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Abstract: Statistical potentials that embody torsion angle probability densities in databases of

high-quality X-ray protein structures supplement the incomplete structural information of

experimental nuclear magnetic resonance (NMR) datasets. By biasing the conformational search

during the course of structure calculation toward highly populated regions in the database, the

resulting protein structures display better validation criteria and accuracy. Here, a new statistical

torsion angle potential is developed using adaptive kernel density estimation to extract probability

densities from a large database of more than 106 quality-filtered amino acid residues. Incorporated

into the Xplor-NIH software package, the new implementation clearly outperforms an older

potential, widely used in NMR structure elucidation, in that it exhibits simultaneously smoother and

sharper energy surfaces, and results in protein structures with improved conformation, nonbonded

atomic interactions, and accuracy.

Keywords: knowledge-based torsion angle potential; adaptive kernel density estimation; NMR

protein structure calculation; protein structure validation

Introduction

Over the years, the accumulation of high-resolution X-ray structures in the Protein Data Bank (PDB)1 has

refined our knowledge of protein conformational preferences. Boundaries for the most favorable regions of the

Ramachandran (/, w) plot have shrunk,2 and side chain rotamer distributions have become sharper and
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narrower than ever before.3 Not only is this wealth of

structural information exploited as validation criteria

for newly generated models4 but also as a search bias

during structure calculation. The latter approach

aims at reproducing physically realistic conforma-

tional features of the structure database to alleviate

the uncertainty associated with incomplete experi-

mental information, such as that in low-resolution

X-ray datasets. For instance, rotamer libraries can be

used to fit side chain conformations to electron den-

sity,5,6 and statistical potentials derived from database

torsion angle distributions can supplement experimen-

tal restraints derived from NMR data. Driven by the

relative sparseness of NMR data, the latter applica-

tion was introduced more than 15 years ago7 and is

at the center of this study.

Statistical torsion angle potentials can be suc-

cinctly described as follows.8 The probability density

of torsion angles of interest is estimated from a data-

base, and subsequently converted into potential

energy by inversion of the Boltzmann equation.

Thus (assuming a unit partition function as it can-

not be directly obtained from the database),

EaðxÞ ¼ �b lnpðxjaÞ; (1)

where b is a constant, x, one or more torsion angles,

and p(x|a), the probability density of x given another

variable a. Ea(x) is a statistical potential that acts on

x (given a). (It is also known as potential of mean

force, and sometimes associated with other adjectives,

such as empirical, database, and knowledge based.)

For example, if x consists of / and w, and a is the

amino acid residue type ‘‘alanine,’’ then, during the

calculation of a novel protein structure, EAla(/, w)

biases the backbone torsion angles of alanines toward

the densest regions of the Ramachandran distribution

of alanine in the database. A collection of such poten-

tials (e.g., one per residue type) is needed to handle

every possible protein sequence.

Although statistical torsion angle potentialsmay be

implemented under different conformational sampling

techniques, NMR structure elucidation is typically

achieved by molecular dynamics-based simulated

annealing and gradientminimization, both of which call

for smoothness and differentiability of the potentials. In

this regard, the latest and most advanced implementa-

tion9 relies on kernel density estimation (KDE) to obtain

smooth, continuous probability densities involving all

torsion angles within each residue type, the correspond-

ing energy terms efficiently represented during struc-

ture calculations by cubic spline interpolation. However,

since the main focus of that study was in structure pre-

diction, NMR-relevant tests were reported as superfi-

cial, limited to the experimentally unrestrained

minimization of previously solved NMR structures,

omitting analysis of the accuracy of the resulting mod-

els, and their compatibilitywith theNMRdata.

Possibly, the most thoroughly tested and most

widely used statistical torsion angle potential in

NMR is the so-called DELPHIC potential, developed

by Kuszewski et al.,7 which has evolved over time.10–12

Included in the Xplor-NIH software package,13,14

the latest version of this potential relies on a histo-

gram-based approach for probability density estima-

tion, the resulting energy (hyper)surfaces fit via an

iterative protocol11 whereby a quartic function is fit to

the global minimum and subtracted from the surface.

This procedure is repeated until a desired tolerance is

met, and the energy surface is then represented by the

sum of the quartic functions. Under comprehensive

analysis,15 the DELPHIC potential has been shown to

significantly improve both structural validation criteria

and accuracy, the former indicated by software tools

such as WHAT IF,16 the latter, by better agreement of

the models with residual dipolar couplings (RDCs) pur-

posely excluded from structure calculations (i.e., RDC

cross-validation).

Despite the above-described encouraging results,

visual inspection of the DELPHIC potential energy

surfaces reveals roughness and other features (or lack

thereof) that seem unsupported by torsion angle popu-

lations in modern databases (see below). Here, such

deficiencies are addressed by a completely reformu-

lated statistical torsion angle potential. A database of

more than 106 quality-filtered residues is used to gen-

erate probability densities via adaptive KDE. This

results in density estimates that are not only continu-

ous and smooth overall but also free of defects in

regions of low density, where the noisy contribution of

isolated points is automatically smoothed out. Finally,

energy terms are efficiently represented during the

course of structure calculation by cubic interpolation,

from which forces are readily obtained. This new

potential is incorporated into Xplor-NIH,13,14 and

tested on the structure calculation of 10 proteins of

various folds and sizes, using publicly available NMR

restraints. The latter include RDCs, omitted from the

calculations for cross-validation. The quality of back-

bone and side chain conformations, as well as that of

nonbonded atomic interactions, was assessed using

MolProbity2,17,18 and WHAT IF.16

Results

The torsion angle database

The database on which this study relies consists of

1,005,827 residues, extracted from protein crystal

structures solved at a resolution of 1.8 Å or better,

all atoms with B factors < 35 Å2 and no serious

atomic clashes reported by MolProbity. This data-

base is a subset of the Top8000 database of almost

8000 nonhomologous protein chains (see Methods for

details), kindly provided by Jane S. Richardson as a

successor of the popular Top500 database.2
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Residue type definitions and statistical

approximations

The initial goal was to estimate the probability den-

sity function of all torsion angles within each resi-

due type, starting from torsion angle instances in

the database. Density estimates within a predefined

grid were subsequently needed to obtain the corre-

sponding energy values [via Eq. (1)], used in a cubic

interpolation routine during structure computation

(see Methods for details), where the statistical

potential term (or terms; see below) was applied to

all torsion angle degrees of freedom of residues with

the corresponding type. Each residue was assigned

only one type, following the order of precedence

Gly; cis-Pro; trans-Pro > prePro >

Ala; Thr; Val; etc:; ð2Þ

where cis/trans refers to the peptide bond conforma-

tion, prePro denotes a residue immediately preced-

ing a proline in the primary structure, and the low-

est-precedence types consist of all amino acid names

minus Gly and Pro. For example, to estimate the (/,

w) probability density of Gly, p(/, w|Gly), all gly-

cines in the database were used, regardless of

whether they preceded a proline, whereas estimation

of p(/, w|Ala) omitted pre-proline alanines. This res-

idue classification is based on well-known distinctive

torsion angle distributions (e.g., the relatively large,

steric clash-free areas accessible to glycine, afforded

by the lack of Cb), as well as the large size of the

database. For example, whereas chemical similarity

between tyrosine and phenylalanine has previously

prompted their joint treatment to alleviate database

scarcity (e.g., Ref. 10), here they yielded separate

residue types, regardless of possible common fea-

tures. Henceforth, Eq. (2) will be implied whenever

a name in it is used (e.g., ‘‘Ala’’ stands for ‘‘non-pre-

proline alanine’’).

Use of Eq. (1) yields an energy term of the same

dimensionality as the probability density function.

Because all torsion angles within a residue type are

involved, the highest possible dimensionality is six

(e.g., Arg’s /, w, v1, . . ., v4). However, the number of

coefficients needed to represent the interpolated energy

term during structure calculations becomes excessively

computationally expensive beyond three dimensions.9

Therefore, the problem is one of breaking probability

densities of dimensionality >3 into components of

dimensionality � 3, a statistical task that can be

achieved by assuming conditional independence.19 For

example, in the case of Leu, v2 was assumed condition-

ally independent of / and w given v1, which yields

pð/; w; v1; v2jLeuÞ ¼ pð/; w; v1jLeuÞ pðv1; v2jLeuÞ=

pðv1jLeuÞ: ð3Þ

It should be noted that Eq. (3) does not imply

that v2 is independent of the backbone torsion angles,

but that its dependence is indirect, via v1. Table I

Table I. Probability Density Expressions Extracted from the Torsion Angle Database

Residue type Probability density functiona Statistical approximationb

Gly, Ala pð/;wÞ None

Thr, Val, Ser, Cys pð/;w; v1Þ None

cis-Pro, trans-Pro pð/;w; v2Þ v2 determines other

ring torsion angles

Asp, Asn, Ile, Leu, His, Trp, Tyr, Phe
pð/;w;v1Þ pðv1; v2Þ

pðv1Þ
v2?/;w given v1

Met, Glu, Gln
pð/;w; v1Þ pðv1;v2;v3Þ

pðv1Þ

v2?/;w given v1
v3?/;w given v1;v2

�

Lys, Arg
pð/;w; v1Þ pðv1;v2; v3Þ pðv2;v3;v4Þ

pðv1Þ pðv2; v3Þ

v2?/;w given v1
v3?/;w given v1;v2
v4?/;w given v2;v3

8

<

:

prePro pð/;wjpreProÞ None

pð/;w;v1jpreProÞ None

pð/;w;v1jpreProÞpðv2Þ v2?/;w;v1
pð/;w;v1jpreProÞpðv2; v3Þ v2;v3?/;w; v1

pð/;w;v1jpreProÞpðv2;v3;v4Þ v2; v3;v4?/;w;v1
a For simplicity, probability density functions omit conditionals whenever possible. For example, for residue types Gly and

Ala, p(/, w) implies p(/, w|Gly) and p(/, w|Ala), respectively. In the case of prePro, the explicit use of a conditional is in-

formative. For example, the probability density function of pre-proline arginines is represented by p(/, w, v1|prePro) p(v2,

v3, v4), where p(/, w, v1|prePro) corresponds to all non-glycine, non-proline pre-proline residues (with at least one side

chain torsion angle), and p(v2, v3, v4) to all arginines, regardless whether they precede a proline (see text for another

example).
b The statistical approximations used to arrive at the different probability density expressions are indicated, where the

orthogonality sign (\) means ‘‘independent of ’’.
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provides the probability density expressions for all

residue types, including the statistical assumptions

used to derive them. Such approximations rely on the

number of atoms shared by torsion angles along the

covalent framework of the residue: adjacent torsion

angles (e.g., / and v1) share more atoms than nonad-

jacent ones (e.g., / and v2), and are, consequently,

more likely to directly influence one another. Approxi-

mations similar to those in Table I have been previ-

ously used in another statistical torsion angle poten-

tial,9 although the latter made more assumptions in

that no three-dimensional probability densities were

used for side chain torsion angles.

Two residue types in Table I deserve particular

attention. First, the side chain torsion angles of Pro

are highly correlated to one another due to covalent

restrictions imposed by the ring. As a result, a single

torsion angle, v2, can be used to determine the side

chain conformation,20 and the entire conformational

space captured by p(/, w, v2|Pro). Second, prePro is

special in that it represents a diverse group [all non-

glycine, non-proline residues immediately preceding

a proline; Eq. (2)], with several residue subtypes.

Because of insufficient pre-proline alanines (pre-

ProAla subtype) in the database, its (/, w) density is

represented by that of all prePro residues, p(/,

w|prePro). The (/, w, v1) distribution of the remain-

ing prePro subtypes is captured by that of all prePro

residues with at least v1, p(/, w, v1|prePro). The

distribution of torsion angles beyond v1 is assumed

to be that of the corresponding residue, regardless of

whether it precedes a proline. For example, for pre-

proline leucines

pð/;w; v1; v2jpreProLeuÞ ¼ pð/;w;v1jpreProÞ pðv2Þ;

(4)

where p(v2) is obtained from all leucines in the

database. Although, Eq. (4) implies the not-neces-

sarily-true assertion that v2 is uncorrelated with

the remaining torsion angles, such a correlation

cannot be accurately obtained from the database

due to the scarcity of pre-proline leucines, hence

the current approximation. Similar considerations

apply to the other prePro residue subtypes with tor-

sion angles beyond v1 (see Table I). A more detailed

version of Table I is provided as Supporting Infor-

mation (Table SI). It is noteworthy that while cer-

tain long-range correlations might be neglected by

the above approximations, those based on atomic

clashes are accounted for during structure calcula-

tions by repulsive interactions (see Methods for

more details).

Adaptive KDE produces smooth, yet sharp

potential surfaces

The general methodology chosen to extract the prob-

ability densities listed in Table I from the torsion

angle database is KDE.21 It consists of centering

‘‘bumps’’ or kernel functions on top of each database

point; the density at any arbitrary position in torsion

angle space is then estimated by summing the contri-

bution of all kernels. In this case, the kernels take

the form of d-dimensional (d ¼ 1, 2, or 3), symmetri-

cal Gaussians, so that their overall smoothness is

inherited by the density estimates. In particular, the

adaptive version of KDE was used,21 where the width

of each Gaussian adapts to the local density in that

narrow ones are placed in regions of high density,

and wide ones in regions of low density. This has the

effect of reproducing features at high local density,

while smearing sparsely populated areas of torsion

angle space (i.e., the ‘‘tails’’ of the distribution). The

latter would appear bumpy if fixed-width kernels

were used, and yield false high-energy local minima

[via Eq. (1)] that could hamper structure calculations.

This shortcoming of nonadaptive KDE may be miti-

gated by removal of isolated database points, followed

by padding low-density regions with artificial points.9

Here, the use of adaptive KDE rendered such modifi-

cations of the database unnecessary. Other examples

of adaptive KDE in torsion angle space are provided

elsewhere.2,22

The energy terms that comprise the new statis-

tical torsion angle potential, henceforth referred to

as ‘‘torsionDBPot,’’ follow directly from Table I and

Eq. (1). For example, Boltzmann inversion of Eq. (3)

yields

ELeuð/; w; v1; v2Þ ¼ ELeuð/; w; v1Þ þ ELeuðv1; v2Þ
� ELeuðv1Þ:

(5)

The subtraction of ELeu(v1) intuitively accounts for

the overweighting of v1 in the remainder of Eq. (5)

(note v1 appears in both ELeu(/, w, v1) and ELeu(v1,

v2)). This is not an ad-hoc property of the potential,

but one that arises naturally from the statistical

treatment described in the previous section.

Figure 1 shows typical energy surfaces obtained

from both the current version of the DELPHIC

potential12 in Xplor-NIH [Fig. 1(A,C)] and tor-

sionDBPot [Fig. 1(B, D)], introduced in Xplor-NIH

as part of this work. Comparison of contour plots of

the His (v1, v2) energy term reveals the absence of

features in the DELPHIC potential [Fig. 1(A)], nota-

bly, a shallow minimum at (62�, 83�) (corresponding

to the sparsely populated p80� rotamer3), which is

apparent in torsionDBPot [Fig. 1(B)]. Moreover, the

DELPHIC potential suffers from noise and unrealis-

tic shapes of energy surfaces, a problem exacerbated

at high dimensions, as exemplified by the (/, w, v1)

energy term of Val [Fig. 1(C)], which contrasts with

the both smoother and sharper surfaces of tor-

sionDBPot [Fig 1(B,D)]. Visual inspection of several

other surfaces indicates a prevalence of noise and

Bermejo et al. PROTEIN SCIENCE VOL 21:1824—1836 1827



multiple instances of missing features for the DEL-

PHIC potential.

Effect of torsionDBPot on NMR structure

calculations

The new statistical torsion angle potential, tor-

sionDBPot, was tested on 10 protein structures of

diverse sizes (54 to 259 residues in length) and top-

ologies (a, b, and ab folds), listed in Table II. Struc-

ture calculations were performed with Xplor-NIH,

enforcing publicly available NMR distance and tor-

sion angle restraint sets. These sets reflect heteroge-

neity in their derivation from the experimental data.

For example, whereas the backbone torsion angle

restraints for the protein KH325 were obtained from

scalar couplings, those for DinI26 were derived from

chemical shifts. The interpretation of nuclear Over-

hauser effects (NOEs) in terms of interproton distan-

ces also varies from one research group to another

(six of which are represented here), a fact notably

exemplified by SrtA,27 which relied heavily on auto-

mation for NOE analysis, as opposed to, for example,

IIBMtl,28 which followed a more conventional manual

iterative approach. Differences in NOE data are also

quantitative as the average number of long-range

NOEs (i.e., between residues separated by more

than five in the amino acid sequence) ranges from

1.8 to 10.6 per residue in the 10-protein set. Thus,

the systems tested aim at representing a range of

situations that may be encountered during the

determination of a novel protein structure by NMR.

For each protein, three types of structure calcu-

lations were carried out, differing in the statistical

torsion angle potential used: (i) none, (ii) the DEL-

PHIC potential, or (iii) torsionDBPot. The generated

structures were validated with MolProbity (Fig. 2)

and WHAT IF (Fig. 3), which report that calcula-

tions using either the DELPHIC or the torsionDB-

Pot potential outperform in every criterion those

that exclude such potentials. Furthermore, tor-

sionDBPot improves the quality of the backbone con-

formation relative to the DELPHIC potential.

Indeed, MolProbity indicates that, with the sole

exception of EIN, the percent of Ramachandran

Figure 1. Representative energy surfaces of the DELPHIC and torsionDBPot statistical torsion angle potentials in Xplor-NIH.

(A and B) Contour plots of the His (v1, v2) energy term in the DELPHIC potential and torsionDBPot, respectively. (C and D)

Single isoenergetic surfaces of the Val (/, w, v1) energy term in the DELPHIC potential and torsionDBPot, respectively. Panels

A and B were generated with Matplotlib,23 C and D with Mayavi.24 All units are in degrees.
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outliers drops to its lowest values with torsionDBPot

[Fig. 2(A)], and the favored regions of the Rama-

chandran plot become more populated in every case,

except for GB1, where a similar outcome is achieved

with the DELPHIC potential [Fig. 2(B)]. These

results agree with WHAT IF’s Ramachandran plot

appearance score, which improves throughout [Fig.

3(A)] upon use of torsionDBPot. With regards to side

chain conformation, both potentials perform simi-

larly according to MolProbity: the percent of poor

rotamers is slightly smaller with torsionDBPot for

seven proteins, the remaining three yielding slightly

better statistics with the DELPHIC potential [Fig.

2(C)]. On the other hand, WHAT IF favors tor-

sionDBPot, which results in better v1/v2 rotamer

normality scores for all proteins [Fig. 3(B)].

Measures of quality of nonbonded atomic interac-

tions, or atomic packing, are more independent vali-

dation criteria than those discussed above, in that

they usually do not rely on the variables directly

affected by the statistical torsion angle potentials,

i.e., the torsion angles. Further, packing encompasses

long-range features outside the scope of both the tor-

sionDBPot and DELPHIC potentials, which only act

at the local residue level. MolProbity’s ‘‘clashscore,’’36

the number of serious atomic overlaps per thousand

atoms (see Methods for details), and WHAT IF’s pack-

ing quality score,37 which considers atomic distribu-

tions around different molecular fragments, are two

such measures of packing. Relative to the DELPHIC

potential, all structures generated with torsionDBPot

display systematic improvements in the MolProbity

clashscore, except for the slightly worse clashscore of

IIBMtl, well within error bars [Fig. 2(D)]. This trend

is also reflected by WHAT IF’s packing quality score

[Fig. 3(C)].

The introduction of an additional energy term

usually causes the agreement between calculated

structures and terms in the original target function

to deteriorate. It is, therefore, important to confirm

that the improvements in conformation and atomic

interactions afforded by torsionDBPot do not come

at significant cost to the remaining terms, particu-

larly those associated with the NMR data. Indeed,

torsionDBPot is more compatible than the DELPHIC

potential with the experimentally determined dis-

tances, as suggested by slightly lower root mean

square (RMS) deviations from the upper and lower

bounds of the distance restraints [Fig. 4(A)]. With

regards to torsion angle restraints, RMS statistics

suggest that some proteins exhibit better agreement

when generated with the DELPHIC potential, others

with torsionDBPot, but in every case the agreement

is comparable to that of structures generated with-

out either potential (except for ubiquitin whose pub-

licly released restraints have unrealistically narrow

bounds, hence the large RMS deviations) [Fig. 4(B)].

The compatibility with experimental data

excluded from structure calculations represents an

independent test of structural accuracy. RDCs

depend on the orientation of interatomic vectors rel-

ative to an external alignment tensor, and are com-

monly used for cross-validation.38 Experimentally

observed RDCs and those computed from the protein

models were compared via an R-factor,39 which

ranges from 0% (perfect correlation) to 100% (no cor-

relation). Figure 4(C) shows that inclusion of the

DELPHIC potential in structure calculations signifi-

cantly improves the fit to RDCs, as previously

reported elsewhere.15 torsionDBPot improves the fit

even further in all cases, with the exception of

IIBMtl, where a slightly worse fit is observed.

Discussion

The previously developed statistical torsion angle

potential7,10–12 in Xplor-NIH13,14 (or its precursors,

X-PLOR40 and CNS41) has become an important tool

in NMR protein structure determination, inspiring

similar implementations in other software pack-

ages.9,42,43 Although originally applied to solution

Table II. Proteins Used in Test Structure Calculations

Protein (Name and Abbreviation) Residues Fold

NMR Data

(PDB ID) References

B1 domain of protein G (GB1) 54 ab 3GB1 29

Ubiquitin (Ubi) 76 ab 1D3Z 30

DNA damage inducible protein 1 (DinI) 81 ab 1GHH 26

LM5-1 FYVE domain (LM5-1) 84 ab 1Z2Q 31

C-terminal KH domain of heterogeneous

nuclear ribonucleoprotein K (KH3)

89 ab 1KHM 25

Barrier-to-autointegration factor (BAF, chain A only) 89 a 2EZX 32

Cytoplasmic B domain of the mannitol

transporter IImannitol (IIBMtl)

97 ab 1VKR 28

Sortease A in covalent complex with

an LPXTG analog (SrtA)

148 b 2KID 27

Apo dihydrofolate reductase (DHFR) 162 ab 2L28 33

N-terminal domain of enzyme I (EIN) 259 ab 1EZA (distance,

torsion angle)

3EZA (RDC)

34,35
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NMR, the statistical torsion angle potential in

Xplor-NIH (named DELPHIC) has additionally

made significant contributions with other types of

experimental data, such as combination of solution

and solid state NMR,44–46 combination of solution

NMR and small- and wide-angle X-ray scatter-

ing,47,48 combination of solid state NMR and X-ray

diffraction,49 and purely solid state NMR data (e.g.,

Refs. 50–52). With this in mind, a ‘‘First, do no

harm’’ approach was followed in the development of

torsionDBPot, a new statistical torsion angle poten-

tial in Xplor-NIH. (Note that the DELPHIC potential

remains available for backwards compatibility.)

Indeed, while accomplishing similar or better fit to

experimental restraints relative to the DELPHIC

potential, torsionDBPot improves the quality of pro-

tein conformation and nonbonded atomic interactions.

This is summarized by the overall MolProbity score18

(the lower the better), which improves in every case

tested [Fig. 2(E)]. Moreover, such benefits are

concomitant with enhanced structural accuracy, as

suggested by better agreement with cross-validated

Figure 2. MolProbity validation. Each barplot displays a Molprobity validation statistic for structure ensembles of different

proteins, with bars representing the mean 6 standard deviation computed from 20 structures. Structure calculations without

any statistical torsion angle potential (black), with the DELPHIC potential12 (gray), and with the new torsionDBPot potential

(white) are included. Abbreviated protein names are used; for full names see Table II. The clashscore36 (panel D) and the

MolProbity score18 (panel E) are costs: the lower the better. Barplots in this and all other figures were generated with

Matplotlib.23
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RDCs. Albeit relatively moderate, the above-reported

improvements are consistent across the entire protein

test set.

Figure 3. WHAT IF validation. Each barplot displays a

WHAT IF validation statistic for structure ensembles of

different proteins, with bars representing the mean 6

standard deviation computed from 20 structures. Structure

calculations without any statistical torsion angle potential

(black), with the DELPHIC potential12 (gray), and with the

new torsionDBPot potential (white) are included.

Abbreviated protein names are used; for full names see

Table II. Each statistic is a score: the larger the better.

Packing quality (panel C) refers to the 2nd generation

packing quality.

Figure 4. Fit to experimental data. Each barplot displays a

figure of merit for the fit to a given experimental NMR

observable of structure ensembles of different proteins,

with bars representing the mean 6 standard deviation

computed from 20 structures (note that error bars

associated with very small standard deviations may seem

missing). Structure calculations without any statistical

torsion angle potential (black), with the DELPHIC potential12

(gray), and with the new torsionDBPot potential (white) are

included. Abbreviated protein names are used; for full

names see Table II. Large torsion angle RMS deviations for

ubiquitin (panel B, asterisk) stem from unrealistically narrow

bounds in the publicly released restraints (PDB ID: 1D3Z).

Each RDC R-factor (panel C) is an unweighted average

over different alignment media and nuclei pairs (when

applicable).
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Despite their usefulness in protein structure

prediction and experiment-based determination, a

general concern with statistical potentials of any

kind is that their inherent average nature may bias

structures away from features that are real although

poorly represented in the database. Use of experi-

mental data, however, as in this case, ameliorates

this bias because the data are allowed to trump the

statistical potential whenever possible. Thus, a

rarely observed conformation firmly supported by

NMR restraints should prevail over torsionDBPot in

structure calculations (otherwise, restraint viola-

tions would arise highlighting the unusual region).

In this light, flexibly disordered regions appear prob-

lematic as they are both poorly represented in the

structured, low-B factor database, and usually

sparsely restrained by NMR data. Future work may

address the need for alternate descriptions of nonre-

gular regions. For the 10 proteins studied here, the

current protocol is clearly a step forward in generat-

ing high-quality NMR structures.

Methods

The torsion angle database

The starting point for the compilation of the torsion

angle database used in this study is the Top8000

database (kindly provided by Jane S. Richardson,

Duke University), of almost 8000 chains with X-ray

structure resolution better than 2.0 Å, less than 70%

sequence identity, and other satisfied filters, notably:

chain MolProbity score <2.0, �5% of residues with

bond lengths and angles outside four standard devi-

ations from standard geometry, �5% of residues

with Cb deviations >0.25 Å, and best average of re-

solution and MolProbity score among the 70%

homology cluster the chain represents. In addition,

similar to previous versions of this database,2,3 the

Top8000 contains flipped planar side chain terminal

groups of asparagines, glutamines, and histidines,

when justified by analysis of atomic clashes and H-

bonding.3 Further details are provided at the

Richardson Lab’s website (http://kinemage.biochem.

duke.edu/databases/top8000.php). The Top8000 data-

base was obtained as a table, each row containing

information on a single residue, such as its torsion

angles, resolution, atomic clashes (if any), etc.

As discussed in the Results section, the Top8000

database was subjected to more stringent filters to

generate the custom database used by our new sta-

tistical torsion angle potential, torsionDBPot. Specif-

ically, only chains with X-ray resolution of 1.8 Å or

better were considered, residues from which were

included in the custom database only if all their

atoms had B factors < 35 Å2 and no serious clashes

reported by MolProbity.2,17,18 Moreover, leucines

with (v1, v2) pairs within regions that represent mis-

fit rotamers3,10 were avoided; a total of 553 such

misfits were encountered and removed after resolu-

tion, B factor, and clash filtering. The resulting tor-

sion angle database contains 1,005,827 residues.

A new Python module, torsionDBTools, has been

added to Xplor-NIH to facilitate the extraction of tor-

sion angles from Cartesian coordinates (i.e., PDB

files). Although thoroughly tested, this module was

not used here, as the Top8000 database already pro-

vided torsion angles, along with other useful infor-

mation (see above). However, the module should

prove useful in the derivation of new statistical tor-

sion angle potentials from arbitrary subsets of the

PDB (e.g., coil databases).

Torsion angle probability densities

via adaptive KDE

The goal is to accurately estimate the probability

density function of torsion angles of interest from

the database, with the additional requirement that

the estimate be smooth. The torsion angles under

consideration can be represented by a column vector

x, which defines a d-dimensional space where n

database points X1, . . ., Xn are found (e.g., if x
T ¼

(/, w), d ¼ 2, where T denotes vector transpose). A

first approximation toward extracting the probability

density from the database is to perform KDE, by

summing over ‘‘bumps’’ or kernels centered at the

observed database points.21 KDE with a symmetrical

Gaussian kernel function and window width h is

defined by

~pðxÞ ¼
1

n

X

n

i¼1

Nðl ¼ Xi;R ¼ h2
IÞ; (6)

where the N-notation is used for the d-dimensional

(or d-variate) Gaussian, with mean vector l and

covariance matrix R (I is the identity matrix). Ex-

plicitly,

Nðl ¼ Xi;R ¼ h2
IÞ ¼

1

ð2ph2Þd=2

� exp �
1

2h2
ðx� XiÞ

Tðx� XiÞ

� �

: ð7Þ

In one dimension, for example, the left-hand side of

Eq. (7) simply becomes Nðl ¼ Xi;r
2 ¼ h2Þ, where the

boldface vector/matrix notation is no longer neces-

sary, and the variance, r2, replaces the covariance

matrix. It is noteworthy that, for the sake of simplic-

ity, all probability density functions in this section

[including Eqs. (6) and (7) above] tacitly imply the

residue type conditional, explicit elsewhere in the

text [cf. Eq. (1)].

Gaussians are nonnegative and integrate to one,

leading ~pðxÞ to also be nonnegative and integrate to

one, as any probability density function must. Also,
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since Gaussians are continuous and smooth, so is

~pðxÞ. The degree of smoothing is additionally con-

trolled by the choice of window width h (i.e., the

standard deviation in the one-dimensional case).

Throughout our work, the periodicity of angular val-

ues is dealt with by augmenting the database with

shifted copies of the original.21 Following the one-

dimensional example, if the torsion angle under

study is defined in the interval [-180�, 180�), adding

copies of the database at intervals [-540�, -180�) and

[180�, 540�) results in a new database {X1 - 360�, . . .,

Xn - 360�, X1, . . ., Xn, X1 þ 360�, . . ., Xn þ 360�}. Per-

forming KDE on this augmented database with Eq.

(6) (where n is still the original number of points)

accounts for the boundary condition.

Despite its obvious advantages over simpler

density estimation methods such as the histogram,

KDE has the tendency to produce noise in regions of

low density, arising from individual, isolated bumps,

a problem exacerbated in high dimensions. Here, the

solution chosen was the use of kernels with variable

window width—as opposed to the fixed-width ker-

nels of Eq. (6)—so that narrow kernels are placed in

regions of high density, and wide ones in regions of

low density. This method is called adaptive KDE,21

as the window width adapts to the local density,

which is preliminary estimated via standard KDE

[(Eq. (6), in this context usually referred to as the

pilot estimate]. Using again symmetrical Gaussians,

adaptive KDE takes the mathematical form

pðxÞ ¼
1

n

X

n

i¼1

Nðl ¼ Xi;Ri ¼ ðhkiÞ
2
IÞ; (8)

where local bandwidth factors ki are given by

ki ¼
g

~pðXiÞ

� �a

: (9)

In Eq. (9), g ¼
Qn

i¼1 ~pðXiÞ
� �1=n

, the geometric mean of

the ~pðXiÞ (a constant), and a is set to 0.5 as recom-

mended elsewhere.21 The formulas for the variable-

width, symmetrical Gaussians in Eq. (8) can be read-

ily obtained from Eq. (7) by replacing h by hki. Once

the kis are determined for a joint probability density

estimate [e.g., p(/, w\v1)], the marginal probability

density estimate of one (or more) torsion angles [e.g.,

p(v1)] can be computed in a straightforward manner.

When more than one joint probability density esti-

mate is available, the marginal probability density of

a common torsion angle is extracted from each joint

distribution, and an average density computed.

In this study, adaptive KDE was performed as

described above, for one, two, and three dimensions,

where h was given the values of 4�, 5�, and 6�,

respectively—as prescribed elsewhere,21 h takes the

same value in Eqs. (6) and (8). All calculations were

performed using the Python module densityEstima-

tion implemented within Xplor-NIH13,14 for the pres-

ent purposes.

Cubic interpolation of energy terms

The different energy terms that stem from the appli-

cation of Eq. (1) to the adaptive KDE-based probabil-

ity density functions in Table I (see Supporting In-

formation Table SI for a more detailed version of

Table I) were evaluated on a grid used for cubic

interpolation with periodic boundary conditions. In

one and two dimensions, a uniform grid with 10�-

spacing was used. Extending this strategy to the

construction of a three-dimensional grid results in

an unacceptable increase of computer memory

requirements. Consequently, a nonuniform grid was

devised with 10�-spacing around each energy mini-

mum, and wider spacing elsewhere. Specifically, the

axis along one of the three dimensions is uniformly

marked every 10�, and a tick mark retained only if

within a distance r of the coordinate of a minimum

along that dimension. Subsequently, to avoid under-

sampling, if two adjacent tick marks are farther

apart than 10�, a new one is added equidistant from

the two. The same procedure is performed with the

axes along the remaining two dimensions, and the

grid constructed with the three sparsely sampled

axes. r ¼ 23� for all residue types [Eq. (2)], with the

exception of cis/trans-Pro, where r ¼ 30�, the denser

sampling afforded by the fact that the minima are

confined to a small region of torsion angle space.

Within Xplor-NIH, cubic interpolation routines

in one and two dimensions53 were already present

and were previously exploited by another potential

term.50 Three-dimensional cubic interpolation capa-

bilities, as described elsewhere,54 were added to

Xplor-NIH (as the spline3D Python module) for the

present purposes and have already been successfully

applied to a recent unrelated problem.55 The inter-

polated energy terms make up the new statistical

torsion angle potential, torsionDBPot, which is set

up with the newly added module torsionDBPotTools.

In addition, torsionDBPotTools contains the auxil-

iary function find_minima, which characterizes a

queried torsionDBPot surface by listing the number,

location, and depth of all its minima, and is useful

for the comparison of different surfaces.

Structure calculations

Structures were calculated with Xplor-NIH,13,14

using two conventional simulated annealing proto-

cols: a first one for folding an initially extended con-

formation and a second one for the subsequent

refinement of a selected folded model. Both proto-

cols, based on the internal variable module,56 share

the same basic scheme, comprising the following

stages (respecting their order during calculations):

(i) high-temperature torsion angle dynamics (3500 K

for folding, 3000 K for refinement), the smallest of
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15 ps or 15,000 timesteps in length, subject to tor-

sion angle restraints (kta ¼ 10 kcal mol–1 rad–2), dis-

tance restraints (kdist ¼ 2 kcal mol–1 Å–2), and van

der Waals-like repulsions57 (kvdw ¼ 0.004 kcal mol–1

Å–4; only Ca–Ca interactions active, with a van der

Waals radius scale factor svdw ¼ 1.2), where kg
represents the force constant of energy term g; (ii)

torsion angle dynamics with simulated annealing,

where the temperature is reduced from the initial

value (see above) to 25 K in steps of 12.5 K (the

smallest of 0.2 ps/step or 200 timesteps/step for fold-

ing, the smallest of 0.63 ps/step or 630 timesteps/

step for refinement), kta ¼ 200 kcal mol–1 rad–2, and

kdist, kvdw, and svdw are geometrically increased from

2 to 30 kcal mol–1 Å–2, 0.004 to 4 kcal mol–1 Å–4, and

0.9 to 0.8, respectively (all van der Waals interac-

tions active (see exceptions below) in this stage, a

feature maintained in subsequent stages, as well as

the final values of force constants and svdw); (iii) 500

steps of Powell torsion angle minimization; (iv) 500

steps of Powell Cartesian minimization. When

including either the DELPHIC12 or the torsionDB-

Pot statistical torsion angle potential term, its force

constant is set to 0.002 kcal mol–1 rad–2 in stage (i),

from which it geometrically increases to 1 (DEL-

PHIC) or 2 kcal mol–1 rad–2 (torsionDBPot) in stage

(ii), values maintained until the end of the protocol.

Although many steric interactions are already

accounted for by both the DELPHIC and torsionDB-

Pot potentials (e.g., those in eclipsed conformations

that result in staggered side chain rotamer distribu-

tions), the prevention of any atomic overlap is an

essential part of any force field. Here, a compromise

is achieved by allowing repulsions only between

atoms separated by more than three covalent bonds

whenever the DELPHIC or torsionDBPot potentials

are used; when they are not used, repulsions are

allowed only between atoms separated by more than

two covalent bonds.

The folding protocol generated 100 structures,

from which the one with the lowest experimental

energy (i.e., energy from distance and torsion angle

restraints) was selected for refinement. The refine-

ment protocol generated 100 structures, and the top

20 ranked by the experimental energy were selected

for further analysis. Computer memory require-

ments for torsionDBPot were similar to those of the

DELPHIC potential.

Experimentally determined distance, torsion

angle, and RDC restraints (the latter excluded from

the structure calculations, and used only for pur-

poses of cross-validation; see below for details) were

obtained from the PDB for the 10 proteins listed in

Table II.

Structure validation

The quality of backbone and side chain conforma-

tions, as well as that of nonbonded interatomic inter-

actions in the calculated protein structures were

assessed with MolProbity2,17,18 and WHAT IF.16 The

increase of a WHAT IF score was considered an

improvement of the associated quality criterion

(a proper ‘‘score’’ behavior). On the other hand, Mol-

Probity’s overall score18 and clashscore36 are

actually costs whose decrease reflect improvement.

It is noteworthy that the clashscore (number of seri-

ous atomic overlaps per thousand atoms) ignores

clashes between pairs of heavy atoms within three

or fewer covalent bonds, and between pairs of atoms

where one or both are hydrogens within four or

fewer bonds. In other words, the MolProbity clash-

score ignores clashes between atoms whose relative

positions are directly affected by the statistical tor-

sion angle potentials during structure calculations,

thus making it a more independent measure of

structure quality as opposed to, for example, the per-

centage of poor side chain rotamers.

Agreement between structures and RDCs

RDCs were fit to calculated structures by singular

value decomposition58 with Xplor-NIH, which addi-

tionally reports the R-factor measure of fit,39

R ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 ðDAB
obs �DAB

calcÞ
2

D E

2ðDAB
a Þ2ð4þ 3Rh2Þ

v

u

u

t

: (10)

where DAB
obs is the experimentally observed and DAB

calc

the structure-calculated RDC for nuclei pair type

A–B (e.g., 1HN–15N) in a given molecular alignment

medium, DAB
a and Rh are the axial component and

the rhombicity of the alignment tensor, respectively,

and angular brackets denote averaging over the

entire A–B RDC dataset. A single unweighted R-fac-

tor average over all nuclei pair types and media was

used to assess the overall fit.

Availability

The new statistical torsion angle potential, tor-

sionDBPot, is part of the Xplor-NIH software suite

(as of version 2.31), downloadable from the web

(http://nmr.cit.nih.gov/xplor-nih/).
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