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Summary. A linear mixed model with a smooth random effects density is proposed. A similar approach
to P-spline smoothing of Eilers and Marx (1996, Statistical Science 11, 89–121) is applied to yield a more
flexible estimate of the random effects density. Our approach differs from theirs in that the B-spline basis
functions are replaced by approximating Gaussian densities. Fitting the model involves maximizing a penal-
ized marginal likelihood. The best penalty parameters minimize Akaike’s Information Criterion employing
Gray’s (1992, Journal of the American Statistical Association 87, 942–951) results. Although our method
is applicable to any dimensions of the random effects structure, in this article the two-dimensional case is
explored. Our methodology is conceptually simple, and it is relatively easy to fit in practice and is applied
to the cholesterol data first analyzed by Zhang and Davidian (2001, Biometrics 57, 795–802). A simula-
tion study shows that our approach yields almost unbiased estimates of the regression and the smoothing
parameters in small sample settings. Consistency of the estimates is shown in a particular case.
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1. Introduction
In longitudinal and repeated measures studies, the pattern of
change with respect to time is often modeled with the linear
mixed model (Laird and Ware, 1982). This model contains
fixed and random effects. The fixed effects are the population-
averaged parameters. The random effects pertain to subject-
specific parameters. It is classically assumed that the random
effects as well as the measurement error term (within-subject
variability) have a normal distribution.

Inference on the fixed effects has been found to be robust to
nonnormality of the random effects (Butler and Louis, 1992;
Verbeke and Lesaffre, 1997). For efficient estimation of the
fixed effects and for unbiased model-based standard errors,
however, selection of the correct random effects distribution
could be important. Further, deviations from normality of the
random effects distribution can have an important effect on
inferences involving the random effects themselves. For in-
stance, it has been shown that the empirical Bayes estimates
of the random effects are distorted if normality does not hold
(Verbeke and Lesaffre, 1996). Furthermore, it has been shown
by Verbeke and Lesaffre (1996) that checking the normality
assumption of the random effects distribution is hampered by
the shrinkage of the empirical Bayes estimates.

We argue that the normality assumption may be too re-
strictive in practice to represent the actual between-subject
distribution. Consequently, there is a need for a linear mixed
model with a more flexible distributional assumption on the
random effects. A popular and important technique that re-
laxes this assumption is given by nonparametric maximum
likelihood estimation (Laird, 1978). In this case no paramet-
ric assumptions on the random effects distribution are made.

But, the fact that the nonparametric maximum likelihood
estimate (NPMLE) of this distribution is discrete has been
criticized by some as being unrealistic. Other proposals in the
literature are: smoothed nonparametric maximum likelihood
estimation (Magder and Zeger, 1996), predictive recursive es-
timation (Tao et al., 1999), the heterogeneity linear mixed
model (Verbeke and Lesaffre, 1996), the smoothing by rough-
ening approach (Shen and Louis, 1999), and, quite recently,
the semi-nonparametric (SNP) method of Zhang and David-
ian (2001).

We propose an alternative and relatively simple method
that originates from the P-spline smoothing approach of Eilers
and Marx (1996). In Section 2, we introduce our penalized
Gaussian linear mixed model that is based on penalized es-
timation of a marginal likelihood that will be discussed in
Section 3. In Section 4, we prove the consistency of the re-
gression parameters and the smoothing parameters in a par-
ticular case. In Section 5, we reanalyze the cholesterol data
of Zhang and Davidian (2001). In Section 6, we compare our
method to the method of Zhang and Davidian (2001) based
on some simulated data. We end by some concluding remarks
in Section 7.

2. The Penalized Gaussian Mixture Linear
Mixed Model

Assume the classical linear mixed model (Laird and Ware,
1982),

Yi = Xiβ + Zibi + εi (i = 1, . . . ,K), (1)

where Yi is an ni × 1 response vector, β is a p × 1 vec-
tor of fixed effects, and bi is a d × 1 random effects vector
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∼ N(0, D), the measurement error vector εi ∼ N(0, σ2Ini
)

independent of bi. Hence we assume independent error terms,
but the approach can equally be applied to correlated errors.

The normality assumption of the random effects is relaxed
to a more flexible and smooth density function. An approach
similar to P-spline smoothing of Eilers and Marx (1996) is
applied except that the B-splines base functions are replaced
by their approximating Gaussian densities. Indeed, it has been
shown that a (standardized) B-spline of degree q approximates
a normal density as q →∞ (Unser, Aldroubi, and Eden, 1992).

Therefore, we suppose that the true distribution of the ran-
dom effects is not a normal distribution anymore. However,
for simplicity reasons, we assume that the true covariance ma-
trix of the random effects is still denoted as D. Then, let the
bivariate random effects in (1) be represented as bi = Rsi,
i = 1, . . . ,K, where R is a lower triangular matrix such that
RRT = D and si is the standardized form of bi. Hereby, we
assume that the si extend over, say, the square [−m, m] ×
[−m, m] but vanish (in practical terms) outside. Observe that
our method does not require to work with the standardized
random effects. In fact, the choice of standardized random ef-
fects is inspired by computational arguments. Indeed, by us-
ing the si instead of the bi the implementation of our method
will become largely independent of the range of the random
effects.

To construct the flexible random effects distribution, we
take a grid of equally spaced points on the interval [−m, m]
in both dimensions (but not necessarily of the same size in
each dimension). Let these grids be the means of the basis
Gaussian densities, say µ1j , j = 1, . . . , J for the first dimension
and µ2l, l = 1, . . . ,L for the second dimension. Their standard
deviations in the two dimensions, τ 1 and τ 2, are set to 2

3 (µ1j −
µ1,j−1) and 2

3 (µ2l − µ2,l−1). This is based on the assumption
that a Gaussian density which extends over µ ± 3τ can be
approximated by a B-spline function of degree 3 which extends
over 4 equidistant subintervals.

All together, the rectangular matrix of bivariate normal
densities with means µjl = (µ1j , µ2l)

T and covariance matrix
Ds = diag(τ 2

1, τ
2
2) form a two-dimensional basis for the (es-

timated) distribution of the standardized si. On the original
scale of the random effects, each of the basis Gaussian den-
sities will have a mean vector Rµjl and a covariance matrix
RDsRT.

Hence, our method assumes that the density for (a bi-
variate) b can be approximated by a mixture of these basis
Gaussian densities as

f(b) =

J∑
j=1

L∑
l=1

cjlN
(
Rµjl, RDsR

T
)
, (2)

where cjl = exp(ajl)/
∑J

k=1

∑L

m=1 exp(akm) are (trans-
formed) elements of a J × L matrix of coefficients with the
property that

∑
j

∑
l
cjl = 1. This parameterization allows

unconstrained maximization for the smoothing parameters
and guarantees that all mixing coefficients cjl are strictly
positive. Alternative parameterizations are discussed in the
last section. Observe also that when expression (2) represents
the true model of the random effects, by definition its
covariance matrix should be equal to D.

We call the resulting model, with the smoothed density for
b given by (2) with the coefficients cjl estimated by maximiz-
ing a penalized log likelihood (see next section), the penalized
Gaussian mixture (PGM ) linear mixed model.

It is important to note that there is a difference between
our approach and that of a classical mixture model in the
sense that here the means (and the variances) of the normal
densities are fixed to a prespecified grid of values and that we
do not estimate the number of components. Our approach is
also different from classical density estimation, which would
need here the latent locations of the random effects.

3. Estimation of Model Parameters
The parameters to be estimated include the fixed effects β,
σR = vec(R) the stacked vector of unique elements of R, the
error standard deviation (on the log scale) log(σ), and the
vector of coefficients a = (a11, a12, . . . , aJL)

T. The total vector
of parameters θ = (βT, σT

R, log(σ), aT)T is jointly estimated
by maximizing a penalized marginal likelihood.

3.1 The Penalized Log-Likelihood Function
The conditional density remains in our model as f(Yi |
bi;θ) = N(Xiβ + Zibi, σ

2Ini
). With the random effects den-

sity f(bi; θ) given by (2), the marginal density of Yi becomes
a mixture of normal densities

f(Yi;θ)

=

∫
f(Yi | b;θ)f(b;θ) db

=

J∑
j=1

L∑
l=1

cjlN
(
Xiβ + ZiRµjl, ZiRDsR

TZT
i + σ2Ini

)
(3)

and the marginal log likelihood becomes �(θ;Y) =∑K

i=1 log{f(Yi;θ)}.
When a fine grid of J × L density bases is involved, there

will be overfitting resulting in a widely varying estimated bi-
variate surface for the random effects. Too few components
lead to a relatively smooth but biasedly estimated distribu-
tion. We applied the approach by Eilers and Marx (1996) to
find a compromise between smoothness and bias; i.e., take a
relatively large number of basis Gaussian densities and penal-
ize the log likelihood for overfitting with a penalty term based
on finite differences of adjacent coefficients.

The penalized log-likelihood function is given by

�p(θ;Y |λ) = �(θ;Y)

−
[
λ1

2

∑
j

∑
l

(
∆k

1 ajl

)2
+

λ2

2

∑
j

∑
l

(
∆k

2 ajl

)2

]
,

(4)

where ∆k
i , i = 1, 2 is a difference operator of order k for

the ith dimension, and λ = (λ1, λ2)
T is a vector of penalty

parameters one for each dimension.
Experience shows that the choices k = 2 or 3 give simi-

lar smooth density estimates. But we prefer k = 3 because
for a large number of basis densities, the limit of the smooth
distribution is a normal distribution as λ → ∞ (Komarek,
Lesaffre, and Hilton, unpublished manuscript). Observe that
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the penalty term expressed in the a-coefficients will have the
most effect in the areas where the latent random effects are
sparse, since these will be modeled with cjl ’s close to zero (im-
plying corresponding large negative ajl ’s). In the other areas,
where there are relatively many data points, the effect of the
penalty term will be less.

3.2 Estimating θ

For a given λ and a fixed basis of Gaussian densities, the
penalized log-likelihood function (4) can be maximized with
respect to θ using a Newton–Raphson optimization algorithm.

Conditional maximization of the likelihood can be applied
to θ, namely by swapping between η = (βT, σT

R, log(σ))T

and the vector of smoothing coefficients, i.e., aT. Starting val-
ues for η can be obtained from the fit of a classical Gaussian
linear mixed model (e.g., SAS PROC MIXED output). First, con-
ditioned on η, �p is maximized with respect to a and at the
next step the roles of η and a are interchanged. Newton–
Raphson can then be applied in each conditional maximiza-
tion step. To guarantee identifiability, one of the ajl ’s is kept
fixed (to 0) and further the constraint

∫
bf(b) db = 0 needs

to be imposed on the maximization algorithm. For simplic-
ity reasons, we implemented a slightly different maximization
routine. First, we kept the elements of R(σR) fixed at R̂0 (SAS
PROC MIXED output) and updated the matrix at the end of the
maximization. Namely, the final estimate, R̂, was obtained by
R̂ = chol(var(b | ĉjl, R̂0)), where

var
(
b | ĉjl, R̂0

)
= R̂0

{
J∑

j=1

L∑
l=1

ĉjlµjlµ
T
jl + Ds +

(
J∑

j=1

L∑
l=1

ĉjlµjl

)

×
(

J∑
j=1

L∑
l=1

ĉjlµjl

)T }
R̂0T. (5)

Although the estimate R̂ will not be as efficient as the es-
timate from the maximization routine described above, our
method avoids taking derivatives with respect to covariance
elements. Further, our method was inspired by the results of
Verbeke and Lesaffre (1997). Second, we avoided explicitly
dealing with the constraint by fixing the part of β, say β∗,

Table 1
Estimated parameters (standard error in brackets) by the Gaussian, the Zhang and Davidian

method (2001), and the PGM linear mixed models (LMM) fitted to the cholesterol data. L1, L2,
and L3 are the elements of the Cholesky decomposition matrix R.

Models

Parameter Gaussian LMM Zhang and Davidian LMM PGM LMM

β0(intercept) 1.5969 (0.1503) 1.7131 (0.1389) 1.8326 (0.1009)
β1(age) 0.0184 (0.0035) 0.0156 (0.0032) 0.0128 (0.0023)
β2(sex) −0.0630 (0.0554) −0.0626 (0.0455) −0.0634 (0.0477)
β3(time) 0.2817 (0.0241) 0.2817 (0.0242) 0.2816 (0.0230)
σ 0.2084 (0.0057) 0.2081 (0.0055) 0.2077 (0.0054)
L1 0.3758 0.3178 0.3778
L2 0.0836 0.1103 0.0587
L3 0.1762 0.1618 0.1794
Log likelihood −160.99 −148.60 −146.58

corresponding to the covariates in Z to the initial estimates

β̂
0
∗ (SAS PROC MIXED output) and updating the final estimate

as β̂∗ = β̂
0
∗ +

∑J

j=1

∑L

l=1 ĉjlR̂
0µjl.

3.3 Optimal Smoothing and Standard Error
of Parameter Estimates

To find the optimal penalty coefficient λ we opted for
the Akaike’s Information Criterion (AIC). For a given λ,
AIC(λ) = −2�p(θ;Y |λ) + 2dim(θ |λ), where dim(θ |λ) is
the effective degrees of freedom depending on λ. We ap-
plied a method by Gray (1992) for determining dim(θ |λ) as
trace[(H−1(θ, λ) I(θ)], where H(θ, λ) = − ∂2�p(θ; Y | λ)/∂θ2,
and I(θ) = −∂2�(θ; Y)/∂θ2 are the observed Fisher informa-
tion matrices based on the penalized and unpenalized likeli-
hood, respectively. The optimal penalty vector λ minimizes
AIC(λ).

Gray (1992) suggests to use as estimate for the asymptotic
covariance matrix for the parameter estimates θ̂ the matrix
V̂ = H−1(θ̂,λ)I(θ̂)H−1(θ̂,λ).

However, in small samples this estimate was often not posi-
tive definite in our case. On the other hand Verweij and Van
Houwelingen (1994) suggest to use V̂ = H−1(θ̂,λ) as estimate.
They called this matrix a “pseudo-covariance matrix” arguing
that penalized estimates are typically biased. Our asymptotic
results (see Section 4) suggest that we will get asymptotically
unbiased (or close to) estimates of our parameters, at least
in a particular case. Further, simulations (results not shown)
confirm that the proposal of Verweij and Van Houwelingen
(1994) is close to the true covariance matrix.

4. Statistical Properties of the PGM Approach
In the Appendix we indicate that using arguments of Verbeke
and Lesaffre (1997), the PGM linear mixed model delivers
consistent estimates of the regression parameters. Further we
show that in a particular case with the grid of Gaussian
means chosen correctly, the weights cjl are consistently es-
timated. Furthermore, in the more general case, we roughly
indicate that when λ increases with K in a modest way, the
penalized estimates minimize the Kullback–Leibler distance
between the true random effects distribution and the assumed
mixture of basis Gaussian densities.
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5. Application
5.1 Cholesterol Example
Zhang and Davidian (2001) illustrated their method on re-
peated cholesterol data from a sample of 200 subjects of the
Framingham study. The cholesterol levels were measured at
the beginning of the study and then every 2 years for 10 years.
They fitted a semiparametric linear mixed model to the
cholesterol level with age at baseline and gender as fixed ef-
fects and with a random intercept and slope,

Yij = β0 + β1agei + β2sexi + β3tij + b0i + b1itij + εij ,

whereby the random effects were assumed to have a smooth
bivariate distribution. For numerical stability the cholesterol
level for the ith subject at the jth time point, Yij , was divided
by 100 and tij was taken as (time − 5)/10 whereby the time
is measured in years from baseline, agei is the age at baseline
for the ith subject, and sexi = 1 for male and 0 otherwise.
The measurement error εij is assumed to have a normal distri-
bution N(0, σ2). Their analysis showed that there is a bump
in the distribution of the random intercept suggesting a sub-
population with a higher baseline cholesterol on average. On
the other hand the estimated random slope distribution was
reasonably approximated by a normal distribution.

We fitted our PGM linear mixed model to these data with
the same fixed and random effects structure. We show the re-
sults for J = 18 and L = 10, inspired by the results of Zhang
and Davidian, i.e., that the distribution of the random inter-
cept is a mixture of two densities and that the distribution
of the random slope seems to be close to a normal. On the
standardized scale, grids of points as the means of the basis
Gaussian densities were defined on the square [−4, 4] × [−4, 4]
and the common covariance matrix for each Gaussian density
is Ds = diag(0.098424, 0.35117). Third-order difference penal-
ties were imposed in each dimension. Optimal values for the
penalty parameters were found by minimizing AIC(λ) when
varying λ1 and λ2 on a grid of values [0.1, 1, 2, 10, 100] and [1,
5, 10, 15, 100, 1000], respectively. The best values obtained
are λ1 = 1 and λ2 = 5.

Table 1 presents the estimated fixed effects and covariance
matrix parameters by our model, the classical linear mixed
model, and the semiparametric model of Zhang and Davidian
(2001). The table shows that the estimates of the three mod-
els are relatively close, with the PGM model solution having
a covariance matrix for the random effects closer to the co-
variance matrix from the linear mixed model solution. It also
shows that the standard errors of our parameter estimates are
not much different from those of the other models.

In Figure 1 the estimated random effects distribution sur-
face is depicted. The plots clearly show the deviation from
bivariate normality in such a way that the random intercept
distribution is a mixture of two distributions while the ran-
dom slope is close to normal distribution. However, while
our marginal distributions are close to the fitted distribu-
tions of Zhang and Davidian, the two bivariate fitted mod-
els differ somewhat in the tails. The scatter plot for empirical
Bayes estimates also show the two clusters of observations, al-
though not as clearly separable as with the result of Zhang and
Davidian.

−1
0

1

−1

0

1
0

2

4

Estimated random effects density

interceptslope −1.5 −1 −0.5 0 0.5 1 1.5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

intercept

s
lo

p
e

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

intercept

−0.5 0 0.5
0

0.5

1

1.5

2

2.5

slope

−1.5 −1 −0.5 0 0.5 1 1.5
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

intercept

s
lo

p
e

Figure 1. Estimated random effects distribution from the
PGM linear mixed model fitted to the cholesterol data. In
the first row the surface plot and the contour plot based on
80 contour lines are shown. The second row shows the fitted
marginal distributions of the random intercept and slope, re-
spectively. The scatter plot for the empirical Bayes estimates
is given at the bottom.

6. A Simulation Study
6.1 The Setup
A limited simulation study has been carried out to evaluate
the performance of our model for the following four random
effects distributions:

� Bivariate Gaussian

b ∼ N

{[
0

0

]
,

[
0.15 0.02

0.02 0.04

]}
.
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Table 2
Mean integrated squared error by the PGM linear mixed model. Panel A shows estimates of

the bivariate random effects distributions and Panel B shows estimates of the marginal
distributions relative to the Zhang and Davidian SNP model for sample sizes K = 50 and

K = 200.

Sample size

Random effects K = 50 K = 100 K = 200

Panel A
Bivariate normal 0.0593 0.0260 0.0102
Mixture of bivariate normals 0.0908 0.0566 0.0377
Lognormal–normal 0.0317 0.0293 0.0286
t(3)-normal 0.0061 0.0031 0.0019

K = 50 K = 200

PGM SNP PGM SNP

Panel B
Mixture-normal

Intercept 0.0366 0.0144 0.0068 0.0011
Slope 0.0184 0.0238 0.0051 0.0062

Lognormal-normal
Intercept 0.0962 0.1337 0.0929 0.1402
Slope 0.0038 0.0076 0.0011 0.0016

t(3)-normal
Intercept 0.0126 0.0177 0.0042 0.0093
Slope 0.0033 0.0040 0.0009 0.0009

� A mixture of two bivariate Gaussian distributions

b ∼ 0.5 ×N

{[
−1

0

]
,

[
0.15 0.02

0.02 0.04

]}

+ 0.5 ×N

{[
1

0

]
,

[
0.15 0.02

0.02 0.04

]}
.

� A log-normal random intercept and an independent stan-
dard normal random slope: log(b0) ∼ N(0, 1) and b1 ∼
N(0, 1).

� A t-distribution for the random intercept and an inde-
pendent standard normal random slope: b0 ∼ t(3) and
b1 ∼ N(0, 1).

Given the random effects, the response is generated from a
normal distribution as Yij | bi ∼ N(β0 + β1tij + b0i + b1itij ,
σ2), i = 1, . . . ,K, j = 1, . . . , 6, (β0, β1) = (2.35, 0.28), σ2 =
0.04, and tij in {0, 2, 4, 6, 8, 10}. The choice of the simulation
parameters and of the design matrix was inspired by the re-
sults from the fit of classical linear mixed model analysis to the
cholesterol data. Three different sample sizes K = 50 (small),
K = 100 (intermediate), and K = 200 (large) were considered.
There were 100 simulated datasets under each combination of
the random effects distributions and sample sizes.

6.2 Model Fitting
For the bivariate Gaussian case, we have taken J = L = 10. In
order to attain more flexibility, J = L = 14 was taken for the
remaining non-Gaussian cases. The means of the Gaussian
density basis functions in each dimension and on the stan-
dardized scale are based on the interval [−4, 4]. Two penalty
terms of order k = 3 were imposed in all cases. After an ini-
tial inspection, the optimal λ = (λ1, λ2) corresponding to a

normal random effects distribution were best searched on a
grid with values [1, 10, 1000, 10,000, . . .], while for the other
nonnormal components the grid [1e–05, 1e–04, . . . ,1e–01] was
searched. Relatively large λ values are needed for approxi-
mating a normal distribution with a large number of basis
Gaussian densities. Our empirical results corroborate the the-
oretical claim in Section 3.1.

6.2.1 Estimated random effects distributions. The perfor-
mance of our model in estimating the true underlying dis-
tribution was evaluated by the integrated squared error (ISE)
between the estimated distribution and the true distribution,
given by

∫
[f̂(b) − f(b)]2 db.

Table 2A presents the average ISE over all the simulations
for the datasets of the different sample sizes. It shows that
for the four random effects distributions, the ISE decreases as
the sample size increases.

Figures 2 and 3 present the estimated marginal distribu-
tions for the nonnormally distributed random intercepts. It
can be concluded that the estimated distributions show the
characteristic features of the true distributions. Further, the
estimated distributions approach the truth as K increases.

Additionally, we applied the SNP approach of Zhang and
Davidian and compared it to our PGM results. We can con-
clude that the average SNP smoothed random effects distri-
bution is closer to the true random effects distribution for a
mixture of normal distributions. However, the PGM approach
outperforms the SNP method in the other cases. It was also
observed that the SNP approach yielded a higher variability
of the smoothed distribution than the PGM approach. This
is corroborated by the ISE results shown in Table 2B.

6.2.2 Estimates for the fixed effects and covariance pa-
rameters. Table 3 shows the average (over the different
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Figure 2. Penalized Gaussian mixture (PGM) and Zhang and Davidian semi-nonparametric (SNP) estimates of random
intercepts simulated from mixture and log-normal distributions with sample sizes K = 50 and 200. Estimated distributions
averaged over 100 simulations (dashed line) are superimposed to the true distributions (solid line).

simulations) mean squared errors (MSEs) in estimating η.
For all random effects distributions, the MSE decreases as the
sample size increases. We also compared the PGM parameter
estimates with those of the classical linear mixed model (re-

sults not shown). The MSEs were very similar implying that
the fixed effects and covariance parameters are robust to the
misspecification of the random effects distribution, corrobo-
rating the result of Verbeke and Lesaffre (1997).



Random Effects Distribution in a Linear Mixed Model 951

PGM, K=50 SNP, K=50

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

intercept

den
sity

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

intercept

den
sity

PGM, K=200 SNP, K=200

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

intercept

den
sity

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

intercept

den
sity

Figure 3. Penalized Gaussian mixture (PGM) and Zhang and Davidian semi-nonparametric (SNP) estimates of random
intercepts simulated from Student’s t(3)-distributions with sample sizes K = 50 and 200. Estimated distributions averaged
over 100 simulations (dashed line) are superimposed to the true distributions (solid line).

Table 3
Mean and MSE in estimating fixed effects and covariance parameters of the PGM linear mixed model. L1, L2, and L3 are the

elements of the lower triangular Cholesky decomposition matrix R.

Mean (MSE)

Random effects True θ K = 50 K = 100 K = 200

Bivariate normal β0 = 2.35 2.3510 (0.0038) 2.3550 (0.0018) 2.3531 (0.0010)
β1 = 0.28 0.2840 (0.0009) 0.2811 (0.0005) 0.2806 (0.0002)

log(σ) = −1.6094 −1.6044 (0.0030) −1.6086 (0.0011) −1.6094 (0.0005)
L1 = 0.3873 0.3864 (0.0013) 0.3839 (0.0011) 0.3852 (0.0004)
L2 = 0.0516 0.0515 (0.0009) 0.0480 (0.0005) 0.0507 (0.0002)
L3 = 0.1932 0.1879 (0.0005) 0.1919 (0.0002) 0.1926 (0.0001)

Mixture of bivariate normals β0 = 2.35 2.3441 (0.0302) 2.3518 (0.0154) 2.3505 (0.0082)
β1 = 0.28 0.2790 (0.0008) 0.2792 (0.0004) 0.2790 (0.0002)

log(σ) = −1.6094 −1.6186 (0.0028) −1.6153 (0.0012) −1.6131 (0.0006)
L1 = 1.0724 1.0783 (0.0041) 1.0751 (0.0020) 1.0761 (0.0008)
L2 = 0.0187 0.0188 (0.0007) 0.0180 (0.0004) 0.0154 (0.0002)
L3 = 0.1991 0.1965 (0.0004) 0.1964 (0.0002) 0.1994 (0.0001)

Lognormal–normal β0 = 3.9987 3.9983 (0.0804) 4.0150 (0.0489) 3.9900 (0.0219)
β1 = 0.28 0.2683 (0.0201) 0.2738 (0.0097) 0.2769 (0.0050)

log(σ) = −1.6094 −1.6140 (0.0021) −1.6104 (0.0009) −1.6094 (0.0007)
L1 = 2.1612 1.7877 (0.3883) 1.8272 (0.2815) 1.7169 (0.2805)
L2 = 0.0000 −0.0186 (0.0237) −0.0041 (0.0068) −0.0117 (0.0049)
L3 = 1.0000 0.9871 (0.0105) 0.9908 (0.0059) 0.9834 (0.0029)

t(3)-normal β0 = 2.35 2.3196 (0.0443) 2.3473 (0.0290) 2.3455 (0.0123)
β1 = 0.28 0.2522 (0.0263) 0.2940 (0.0109) 0.2888 (0.0062)

log(σ) = −1.6094 −1.6144 (0.0025) −1.6057 (0.0012) −1.6084 (0.0007)
L1 = 1.7321 1.6032 (0.1774) 1.6240 (0.0969) 1.6953 (0.0644)
L2 = 0.0000 −0.0166 (0.0193) −0.0055 (0.0111) −0.0028 (0.0043)
L3 = 1.0000 1.0049 (0.0114) 0.9806 (0.0047) 0.9940 (0.0022)
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7. Concluding Remarks
It is important to stress that the PGM linear mixed model
is different from a classical Gaussian mixture model. In the
latter the components together with their weights need to be
determined and the means and the standard deviations of
the Gaussian distributions need to be estimated. It is known
that maximizing the likelihood of a mixture model with vary-
ing means (and standard deviations) is not a trivial task, of-
ten resulting in a likelihood with many local modes. Also,
the determination of the number of Gaussian components is
not straightforward. No such numerical difficulties were en-
countered in the PGM method. Yet our methodology can
give roughly the same information as that of a classical mix-
ture model, without giving the relative importance of the
components.

The PGM model has a number of tuning parameters,
namely, the penalty parameter λ, the number of Gaussian
components or knots (J × L), and the order of the difference
operator (k). There is no strict rule for selecting the values of
J and L except that they should be large enough to fit the
features in the data. Thus, in principle, J and L could be very
large because overfitting is controlled by the penalty parame-
ter, and therefore the number of knots is not crucial (see also
Ruppert, 2002). With respect to k, we propose to choose k =
3 to exploit the property discussed in Section 3.1. The penalty
parameter λ is chosen to minimize AIC. It is difficult though
to give a uniform rule about which grid to take. A two-stage
procedure might be used with an initial grid ranging from −6
to 6 on the log scale. In a second step a finer grid might be
chosen around the best value.

The standardization of the random effects depends on the
estimated random effects covariance matrix D of the classical
linear mixed model. This procedure was inspired by the fact
that D is consistently estimated for large sample sizes even
when the random effects distribution is not normal (Verbeke
and Lesaffre, 1997).

In the application and all simulations, we used a grid for
the means of the Gaussian basis densities defined on [−4,
4]. This interval was chosen assuming that the standardized
random effects distribution will have ignorable mass outside
this interval. Extending the interval to [−6, 6] with differ-
ent random effects distributions did not change the perfor-
mance of our method on the average even for the heavy tailed
t(3)-distribution. But, if required one could start the PGM
approach with the interval [−6, 6] and in a second step re-
duce it to [−4, 4] or smaller, if possible.

We have parameterized the smoothing problem in the ajl

coefficients as well as the penalty term. But, we have also
experimented with (a) a penalty term in the cjl coefficients
with a parameterization in the ajl coefficients, and with (b)
the parameterization and the penalty terms expressed both in
the cjl coefficients. Our experience revealed that these alterna-
tive approaches do not offer practical advantages. Indeed, the
computation times were much longer due to computational
difficulties caused by estimated cjl coefficients lying on the
boundary (i.e., being 0). We do recognize that allowing the
mixing coefficients being zero allows to discard normal com-
ponents of the grid. But this advantage is counterbalanced
by the statistical difficulty of having parameter estimates ly-
ing on the boundary of the parameter space rendering the

calculation of the effective degrees of freedom much more
complicated.

The model can be generalized to higher dimensional ran-
dom effects distributions implying, however, that the number
of parameters will increase geometrically, which might cause a
computational burden and at times an unstable maximization
algorithm. Commencing with a more stable algorithm like the
EM algorithm in the first few iterations will then be helpful.
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Résumé

On propose un modèle linéaire mixte avec une densité lissées
des effets aléatoires. On applique une approche similaire au
lissage par P-spline de Eilers et Marx (1996) pour obtenir
une estimation plus souple de la densité des effets aléatoires.
La différence entre notre approche et la leur est que leur
base de B-splines est remplacée par des approximations par
densités Gaussiennes. L’ajustement est réalisé par maximi-
sation d’une vraisemblance marginale pénalisée. Le meilleur
paramètre de pénalisation est celui qui minimise le critère
d’information de Akäıke, conformément aux résultats de Gray
(Gray, 1992). Notre méthode est applicable à une structure
d’effets aléatoires d’un nombre quelconque de dimensions,
mais dans l’article nous n’explorons que le cas d’une structure
bidimensionnelle. Notre méthodologie est conceptuellement
simple et relativement facile à mettre en œuvre. Elle est ap-
pliquée à des données sur le cholestérol initialement analysées
par Zhang et Davidian (2001). Une étude de simulation mon-
tre que notre méthode conduit, pour des petits échantillons,
à des estimations presque sans biais des paramètres de la
régression et du lissage. La convergence des estimateurs est
établie dans un cas particulier.
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Appendix

Proof of Consistency of the Parameter Estimates
We first take the particular case where a correct grid for the
normal density has been chosen with the assumed standard
deviation for the standardized random effects and assume that
(1) is correctly specified. Hence, we assume that there exists
a true vector a0 and also that none of the elements of a0 lies
at infinity.

We denote the true value of θ by θ0. Let θ = (ηT,aT)T,
where η = (βT, σT

R, σ)T. For reasons of simplicity we assume
that λ1 = λ2 ≡ λ such that there is only matrix ∆, which
is the difference operator matrix for the penalty term (4).
Assume that a0 satisfies aT

0∆
T∆a0 = b where b is some fixed

constant. Denote the unpenalized estimate of θ as θ̂u and the
corresponding penalized estimate as θ̂p.

Under the conditions stated above, standard maximum

likelihood theory implies that θ̂u
P→ θ0 and hence also that

âu
P→ a0. Thus when K → ∞, P (âT

u∆T∆âu ≤ cb) → 1 for a
fixed c > 1 but arbitrary.

Because logL(θ̂u;Y) ≥ logL(θ̂p;Y) and logL(θ̂u;Y) −
λ
2 âT

u∆T∆âu ≤ logL(θ̂p;Y) − λ
2 âT

p∆T∆âp, we obtain
âT
p∆T∆âp ≤ âT

u∆T∆âu ≤ cb.

Take now θ̂
∗
p the penalized estimate of θ under the con-

straint that â∗T
p ∆T∆â∗

p ≤ cb, then

L
(
θ̂
∗
p

)
·mK

θ̂
∗
p

L(θ0) ·mK
θ0

≥ 1,

with mθ = exp(−λ
2 θ

TPθ)1/K whereby P is a block-diagonal
penalty matrix with the penalty matrix ∆T∆ corresponding
to the vector a and zero entries elsewhere. It is then clear that
mθ < 1 for all K and all θ.

This implies that

L
(
θ̂
∗
p

)
L(θ0)

≥
mK

θ0

mK

θ̂
∗
p

=

exp

(
− λ

2
b

)

exp

(
− λ

2 θ̂
∗T
p Pθ̂

∗
p

) ≥
exp

(
− λ

2
b

)

exp

(
− λ

2 cb

) > 1.

Using Theorem 2 of Wald (1949) shows that θ̂
∗
p

P→ θ0. Finally,

when K → ∞, P (θ̂
∗
p �= θ̂p) → 0 which shows that θ̂p

P→ θ0.
When some of the mixing weights are zero, i.e., some

cjl = 0, we must have that some of the ajl are −∞. In that
case the proof can still be applied with the reduced set of
coefficients (leaving out zero cjl ’s), but of course this will im-
ply in general that a regular grid of Gaussian densities is not
possible anymore.

In general, there exists no true vector of smoothing coeffi-
cients a0. This happens when the true random effects distri-
bution is not the mixture of Gaussian distributions dictated
by our choice of the grid of knots and with our choice of stan-
dard deviation for the standardized random effects. When λ
is kept fixed or λ

K
→ 0 while K → ∞, P (|θ̂∗

p − θ̂u| > ε) → 0
for any arbitrary ε > 0, since the penalty part reduces in im-
portance as K → ∞. Using the above arguments, the same
result holds true for θ̂p. The results of White (1982) im-

ply that θ̂u converges to θ∗
0, which minimizes the Kullback–

Leibler distance between the true (linear mixed) model and
the assumed (linear mixed) model (for which the random
effects distribution is our assumed mixture of Gaussian
distributions).

Even when no a0 exists, the proof of Verbeke and Lesaffre

(1997) can easily be extended to show that β̂
∗ P→ β. Indeed,

Verbeke and Lesaffre (1997) show that under misspecifica-
tion of the covariance matrix the regression coefficients (fixed
effects) are consistently estimated. Further, when λ

K
→ 0 as

K → ∞ the penalized estimates come close to the penalized
estimates.


