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Abstract

Subspace clustering is a powerful technology for clus-

tering data according to the underlying subspaces. Rep-

resentation based methods are the most popular subspace

clustering approach in recent years. In this paper, we an-

alyze the grouping effect of representation based methods

in depth. In particular, we introduce the enforced group-

ing effect conditions, which greatly facilitate the analysis

of grouping effect. We further find that grouping effect is

important for subspace clustering, which should be explic-

itly enforced in the data self-representation model, rather

than implicitly implied by the model as in some prior work.

Based on our analysis, we propose the SMooth Represen-

tation (SMR) model. We also propose a new affinity mea-

sure based on the grouping effect, which proves to be much

more effective than the commonly used one. As a result, our

SMR significantly outperforms the state-of-the-art ones on

benchmark datasets.

1. Introduction

In many computer vision and machine learning problem-

s, the data can be viewed as points drawn from multiple low-

dimensional subspaces, with each subspace corresponding

to one category or class, e.g., point trajectories of moving

objects captured by an affine camera [24], images of sev-

eral subjects under varying illumination or under differen-

t poses [6], and local patches or texture features of pixel-

s/superpixels on an image [20]. A basic task for processing

such kind of data is to cluster the points according to the un-

derlying subspace. Such a task is called subspace clustering

[26].

1.1. Related Work

Existing methods for subspace clustering can be rough-

ly grouped into three categories: algebra based, statistics

based, and spectral clustering based [26].

Most of the early studies on subspace clustering are al-

gebra or statistics based. The two most well known algebra-

ic methods are perhaps the shape interaction matrix (SIM)

[2] and generalized principal component analysis (GPCA)

[27]. Although with elegant formulations, in general the

performance of these methods drops quickly in the pres-

ence of noise, degeneracy, or partially coupled subspaces.

The statistics based methods treat subspace clustering as a

mixed data inference problem and thus some popular meth-

ods from the more general statistical learning field can be

used, such as random sample consensus (RANSAC) [5] and

expectation maximization (EM) [12]. Although there have

been several new techniques developed to improve the cri-

terion (e.g., agglomerative lossy compression (ALC) [22]),

model selection (e.g., Branch and Bound (BB) [10]), the

performance of these methods is limited by their dependen-

cy on estimating the exact subspace models.

Many of the recent studies focus on the spectral clus-

tering based methods [21, 30, 3, 16, 29, 19, 18, 17]. The

major differences among these methods lie in the way they

build the affinity matrix. A direct way is to compute affinity

matrix from existing algebraic methods [21] or by defin-

ing a point-to-subspace or subspace-to-subspace distance

metric [30]. More recently, many works apply the self-

representation idea to compute affinities [3, 16, 29, 19, 18,

17], i.e., represent every sample by a linear combination of

other samples, which result in state-of-the-art performance.

These methods first compute a self-representation matrix

Z∗ by solving

min
Z

α∥X −A(X)Z∥l +Ω(X,Z),

s.t. Z ∈ C,
(1)

where X ∈ R
d×n is the data matrix with each column being

a sample vector, A(X) is a dictionary matrix which could

be learnt or be simply set as A(X) = X , ∥ · ∥l is a prop-

er norm, Ω(X,Z) and C are the regularizer and constraint

set on Z, respectively, and α > 0 is a trade-off parame-

ter. Then Z∗ is used to compute an affinity matrix, e.g.,
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Table 1. The choices of Ω(X,Z), ∥ · ∥l, and C of existing repre-

sentation based methods.

Ω(X,Z) ∥ · ∥l C
SSC [3, 4] ∥Z∥1 ∥ · ∥1 {Z|Zii = 0}

LRR [16, 15] ∥Z∥∗ ∥ · ∥2,1 ∅

SSQP [29] ∥ZTZ∥1 ∥ · ∥2F
{Z|Z ≥ 0,
Zii = 0}

MSR [19] ∥Z∥1 + δ∥Z∥∗ ∥ · ∥2,1 {Z|Zii = 0}
LSR [18] ∥Z∥2F ∥ · ∥2F ∅

LSR-Z [18] ∥Z∥2F ∥ · ∥2F {Z|Zii = 0}
CASS [17]

∑

i

∥Xdiag(zi)∥∗ ∥ · ∥2F ∅

(|Z∗|+|Z∗T |)/2, which is further input into a spectral clus-

tering algorithm [23] to produce the final clustering result.

The existing methods distinguish each other by employing

different regularization terms Ω(Z) or constraint sets C. Ta-

ble 1 summarizes the choices of Ω, ∥ · ∥l, and C of existing

representation based methods, where ∥ · ∥1 is the ℓl norm,

i.e., sum of the absolute values of all entries, ∥ · ∥2,1 is the

ℓ2,1 norm, i.e., sum of the ℓ2 norms of the column vectors,

∥ · ∥∗ is the nuclear norm, i.e., sum of singular values, and

∥ · ∥F is the Frobenious norm, i.e., square root of the sum

of squared entries. Since the term ∥X − XZ∥l concern-

s about representation error and it is not the main focus of

our paper, we use ∥X −XZ∥2F in the sequel.

1.2. Contributions

Lu et al. [18, 17] discovered that Least Squares Regres-

sion (LSR) [18] and Correlation Adaptive Subspace Seg-

mentation (CASS) [17] models both have the grouping ef-

fect defined as follows.

Definition 1 (Grouping Effect): Given a set of d-

dimensional data points X = [x1, · · · ,xn] ∈ R
d×n, a

self-representation matrix Z = [z1, · · · , zn] ∈ R
n×n has

grouping effect if ∥xi − xj∥2 → 0 ⇒ ∥zi − zj∥2 → 0,

∀i ̸= j.

Inspired by [18, 17], we analyze the grouping effect of

representation based method in depth. In particular, we

introduce the enforced grouping effect (EGE) conditions,

which can greatly facilitate the analysis of grouping effect

of a representation based method. By the EGE conditions,

we easily find new models that also have the grouping effec-

t. In contrast, Lu et al. [18, 17] proved the grouping effect

of LSR and CASS in a case-by-case way. Their proofs are

specific and hence cannot be applied to other models.

We further find that grouping effect is actually important

for subspace clustering. So we propose to explicitly enforce

the grouping effect in the representation model. In contract,

prior work [18, 17] only passively discovered that LSR and

CASS have the grouping effect.

Finally, based on our analysis we propose the SMooth

Representation (SMR) model. We also propose a novel

affinity measure based on the grouping effect, which proves

to be much more effective than the commonly used measure

(|Z∗|+ |Z∗T |)/2. Our experiments on benchmark datasets

show that our SMR significantly outperforms the state-of-

the-art approaches.

2. Grouping Effect

The grouping effect was first explicitly stated by Lu et al.

[18, 17], who showed that in LSR and CASS when the sam-

ples are close to each other their representation coefficients

are also close to each other. Their proofs are specific for

LSR and CASS and cannot be applied to other models. In

this section, we analyze the grouping effect of reconstruc-

tion based models in depth. We first introduce the Enforced

Grouping Effect (EGE) conditions, which can help us iden-

tify the grouping effect easily. Then we investigate why

grouping effect helps subspace clustering.

2.1. Enforced Grouping Effect Conditions

We introduce general sufficient conditions for the group-

ing effect as follows.

Definition 2 (Enforced Grouping Effect Conditions):

The EGE conditions on problem (1) are:

(1) A(X) is continuous with respect to X and Ω(X,Z)
is continuous with respect to X and Z ∈ C;

(2) Problem (1) has a unique solution Z∗ and Z∗ is not

an isolated point of C.

(3) Z ∈ C if and only if ZP ∈ C, and Ω(X,Z) =
Ω(XP,ZP ), for all permutation matrix P .

(4) A(XP ) = A(X)P , Z ∈ C if and only if PTZP ∈ C,

and Ω(X,Z) = Ω(XP,PTZP ), for all permutation ma-

trix P .

Then we have the following lemma.

Lemma 1: If Problem (1) satisfies the EGE conditions (1)

and (2), then its optimal solution Z∗ is a continuous func-

tion of X .

Proof : It is obvious that Z∗ can be regarded as a function

of X according to EGE condition (2). In the following, we

prove the continuity of Z∗ w.r.t X .

Suppose Z∗ is discontinuous with respect to X and X =
X1 is a discontinuity point. We have: ∃ε1 > 0, ∀δ1 > 0,

there exist ∥X2 −X1∥F < δ1 that ∥Z∗

2
− Z∗

1
∥F > ε1.

Denote f(X,Z) = ∥X − A(X)Z∥l + αΩ(X,Z). S-

ince Problem (1) has a unique solution, we have ∃ε2 >
0, f(X2, Z

∗

2
) < f(X2, Z

∗

1
) − ε2. According to EGE

condition (1), f(X,Z) is continuous with respect to X:

for any ε3 > 0, there exists δ2 > 0 such that for al-

l ∥X − X2∥F < δ2 ⇒ |f(X,Z∗

2
) − f(X2, Z

∗

2
)| < ε3

and there exists some number δ3 > 0 such that for all

∥X −X2∥F < δ3 ⇒ |f(X,Z∗

1
)− f(X2, Z

∗

1
)| < ε3.



Suppose 2ε3 < ε2, δ1 ≤ δ2, and δ1 ≤ δ3. We have

f(X1, Z
∗

2
) < f(X2, Z

∗

2
) + ε3

< f(X2, Z
∗

1
) + ε3 − ε2

< f(X1, Z
∗

1
) + 2ε3 − ε2

< f(X1, Z
∗

1
).

(2)

Eq. (2) indicates that Z∗

2
is a better solution of Problem

(1) when X = X1, which is a contradiction. Hence the

continuity of Z∗ w.r.t. X is proved. �

Then we have the following proposition.

Proposition 1: The optimal solution Z∗ to problem (1) has

grouping effect if EGE conditions (1), (2), and (3) are satis-

fied.

Proof : We first instantiate X by X1. Consider two suf-

ficiently close points xi and xj in X1. For simplicity we

informally write ∥a − b∥F → 0 to denote that a and b are

close to each other. Exchanging the two columns xi and

xj , we get a new data matrix X2 = X1Pij , where Pij is the

permutation matrix by exchanging the ith and j th columns

of the identity matrix. It is obvious that ∥X2 −X1∥F → 0
and A(X2)−A(X1)∥F → 0.

Given EGE condition (3), it is easy to check that Z∗

2
=

Z∗

1
P is the unique optimal solution of problem (1) when

X = X2. By Lemma 1, we have that ∥X2 −X1∥F → 0 ⇒
∥Z∗

2
− Z∗

1
∥F → 0. Therefore, ∥zi − zj∥2 → 0 as Z∗

2
and

Z∗

1
only differ in the ith and jth columns. �

We now check the grouping effect of existing representa-

tion based methods listed in Table 1 by the above EGE con-

ditions. SSC [3, 4] does not satisfy the conditions. Indeed,

it does not have the grouping effect. For example, consider-

ing X = [x1,x2,x3] with x1 = x2 = x3, any permutation

matrix satisfying diag(Z) = 0 would be the optimal solu-

tion to SSC. For LSR, all EGE conditions are satisfied. So

it has the grouping effect. Figures 1(a)-(c) also exemplify

our above observations. For LRR [16, 15], it is obvious that

EGE conditions (1) and (3) are satisfied. The uniqueness of

the optimal solution to LRR can also be proven, as stated

in Proposition 2. Hence, LRR has the grouping effect. The

optimal solution of CASS [17] is unique according to [8],

and it also has the grouping effect.

Proposition 2: LRR has a unique optimal solution.

Proof : Please find it in the supplementary material. �

Proposition 1 not only provides a way to determine the

grouping effect of existing methods, it may also help us to

design new methods with grouping effect. For example, the

following families of methods have grouping effects.

Proposition 3: Problems (1) with the following Ω(Z) and

C have grouping effect:

(1) Ω(Z) =
n
∑

j=1

(

n
∑

i=1

|Zij |
p

)q

, p > 1, q ≥ 1

p
, C = ∅.

(2) Ω(Z) = tr((ZHZT )p), H ≻ 0, p ≥ 1/2, C = ∅.

(3) Ω(Z) = tr((ZTHZ)p), H ≻ 0, p ≥ 1/2, C = ∅.

Proof : We put it in the supplementary material. �

It should be noted that the constraint set C = {Zii =
0, ∀i}, as used by some existing methods, such as SSC [4],

SSQP [29], MSR [19] and LSR-Z [18], does not satisfy the

EGE condition (3). Accordingly, these methods do not have

the grouping effect in a strict sense. However, these meth-

ods also perform well. So we generalize the concept of

grouping effect as follows in order to comply with such an

observation.

Definition 3 (Permutated Grouping Effect): Given a

set of data points X = [x1, . . . ,xn] ∈ R
d×n, a self-

representation matrix Z = [z1, . . . , zn] ∈ R
n×n has per-

muted grouping effect if ∥xi − xj∥2 → 0 ⇒ ∥PT
ij zi −

zj∥2 → 0, where PT
ij is the permutation matrix by exchang-

ing the ith and the jth rows of the identity matrix.

Then we have the following proposition.

Proposition 4: The optimal solution Z∗ to problem (1) has

permutated grouping effect if EGE conditions (1), (2), and

(4) are satisfied.

Proof : Similar to the proof of Proposition 1, we form a new

data matrix X2 = X1Pij . By EGE conditions (2) and (4),

Z∗

2
= PT

ijZ
∗

1
Pij is the unique optimal solution to problem

(1) when X = X2. If ∥xi − xj∥F → 0, then by Lemma 1

we have ∥Z∗

2
− Z∗

1
∥F → 0, implying ∥PT

ij zi − zj∥2 → 0.

�

One may check that the constraint set C = {Zii = 0, ∀i}
satisfy the EGE condition (4). So by Proposition 4, SSQP

[29], MSR [19] and LSR-Z [18] have the permutated group-

ing effect.

2.2. Why Grouping Effect?

It was claimed by Lu et al. [18] that the effectiveness

of LSR comes from the grouping effect. However, in [18]

there is no convincing evidence to support this claim. In this

section, we provide two viewpoints to advocate this proper-

ty for representation based methods.

We first analyze the grouping effect from the viewpoint

of optimization. The first term in Problem (1) penalizes the

reconstruction error, which can be regarded as a first-order

energy encoding the whole subspace structure of the data.

The grouping effect of a representation matrix indicates that

Ω(Z) and C in Problem (1) must include a second-order en-

ergy to penalize the discontinuities in the representation co-

efficients, either implicitly or explicitly. With this second-

order energy, the representation will be stable. On the oth-

er hand, spatially close data points may help each other to

prevent over-fitting in reconstruction the samples. For ex-

ample, in Figure 1(a), we consider the faces marked by the

green and purple squares. They are very close in appearance

but with a large part shadowed, hence violating the subspace
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Figure 1. Grouping effect of representation based methods. (a)-(d)

Face images in the Extended Yale Face B dataset, displayed af-

ter reducing the dimensionalities of their features to two by PCA,

where the features are: (a) the original image, (b)-(d) represen-

tation matrices computed by LSR [18], SSC [3], and our SMR,

respectively. We can see that LSR and SMR map the spatially

close samples in (a) (marked by green and purple boxes) to spa-

tially close ones (green and purple boxes in (b) and (d)), while

SSC does not (green and purple boxes in (c)). Also note that SMR

maps the two samples closer than LSR and on the whole the face

images are better separated by SMR.

constraints [6]. LSR and our proposed SMooth Representa-

tion (SMR, see Section 3.3) have the grouping effect. They

represent the two faces closely in the new space and are al-

so clustered correctly (Figures 1(b) and (d)). However, SSC

does not include the discontinuity penalties, making the rep-

resentations of the two faces far away from each other and

finally being wrongly clustered (Figure 1(c)).

From the viewpoint of affinity measure, the most com-

monly used affinity measure is (|Z∗| + |Z∗T |)/2. In gen-

eral, the grouping effect implies that spatially close points

have similar affinities with other points. We describe this

formally in Proposition 5.

Proposition 5: If the EGE conditions (1), (2), and (4) are

satisfied, for all ∥xi−xj∥ → 0, we have: (1) |Z∗

ii−Z∗

jj | →
0, |Z∗

ij − Z∗

ji| → 0; (2) ∀k ̸= i, j, |Z∗

ik − Z∗

jk| → 0 and

|Z∗

ki − Z∗

kj | → 0.

Proof : According to Proposition 4, we have ∥Z∗

2
−Z∗

1
∥F →

0, where Z∗

2
= PT

ijZ
∗

1
Pij . Hence (1) and (2) result. �

Proposition 5 indicates that grouping effect usually lead-

s to a well balanced affinity graph, which is regarded to

be helpful for spectral clustering [28]. In addition, based

on Proposition 5, grouping effect enables us to define a

new affinity measure for subspace clustering. We will show

that this affinity measure performs better than the common-

ly used one (|Z∗| + |Z∗T |)/2 when the self-representation

model have grouping effect.

3. Smooth Representation Clustering

In this section, based on the detailed analysis on group-

ing effect, we propose a novel subspace clustering method,

called Smooth Representation (SMR) clustering. We first

introduce how to explicitly enforce grouping effect in the

representation model, then present the SMR model.

3.1. Enforcing Grouping Effect

As stated in Section 2.1, LRR and LSR utilize the group-

ing effect implicitly. The grouping effect can be understood

as the smooth dependence of feature on the sample. We

may write the regularization term of LSR as follows:

Ω(Z) = tr(ZZT )

= 1

2

n
∑

i=1

n
∑

j=1

∥zi − zj∥
2

2
+ 1

n
∥ZT

e∥2
2
, (3)

where e is the all ones vector. It can be viewed as assigning

equal weights to all pairs of representations, regardless of

whether the representations are close to each other or not.

By the analysis in Section 2, we should enforce the group-

ing effect explicitly by the affinity of samples. One possi-

bility is adopting the following regularization term:

Ω(Z) = 1

2

n
∑

i=1

n
∑

j=1

wij ∥zi − zj∥
2

2

= tr(ZLZT ),
(4)

where W = (wij) is the weight matrix measuring the s-

patial closeness of points and L = D − W is the Lapla-

cian matrix, in which D is the diagonal degree matrix with

Dii =
n
∑

j=1

wij . A common way to construct W is to use

the k nearest neighbor (k-nn) graph with a heat kernel or

0-1 weights [9]. We find that the simple 0-1 weighted k-nn

graph performs well enough in our experiments, as exempli-

fied in Figure 1(d). So we use the 0-1 weighted k-nn graph

(a default value of k is 4) in all our experiments. There are

also more complex graphs, e.g., affinity graphs produced by

other subspace clustering algorithms. However, usually we

did not observe evident improvements over the k-nn graph.

3.2. Smooth Representation

To avoid numerical instability issue, we enforce L to be

strictly positive definite by adding a ϵI and use L̃ = L +
ϵI instead, where I is the identity matrix and 0 < ϵ ≪
1. A default value of ϵ is 0.01. Then we get our smooth

representation model:

min
Z

f(Z) = α∥X −XZ∥2F + tr(ZL̃ZT ). (5)



Problem (5) is a smooth convex program. Differentiating

the objective function f(Z) with respect to Z and setting it

to zero, we get the optimal solution Z∗ satisfies

αXTXZ∗ + Z∗L̃ = αXTX. (6)

The above equation is a standard Sylvester equation [1].

It has a unique solution.

Proposition 6: The Sylvester equation (6) has a unique so-

lution.

Proof : XTX is positive semi-definite. So all of its eigen-

values are nonnegative: λi ≥ 0, ∀i. L̃ is positive definite.

So all of its eigenvalues are positive µj > 0, ∀j. Hence, for

any eigenvalues of XTX and L̃, λi + µj > 0. According

to [14], the Sylvester equation (6) has a unique solution. �

A classical algorithm for the Sylvester equation is the

Bartels-Stewart algorithm [1], which consists of transform-

ing the coefficient matrices into Schur forms by QR decom-

position, and then solving the resulting triangular system

via back-substitution. The algorithm has a computational

complexity of O(n3).
The solution to Problem (5) also has several nice proper-

ties according to Proposition 7.

Proposition 7: The solution to Problem (5) has the follow-

ing properties: (1) it has grouping effect; (2) it is block di-

agonal when the subspaces are independent and the data is

noise free.

Proof : (1) We can easily check that Problem (5) satisfies

EGE conditions (1), (2), and (3). According to Proposition

1, its solution has the grouping effect.

(2) When the columns of the data matrix X is permu-

tated by any permutation matrix P , we have L̃(XP ) =
PT L̃(X)P . Hence, Ω(ZP ) = tr(ZPL̃(XP )PTZT ) =

tr(ZL̃(X)ZT ) = Ω(Z). Denote ZD =

[

A 0
0 D

]

,

where A and D are from Z =

[

A B
C D

]

. Substituting

Z and ZD into Equation (4), we have Ω(Z) ≥ Ω(ZD),
where the equality holds if and only if B = C = 0, and

Ω(ZD) = Ω(A) + Ω(D). So Ω(Z) satisfies the Enforced

Block Diagonal Condition [18]. According to Theorem 2

in [18], its optimal solution is block diagonal when the sub-

spaces are independent and the data is noise free. �

Furthermore, benefiting from the strengthening of group-

ing effect, the representations derived by SMR usually have

much larger gap between the within-class and the between-

class distances than those by LRR and LSR, as illustrated in

qualitatively Figure 1(d) and quantitatively Figure 2. This

property implies the SMR can derive more salient within-

class affinities with regard to the between-class ones than

the methods when using the measures described in Section

3.3.
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Figure 2. Comparing gaps between the within-class (wc.) and

between-classes (bc.) representation distances of LRR, LSR and

SMR on the USPS handwritten digit dataset. For each digit image,

the 5% closest images in the wc. and bc. sets respectively are se-

lected for illustration. We can see that SMR has much larger gaps

than LRR and LSR.

3.3. Subspace Clustering by SMR

After obtaining the self-representation matrix Z∗, a com-

mon way for subspace clustering is to define an affinity ma-

trix as

J1 = (|Z∗|+ |Z∗T |)/2 (7)

and use the spectral clustering algorithm [23] to produce the

final clustering results, as has been used by SSC, LRR and

LSR.

The effectiveness of J1 mainly comes from the block di-

agonal property of Z∗, leaving the nice property of group-

ing effect unexploited. To exploit the merit of grouping ef-

fect, we define a new affinity matrix as

J2 =

(
∣

∣

∣

∣

∣

z
∗T
i z

∗

j

∥xi∥2∥xj∥2

∣

∣

∣

∣

∣

γ)

, (8)

where γ > 0 is used to control the affinity variances. The

new affinity measure can be regarded as the inner product of

the new representation vectors normalized by the norms of

their original features. The normalization prevents the affin-

ity measure from biased by the original feature amplitudes,

which is very common in the motion segmentation problem

whose trajectories usually vary a lot in amplitude. Figure

3 shows the affinity matrices of the two measures based on

Z∗ derived by SMR. It can be seen that J2 strengthens the

affinities within each cluster and weakens them across clus-

ters.

The whole procedure of subapace clustering by SMR is

summarized in Algorithm 1.



(a) (b) (c)

Figure 3. Comparing of J1 and J2. (a) Sample images from Ex-

tended Yale Face B datasets; (b) affinity matrix J1; (c) affinity ma-

trix J2 (γ = 2). The block diagonal structure of J2 is more salient

than that of J1. In particular, the magnitudes of off-block-diagonal

entries are much smaller.

Algorithm 1 Subspace Clustering by SMooth Representa-

tion (SMR)

Require: Data points X = [x1, · · · ,xn] ∈ R
d×n, the

number of subspaces m
1: Build a k-nn graph W and compute the corresponding

Laplacian matrix L̃.

2: Solve the Sylvester equation (6) by the Bartels-Stewart

algorithm to get a representation matrix Z∗.

3: Compute affinity matrix by either (7) or (8).

4: Use spectral clustering algorithm to obtain m clusters.

4. Experiments

In this section, we apply our SMR1 to three applications

of subspace clustering: motion segmentation, face cluster-

ing, and handwritten digit clustering. We also compare SM-

R with representative reconstruction based methods, such as

SSC, LRR and LSR, whose performances are state-of-the-

art.

4.1. Datasets and Evaluation Metric

We use three datasets for our experiments: Hopkins155

[25], Extended Yale Face B [7] and USPS [11], which are

the most popular benchmark datasets used in the literature

for evaluating subspace clustering algorithms. For all the

algorithms, the best results are reported.

Hopkins155 [25] is a motion segmentation dataset, con-

sisting of 155 video sequences with extracted feature points

and their tracks across frames. See Figure 4 for some sam-

ple sequences. We use PCA to project the data into a 12-

dimensional subspace. The same as in most literatures,

for each algorithm, we use the same parameters for all se-

quences [26].

Extended Yale Face B [7] is a face clustering dataset,

which consists of 192× 168 pixel cropped face images, un-

der varying poses and illuminations, from 38 human sub-

jects. We use all the 64 frontal face images of the first 10

1Codes available at https://sites.google.com/site/hanhushomepage/

Figure 4. Some sample images from Hopkins155 datasets. The

tracks marked in different color indicate different motions. From

left to right, they are: 1R2RC, cars3 and people2.

Table 2. Clustering errors (CE) using affinity measure (7) and the

computation times on Hopkins155 datasets. The computation time

includes only the computation of Z∗ in Problem (1).

method SSC LRR LSR SMR

CE (%) 3.90 4.11 3.01 2.27

time (s) 2.50 2.03 0.12 0.40

subjects, and resize the images to 32×32. We also use PCA

to project the data into a 10× 6-dimensional subspace.

USPS [11] is a handwritten digit dataset of 9298 images,

with each image having 16×16 pixels. We use the first 100

images of each digit for experiments.

The same as in most literatures, we use clustering error

(CE) to measure the accuracy [25]. CE is the minimum

error by matching the clustering result and the ground truth

under the optimal permutation, formally defined as:

CE = 1−
1

N

N
∑

i=1

δ(pi,map(qi)), (9)

where qi, pi represent the output label and the ground truth

one of the ith point; δ(x, y) = 1 if x = y, and δ(x, y) = 0
otherwise; map(qi) is the best mapping function that per-

mutes clustering labels to match the ground truth labels and

it can be efficiently computed by the Kuhn-Munkres algo-

rithm [13].

4.2. Experimental Results

For fair comparison, we adopt the Frobenius norm for the

reconstruction error term for all the algorithms. Table 2 lists

the motion segmentation errors of the four methods on the

Hopkins155 datasets using the typical affinity measure (7).

SMR achieves a clustering error of 2.27%, while the best re-

sult of other algorithms is 3.01% by LSR. It should be noted

that the numbers in Table 2 are different from those listed in

[18] because they used an approximate computation of CE,

which is also observed by [4]. Noting that most sequences

are easy to be segmented and hence all the algorithms get

zero errors on them, the performance improvement by SMR

over others is significant. The computational costs of all the

algorithms are also listed in Table 2. SMR is a bit slower

than LSR but much faster than SSC and LRR.



Table 3. Clustering errors (CE) using affinity measure (8) with γ =
1 on Hopkins155 datasets.

method SSC LRR LSR SMR

CE (%) 6.27 2.83 1.90 1.13
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Figure 5. The performance of SMR with varying α on Hopkins155

datasets (4-nn graph is used).

As stated in Section 3.3, the affinity measure (8) is better

in exploiting the grouping effect. So we also use affinity

measure (8) for experiments and report the clustering er-

rors in Table 3. It can be seen that the performances of

LRR, LSR and SMR are significantly improved, and SMR

get the minimum segmentation error with 1.13%. The SSC

with the new affinity measure (8) performs worse than using

the traditional affinity (7). These results support the use of

affinity measure (8) rather than (7) for subspace clustering

when the self-representation model has grouping effect.

We also test the performance of SMR with varying pa-

rameters α (in the objective function of (1)) and k (for con-

structing the k-nn graph). The results are shown in Figure 5

and Figure 6. SMR performs very stably with varying α and

the number k of neighborhood. Since other algorithms rely

on only one parameter α, to be fair we use a 4-nn graph for

all our experiments without tuning k on different datasets.

Tables 4 and 5 show the clustering errors on Extended

Yale Face B and USPS datasets, respectively. To make fair

comparison, we use the traditional affinity measure (7) in all

the algorithms. The number of our algorithm using the new

affinity (8) is also shown in the last column for reference.

It can be seen that SMR outperforms the others significant-

ly, especially on the USPS datasets. We also illustrate the

affinity matrices using (7) in Figure 7, where we can clear-

ly observe better grouping effect from SMR than from the

others. When the affinity (8) J2 is used, the performances

are further improved. For example, we achieve 3.75% on

Extended Yale Face B.
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Figure 6. The performance of SMR with varying k in k-nn graph

construction, where for each k, the optimal α is reported.

Table 4. Clustering errors (CE) on Extended Yale Face B datasets.

method SSC LRR LSR SMR SMR(J2)

CE (%) 48.81 35.00 27.50 26.56 3.75

Table 5. Clustering errors (CE) on USPS datasets.

method SSC LRR LSR SMR SMR(J2)

CE (%) 43.10 22.60 26.10 12.70 11.20

5. Conclusions and Future Work

In this paper, we analyze the grouping effect of repre-

sentation based methods in depth. We introduce Enforced

Grouping Effect conditions to verify whether a represen-

tation based model has the grouping effect in a system-

atic manner. We also provide insights to the importance

of grouping effect for subspace clustering. Based on our

detailed analysis, we propose a novel subspace clustering

model, Smooth Representation, to explicitly enforce the

grouping effect in the model. We further propose a nov-

el affinity measure that better utilizes the grouping effec-

t among representation coefficients. Extensive experiments

on benchmark datasets testify to the great advantage of SM-

R over the state-of-the-art subspace clustering methods. In

the future, we plan to utilize the grouping effect in a wider

scope, e.g., semi-supervised learning.
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Figure 7. Affinity matrices derived by SSC, LRR, LSR, and SMR on USPS datasets using (7). The affinities are normalized by 0.6·max(Z∗)
to have better view. The grouping effect of SMR is much more salient than those of others.
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