1
ri , ei =

hrigMi·2i−1
), for i = 1, . . . , m. The homomorphic property of the encryption

scheme allows to obtain, from this tuple, the above simple commitment of M
C = EG+

pk(M, r) = (u1, e) = (
∏

u1,i,
∏

ei) =
∏

bi, for r =
∑

ri.
We now precise what we mean by “extractability”: Here, the commitment will be
extractable if the messages Mi are bits (or at least small enough), but we cannot
ensure that it will be extractable otherwise. More generally, this leads to a new
notion of L−extractable commitments, which means that we allow the primitive
not to be extractable if the message does not belong to a certain language L
(e.g. the language of encryptions of 0 or 1), which is informally the language of
all commitments valid and “of good shape”, and is included into the set X of all
commitments.

Smooth Hash Functions. For the above protocol, we need a smooth hash
system on the language L = L1 ∩ L2, where L1 = {(b1, . . . , bm) | ∀i, bi ∈
L(EG+,ρ),0∨1}, L2 = {(b1, . . . , bm) | C =

∏
i bi ∈ L(EG×,ρ),gM }, to within a

factor (corresponding to the offest 2i−1) with
L(EG+,ρ),0∨1 = L(EG+,ρ),0 ∪ L(EG+,ρ),1 L(EG+,ρ),0 = {C | ∃r C = EG+

pk(0, r)}
L(EG×,ρ),gM = {C | ∃r C = EG×

pk(g
M , r)} L(EG+,ρ),1 = {C | ∃r C = EG+

pk(1, r)}
It is easy to see that this boils down to constructing a smooth hash system

corresponding to a conjunction and disjunction of languages, as presented in the
previous section.

Certification of Public Keys
Description. A classical application of extractable commitments is in the certi-
fication of public keys (when we want to be sure that a person joining the system
actually knows the associated private key). Suppose that a user U owns a pair
of secret and public keys, and would like to have the public key certified by the
authority. A natural property is that the authority will not certify this public
key unless it is sure that the user really owns the related private key, which
is usually ensured by a zero-knowledge proof of knowledge: the user knows the
private key if a successful extractor exists.

Here we present a construction that possesses the same property without
requiring any explicit proof of knowledge, furthermore in a concurrent way since
there is no need of any rewinding:
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– First, the user sends his public key gM , along with a bit-by-bit L-extractable
commitment of the private key M , i.e. a tuple comEGpk(M) = (b1, . . . , bm)
as described above, from which one can derive C =

∏
bi = EG+

pk(M, r) =
EG×

pk(g
M , r).

– We define the smooth hash system related to the language L1 ∩ L2, where
L1 = ∩iL1,i, with L1,i the language of the tuples where the i-th component
bi is an encryption of 0 or 1, and L2 is the language of the tuples where
the derived C =

∏
bi is an encryption of the public key gM (under the

multiplicative ElGamal, as in Section 4 page 680).
Note that when the tuple (b1, . . . , bm) lies in L1∩L2, it really corresponds

to an extractable commitment of the private key M associated to the public
key gM : each bi encrypts a bit, and can thus be decrypted, which provides
the i-th bit of M .

– The authority computes a hash key hk, the corresponding projected key hp
on (b1, . . . , bm) and the related hash value Hash on (b1, . . . , bm). It sends hp
to U along with Cert ⊕ Hash, where Cert is the expected certificate. Note
that if Hash is not large enough, a pseudo-random generator can be used to
expand it.

– The user is then able to recover his certificate if and only if he can com-
pute Hash: this value can be computed with the algorithm ProjHash on
(b1, . . . , bm), from hp. But it also requires a witness w proving that the tuple
(b1, . . . , bm) lies in L1 ∩ L2.

With the properties of the smooth hash system, if the user correctly computed
the commitment, he knows the witness w, and can get the same mask Hash to
extract the certificate. If the user cheated, the smoothness property makes Hash
perfectly unpredictable: no information is leaked about the certificate.

Security Analysis. Let us outline the security proof of the above protocol.
First, the security model is the following: no one can obtain a certificate on a
public key if it does not know the associated private key (that is, if no simulator
can extract the private key). In other words, the adversary wins if it is able to
output (gM , Cert) and no simulator can produce M .

The formal attack game can thus be described as follows: the adversary A
interacts several times with the authority, by sending public keys and com-
mitments, and asks for the corresponding certificates. It then outputs a pair
(gM , Cert) and wins if no simulator is able to extract M from the transcript.

The simulator works as follows: it is given access to a certification (signing)
oracle, and generates a pair of public and private keys (sk, pk) for the ElGa-
mal encryption. The public key is set as the CRS that defines the commitment
scheme. The private key will thus be the extraction trapdoor.

When the simulator receives a certification request, with a public key and
a commitment, it first tries to extract the associated private key, granted the
extraction trapdoor. In case of success, the simulator asks the signing oracle to
provide it with the corresponding certificate on the public key, and complete the
process as described in the protocol. However, extraction may fail if the com-
mitments are not well constructed (not in L1∩L2). In such a case, the simulator
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sends back a random bit-string of appropriate length. In case of successful ex-
traction, the answer received by the user is exactly the expected one. In case of
failure, it is perfectly indistinguishable too since the smoothness property of the
hash function would make a perfectly random mask Hash (since the input is not
in the language).

After several interactions, A outputs a pair (gM , Cert), which is forwarded by
the simulator. Either gM has been queried to the signing oracle, which means
that the extraction had succeeded, the simulator knows M and the adversary
did not win the attack game, or this is a valid signature on a new message:
existential forgery under chosen-message attack.

5 A Conditionally Extractable Equivocable Commitment

In this section, we enhance the previous commitment schemes with equivocabil-
ity, which is not a trivial task when one wants to keep the extraction property.
Note that we first build a malleable extractable and equivocable commitment
using the ElGamal-based commitment (see Section 4 page 680), but one can
address the non-malleability property by simply building the commitment upon
the Cramer-Shoup encryption scheme. All the details of this extension are given
in the full version. In the following, if b is a bit, we denote its complement by b
(i.e., b = 1− b). We furthermore denote by x[i] the ith bit of the bit-string x.

Equivocability. Commitments that are both extractable and equivocable seem
to be very difficult to obtain. Canetti and Fischlin [12] proposed a solution but
for one bit only. Damgård and Nielsen [17] proposed later another construc-
tion. But for efficiency reasons, in our specific context, we extend the former
proposal. In this section, we thus enhance our previous commitment (that is
already L-extractable) to make it equivocable, using the Canetti and Fischlin’s
approach. Section 5 page 686 will then apply a non-malleable variant of our new
commitment together with the associated smooth hash function family in order
to build a password-authenticated key exchange protocol with adaptive security
in the UC framework [11]. The resulting protocol is reasonably efficient and,
in particular, more efficient than the protocol by Barak et al. [3], which to our
knowledge is the only one achieving the same level of security in the standard
model.

Description of the Commitment. Our commitment scheme is a natural
extension of Canetti-Fischlin commitment scheme [12], in a bit-by-bit way. It
indeed uses the ElGamal public-key encryption scheme, for each bit of the bit-
string. Let (y1 , . . . , ym

) be random elements in G. This commitment is realized
in the common reference string model, the CRS ρ contains (G, pk), where pk is
an ElGamal public key and the private key is unknown to anybody, except to
the commitment extractor. It also includes this tuple (y1 , . . . , ym), for which the
discrete logarithms in basis g are unknown to anybody, except to the commit-
ment equivocator. Let the input of the committing algorithm be a bit-string
π =

∑m
i=1 πi · 2i−1. The algorithm works as follows:
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– For i = 1, . . . , m, it chooses a random value x
i,πi

=
∑n

j=1 x
i,πi

[j] · 2j−1 and
sets x

i,πi
= 0.

– For i = 1, . . . , m, the algorithm commits to πi, using the random x
i,πi

:
a

i
= comPed(πi, xi,πi

) = g
x

i,πi yπi
i

and defining a = (a1 , . . . , am
).

– For i = 1, . . . , m, it computes the ElGamal commitments (see the previous
section) of x

i,δ
, for δ = 0, 1: (bi,δ = (b

i,δ
[j])j = comEGpk(xi,δ

), where b
i,δ

[j] =
EG+

pk(xi,δ
[j] · 2j−1, r

i,δ
[j]). One can directly extract from the computation of

the b
i,δ

[j] an encryption B
i,δ

of x
i,δ

: B
i,δ

=
∏

j b
i,δ

[j] = EG+
pk(xi,δ

, r
i,δ

), where
r

i,δ
is the sum of the random coins r

i,δ
[j].

The entire random string for this commitment is (where n is the bit-length of the
prime order q of the group G) R = (x1,π1

, (r1,0 [1], r1,1 [1], . . . , r1,0 [n], r1,1 [n]), . . . ,
xm,πm

, (rm,0 [1], . . . , rm,1 [n])). From which, all the values ri,πi
[j] can be erased,

letting the opening data (witness of the committed value) become limited to
w = (x1,π1

, (r1,π1
[1], . . . , r1,π1

[n]), . . . , x
m,πm

, (r
m,πm

[1], . . . , r
m,πm

[n])). The out-
put of the committing algorithm, of the bit-string π, using the random R,
is comρ(π; R) = (a,b), where a = (a

i
= comPed(πi, xi,πi

))i,b = (b
i,δ

[j] =
EG+

pk(xi,δ
[j] · 2j−1, r

i,δ
[j]))i,δ,j .

Opening. In order to open this commitment to π, the above witness w (with
the value π) is indeed enough: one can build again, for all i and j, bi,πi

[j] =
EG+

pk(xi,πi
[j] · 2j−1, r

i,πi
[j]), and check them with b. One can then also compute

again all the a
i
= comPed(πi, xi,πi

), and check them with a. The erased random
elements would help to check the encryptions of zeroes, what we do not want,
since the equivocability property will exploit that.

Properties. Let us briefly check the security properties, which are formally
proven in the full version. First, because of the perfectly hiding property of
the Pedersen commitment, unless some information is leaked about the x

i,δ
[j]’s,

no information is leaked about the πi’s. And granted the semantic security of
the ElGamal encryption scheme, the former privacy is guaranteed. Since the
Pedersen commitment is (computationally) binding, the a

i
’s cannot be opened

in two ways, but only one pair (πi, xi,πi
) is possible. Let us now consider the new

extended properties:

– (conditional) extractability is provided by the bit-by-bit encryption. With
the decryption key sk, one can decrypt all the b

i,δ
[j], and get the x

i,δ
(un-

less the ciphertexts contain values different from 0 and 1, which will be one
condition for extractability). Then, one can check, for i = 1, . . . , m, whether
a

i
= comPed(0, x

i,0) or a
i

= comPed(1, x
i,1), which provides πi (unless none

of the equalities is satisfied, which will be another condition for extractability).
– equivocability is possible using the Pedersen commitment trapdoor. Instead

of taking a random x
i,πi

and then x
i,πi

= 0, which specifies πi as the com-
mitted bit, one takes a random xi,0 , computes ai = comPed(0, xi,0), but also
extracts x

i,1 so that a
i

= comPed(1, x
i,1) too (which is possible with the

knowledge of discrete logarithm of yi in basis g, the trapdoor). The rest of
the commitment procedure remains the same, but now, one can open any
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bit-string for π, using the appropriate x
i,πi

and the corresponding random
elements (the simulator did not erase).

The Associated Smooth Projective Hash Function. As noticed above, our
new commitment scheme is conditionally extractable (one can recover the x

i,δ
’s,

and then the committed value π), under the conditions that all the ElGamal
ciphertexts encrypt either 0 or 1, and the a

i
is a commitment of either 0 or 1,

with random xi,0 or xi,1 .
As before, one wants to make the two hash values (direct computation and the

one from the projected key) be the same if the two parties use the same input π
and perfectly independent if they use different inputs (smoothness). One fur-
thermore wants to control that each a

i
is actually a Pedersen commitment of πi

using the encrypted random x
i,πi

, and thus g
x

i,πi = a
i
/yπi

i : the extracted x
i,πi

is really the private key M related to a given public key gM that is a
i
/yπi

i in
our case. Using the same notations as in Section 4 page 680, we want to define
a smooth hash system showing that, for all i, δ, j, b

i,δ
[j] ∈ L(EG+,ρ),0∨1 and, for

all i, B
i,πi
∈ L(EG×,ρ),(a

i
/yi

πi ), where B
i,πi

=
∏

j b
i,πi

[j].

Combinations of these smooth hashes. Let C be the above commitment
of π using randomness R as defined in Section 5 page 683. We now precise
the language Lρ,π, consisting informally of all the valid commitments “of good
shape”:

Lρ,π =
{

C

∣
∣
∣
∣
∃R s. t. C = comρ(π, R) and ∀i ∀j b

i,πi
[j] ∈ L(EG+,ρ),0∨1

and ∀i B
i,πi
∈ L(EG×,ρ),a

i
/yi

πi

}

The smooth hash system for this language relies on the smooth hash systems
described previously, using the generic construction for conjunctions and disjunc-
tions as described in Section 3. The precise definition of this language (which
is constructed from conjunctions and disjunctions of simple languages) can be
found in the full version, omitting the labels and replacing the Cramer-Shoup
encryption CS+ by the ElGamal one EG+.

Properties: Uniformity and Independence. With a non-malleable vari-
ant of such a commitment and smooth hash function, it is possible to improve
the establishment of a secure channel between two players, from the one pre-
sented Section 4 page 681. More precisely, two parties can agree on a common
key if they both share a common (low entropy) password π. However, a more
involved protocol than the one proposed in Section 4 is needed to achieve all the
required properties of a password-authenticated key exchange protocol, as it will
be explained in Section 5 page 686 and proven in the full version.

Nevertheless, there may seem to be a leakage of information because of the
language that depends on the input π: the projected key hp seems to contain
some information about π, that can be used in another execution by an adversary.
Hence the independence and uniformity notions presented Section 3 page 679,
which ensure that hp does not contain any information about π. Proofs of these
properties can be found in the full version.
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Estimation of the Complexity. Globally, each operation (commitment, pro-
jected key, hashing and projected hashing) requiresO(mn) exponentiations in G,
with small constants (at most 16).

UC-Secure PAKE with Adaptive Security. The primitive presented above,
but using the Cramer-Shoup encryption scheme (as described in the full version)
is a non-malleable conditionally extractable and equivocable commitment. We
now sketch how to use this new primitive in order to construct the first ef-
ficient adaptively-secure password-authenticated key exchange protocol in the
UC framework with erasures. For lack of space, all the details can be found in
the full version. The passwords are not known at the beginning of the simulation:
S will manage to correct the errors (thanks to the equivocability) but without
erasures there would remain clues on how the computations were held, which
would give indications on the passwords used.

Our protocol is based on that of Gennaro and Lindell [22]. At a high level,
the players in the KOY/GL protocol exchange CCA-secure encryptions of the
password, under the public-key found in the common reference string, which are
essentially commitments of the password. Then, they compute the session key
by combining smooth projective hashes of the two password/ciphertext pairs.
The security of this protocol relies on the properties of smoothness and pseudo-
randomness of the smooth projective hash function. But as noted by Canetti et
al in [13], the KOY/GL protocol is not known to achieve UC security: the main
issue is that the ideal-model simulator must be able to extract the password
used by the adversary before playing, which is impossible if the simulator is the
initiator (on behalf of the client), leading to such situation in which the simulator
is stuck with an incorrect ciphertext and will not be able to predict the value of
the session key.

To overcome this problem, the authors of [13] made the client send a pre-flow
which also contains an encryption of the password. The server then sends its
own encryption, and finally the client sends another encryption, as well as a
zero-knowledge proof showing that both ciphertexts are consistent and encrypt
the same password. This time the simulator, playing as the client or the server, is
able to use the correct password, recovered from the encrypted value sent earlier
by the other party. The pre-flow is never used in the remaining of the protocol,
hence the simulator can send a fake one, and simulate the zero-knowledge proof.

Unfortunately, the modification above does not seem to work when dealing
with adaptive adversaries, which is the case in which we are interested. This is
because the simulator cannot correctly open the commitment when the adversary
corrupts the client after the pre-flow has been sent. A similar remark applies to
the case in which the server gets corrupted after sending its first message. As a
result, in addition to being extractable, the commitment scheme also needs to
be equivocable for the simulator to be able to provide a consistent view to the
adversary. Since the use of the equivocable and extractable commitment schemes
also seems to solve the problem of proving the original Gennaro-Lindell protocol
secure in the UC model, we opted to use that protocol as the starting point of
our protocol.
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These remarks are indeed enough (along with minor modifications) to
obtain adaptive security. Thus, our solution essentially consists in using our
non-malleable extractable and equivocable commitment scheme in the Gennaro-
Lindell protocol when computing the first two flows. As presented in the previous
subsections, extractability may be conditional: We include this condition in the
language of the smooth hash function (note that the projected keys sent do not
leak any information about the password). Additional technical modifications
were also needed to make things work and can be found in the full version.
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