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Abstract. The solar wind interacting with a magnetized obstacle is modeled with

the Vlasov equation. The domain considered is a disk in the plane. Inflowing boundary

conditions are given for the particle density. A magnetic field is prescribed, and the

electric field is computed self consistently with potential zero on the boundary. Taking

the boundary condition for the particle density to be sufficiently small, it is shown that

there is a natural smooth steady solution. The speed of the inflowing plasma and the

magnetic field are not size restricted.

1. Introduction. Let R > 0, D =
{
x ∈ R

2 : |x|<R
}
, and ∂D =

{
x ∈ R

2 : |x|=R
}
.

Consider the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v · ∇xf + (E1 + v2B) ∂v1f + (E2 − v1B) ∂v2f = 0 on D × R
2

f given if x ∈ ∂D and x · v < 0

ρ =

∫
fdv

ΔU = −4πρ in D

U = 0 on ∂D

E = −∇U

(1.1)

where B is a given function of x. Realistic modeling would require including an additional

species of particles (with opposite charge), but this does not affect the methods used here,

so it is omitted. It will be assumed that B has support contained in D. The boundary

condition that U = 0 on ∂D says physically that the boundary is a perfect conductor.
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This is spurious, but in order to work on a bounded domain, some boundary condition

must be given. This one gives a physically meaningful problem.

Let

S+ =
{
(x, v) ∈ ∂D × R

2 : x · v > 0
}
,

S− =
{
(x, v) ∈ ∂D × R

2 : x · v < 0
}

and

S0 =
{
(x, v) ∈ ∂D × R

2 : x · v = 0
}
.

Theorem 1.1. Let B ∈ C1(R2) and assume there is C1 ∈ (0, R) such that

B(x) �= 0 ⇒ |x| < C1. (1.2)

Let F : S− ∪ S0 → [0,∞) be C1 and assume there are C2, C3 ∈ (0,∞) such that

F (x, v) �= 0 ⇒ C2 > |v| > C3 and v · (−x)

R
> C3. (1.3)

We also assume (1.5), which is stated below. Then there exists C > 0 such that for every

ε ∈ (0, C) there exists f ∈ C1(D × R
2) and U ∈ C2(D) that satisfy (1.1) where the

boundary condition for f is

f = εF on S−. (1.4)

Comments

1. In general, we do not expect uniqueness for the above problem. If there are

characteristics which never intersect the boundary, then the value of f on these

is not determined by (1.4); hence we expect uniqueness to fail. For the solution

constructed in Theorem 1.1, f is zero along any characteristic that never inter-

sects the boundary. Thus, all charge comes from upstream by way of condition

(1.4).

2. Restricting ε limits the amount of charge the plasma carries. In the limit as

ε → 0+, E → 0 and the motion of the particles is determined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dX

ds
= V

dV

ds
= (V2B(X),−V1B(X)).

Condition (1.5) requires that when ε = 0 the particles exit the domain within a

bounded time.

3. B and the v support of F are not size restricted. Thus, the inflowing plasma

may move rapidly and encounter a large magnetic obstacle and hence change

direction rapidly. Study of this problem was motivated by interest in the bow

shock formed when the solar wind encounters the earth’s magnetic field (see [14]

for example).
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PLANAR VLASOV-POISSON SYSTEM WITH A MAGNETIC OBSTACLE 755

4. The well-known theorems that ensure the existence of smooth solutions ([8], [9])

apply to the time dependent problem. The bounds they obtain increase without

bound as t increases and hence cannot be used for the time independent case.

Many papers on the steady problem (e.g. [1], [4]) concern solutions of the form

f(x, v) = G

(
1

2
|v|2 + U(x)

)
.

However, this would require

f(x, v) = G

(
1

2
|v|2

)
on ∂D × R

2,

which conflicts with (1.4).

For excellent surveys of the mathematics of Vlasov equations see [3] and [10]. In the

landmark papers [9] and [8] it is shown that solutions of the Poisson-Vlasov system in

three space dimensions which start smooth remain smooth for all time. We mention

[11], [12], [13] as other attempts to model a steady solar wind. Other papers that con-

sider boundary value problems for the Vlasov equation are [5], [6], [7]. In particular,

it was pointed out in [6] that regularity can be lost near characteristics that intersect

the boundary in a tangential manner. Much effort is made in this work to ensure the

solution is zero in a neighborhood of any such tangential characteristic. One factor in

this is assumption (1.3). Another is the restriction of ε which in turn restricts the size

of E. Note, also, that B = 0 near ∂D by (1.2).

The letter C will denote a generic positive constant which changes from line to line

and may depend on B,F,R but not on ε or n. When a specific constant is chosen it will

be given a subscript. For example, C1, C2, C3 introduced in Theorem 1.1 will have the

same values throughout the paper. The norm

‖E‖∞ = sup {|E(x)| : x ∈ D}

will be used. Also D = D ∪ (∂D) and

(v1, v2) ∧B = (v2B, −v1B).

Consider the case ε = 0 first. For (x, v) ∈ R
2 × R

2 define (X0(s, x, v), V 0(s, x, v)) by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dX0

ds
= V 0 X0(0, x, v) = x

dV 0

ds
= V 0 ∧B(X0) V 0(0, x, v) = v.

For (x, v) ∈ S− define

ω0(x, v) = sup {t > 0 : X(s, x, v) ∈ D ∀s ∈ (0, t)}

and assume there exists T 0 > 0 such that

ω0(x, v) ≤ T 0 (1.5)

for all (x, v) ∈ S− with F (x, v) �= 0.
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Lemma 1.1. There exists C4 > 0 such that X0(ω0(x, v), x, v) ∈ ∂D and

V 0(ω0(x, v), x, v) · n ≥ C4, (1.6)

where n = R−1X0(ω0(x, v), x, v), for all (x, v) ∈ S− with F (x, v) �= 0.

Proof. For brevity we drop the dependence on (x, v). It follows by a standard con-

tinuity argument (and since ω0 is finite) that X0(ω0) ∈ ∂D. Note, also, that for all

s ∈ (0, ω0),

|V 0(s)| = |v|.
Consider the case that B(X0(s)) �= 0 for some s ∈ (0, ω0). Define

t1 = sup
{
t ∈ (s, ω0) : |X0| ≤ C1 on (s, t)

}
.

Then |X0| > C1 on (t1, ω
0) so B(X0) = 0 and V 0 is constant on [t1, ω

0]. Using some

geometry it follows that

sin θ ≤ C1/R

where θ is the angle between V (ω0) and n. Hence

V 0(τ0) · n = |v| cos θ ≥ C3 cos

(
sin−1

(
C1

R

))
= C.

Now consider the case that B(X0(s)) = 0 for all s ∈ (0, ω0). Then V 0(s) = v for all

s ∈ [0, ω0] and

V 0(τ0) · n = v ·
(
−x

R

)
> C3,

completing the proof. �

2. The linear Vlasov equation. In this section, we consider E ∈ C1(D) given. A

solution of the linear Vlasov equation will be defined that satisfies

f = εF on S− ∪ S0.

The goal of this section is to show that there is a constant C > 0 such that for ‖E‖∞ < C

we have f ∈ C1(D × R
2) and

‖f‖∞ + ‖∇f‖∞ ≤ Cε.

Consider (x, v) ∈ (D × R
2) ∪ S− ∪ S+. Define (X(s, x, v), V (s, x, v)) by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dX

ds
= V X(0, x, v) = x

dV

ds
= E(X) + V ∧B(X) V (0, x, v) = v.

(2.1)

Next we define f . On S− ∪ S0 define

f = εF. (2.2)

Consider (x, v) ∈ (D × R
2) ∪ S+. Define

α(x, v) = inf {t < 0 : X(s, x, v) ∈ D ∀s ∈ (t, 0)} (2.3)

and then

f(x, v) = εF (X(α(x, v), x, v), V (α(x, v), x, v)) (2.4)
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PLANAR VLASOV-POISSON SYSTEM WITH A MAGNETIC OBSTACLE 757

if α(x, v) is finite and

f(x, v) = 0 (2.5)

otherwise.

When f(x, v) �= 0 we may bound α(x, v) by using T 0:

Lemma 2.1. There exists C5 > 0 such that for ‖E‖∞ < C5 the following holds: Consider

(x, v) ∈ S− with F (x, v) �= 0 and define

ω(x, v) = sup {t > 0 : X(s, x, v) ∈ D ∀s ∈ (0, t)} .
Then

ω(x, v) ≤ 2T 0

and

V (ω(x, v), x, v) · n ≥ 1

2
C4

where

n = R−1X(ω(x, v), x, v).

Proof. Dropping the dependence on (x, v) we have∣∣∣∣dVds − dV 0

ds

∣∣∣∣ = ∣∣E(X) + V ∧B(X)− V 0 ∧B(X0)
∣∣

≤ ‖E‖∞ + |V − V 0||B(X)|+ |V 0| |B(X)−B(X0)|

≤ ‖E‖∞ + C(|X −X0|+ |V − V 0|).
Hence, for s ∈ (0,min(ω, 2T 0)) we have

|X(s)−X0(s)|+ |V (s)− V 0(s)| ≤ 2T 0‖E‖∞ + C

∫ s

0

(|X −X0|+ |V − V 0|)du,

and Gronwall’s inequality yields

|X(s)−X0(s)|+ |V (s)− V 0(s)| ≤ 2T‖E‖∞eCs

≤ 2T 0‖E‖∞eC2T 0

= C‖E‖∞.

(2.6)

Now we sketch the rest of the proof. Let

E0 = V 0 · (|X0|−1X0) and E = V · (|X|−1X).

For illustration consider the case when ω < ω0 (and hence ω < T 0). Since we may

restrict ‖E‖∞, (2.6) allows us to restrict |X(ω)−X0(ω)|+ |V (ω)− V 0(ω)|, and hence

R− |X0(ω)| = |X(ω)| − |X0(ω)|
may be made as small as desired. As in the proof of Lemma 1.1 we may obtain

E0 ≥ C

on [ω, ω0]. It follows that ω − ω0 may be made arbitrarily small and that

E(ω) ≥ E0(ω0)− |E0(ω)− E0(ω0)| − |E0(ω)− E(ω)| ≥ C.

The case when ω ≥ ω0 may be handled similarly, so the proof is complete. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



758 JACK SCHAEFFER

Comment

It follows from Lemma 2.1 that if (x, v) ∈ (D × R
2) ∪ S+ and f(x, v) �= 0, then

α(x, v) ≥ −2T 0.

Lemma 2.2. There is C6 ∈ (0, C5] such that if ‖E‖∞ < C6, then f ∈ C1(D × R
2).

Proof. We’ll take

‖E‖∞ < C6 = min

(
C5,

1

4
C3(2T0)

−1,

(
1

4
C3

)2

R−1

)
.

Consider (x, v) ∈ (D × R
2) ∪ S+. If f(x, v) �= 0, then α(x, v) ≥ −2T 0 so

|V (α(x, v), x, v)− v| ≤ ‖E‖∞|α| < 1

4
C3.

But

f(x, v) = εF (X(α(x, v), x, v), V (α(x, v), x, v)) �= 0,

so

|V (α(x, v), x, v)| ≥ C3

and

|v| > 3

4
C3.

So

|v| ≤ 3

4
C3 ⇒ f(x, v) = 0. (2.7)

Suppose α(x, v) ≥ −2T 0 and

X(α(x, v), x, v) · V (α(x, v), x, v) = 0.

We claim that there is a neighborhood of (x, v) on which

f(y, w) = 0. (2.8)

To show this, note that (writing X(α) = X(α(x, v), x, v), etc.) |X(α)|2 = R2,

d

ds
|X(s)|2

∣∣∣∣
s=α

= 0,

and |X(s)|2 ≤ R2 for all s ∈ [α, 0], so

0 ≥ d2

ds2
|X(s)|2

∣∣∣∣
s=α

= 2|V (α)|2 + 2X(α) · E(X(α))

≥ 2(|V (α)|2 −R‖E‖∞)

and

|V (α)| ≤
√
R‖E‖∞ ≤ 1

4
C3.

Hence

|v| ≤ |V (α)|+ ‖E‖∞|α| ≤ 1

4
C3 + ‖E‖∞2T 0 <

1

2
C3.

Now (2.8) follows from (2.7).
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PLANAR VLASOV-POISSON SYSTEM WITH A MAGNETIC OBSTACLE 759

Suppose α(x, v) ∈ [−∞,−2T 0). Then there is a neighborhood of (x, v) on which

α(y, w) ∈ [−∞,−2T 0) and hence

f(y, w) = 0. (2.9)

Suppose α(x, v) ≥ −2T 0 and

X(α(x, v), x, v) · V (α(x, v), x, v) �= 0.

Then there is a neighborhood of (x, v) on which

α(y, w) ≥ −3T 0 (2.10)

and

f(y, w) = εF (X(α(y, w), y, w), V (α(y, w), y, w)). (2.11)

On this neighborhood f is the composition of C1 functions.

Finally, for (x, v) ∈ S0,

f(y, w) = 0

on a neighborhood of (x, v), and if (x, v) ∈ S− there is a neighborhood of (x, v) on which

f is the composition of C1 functions. Thus the proof is complete. �

Lemma 2.3. There exists C7 > 0 such that if ‖E‖∞ < C6 we have

f(x, v) �= 0 ⇒ |v| ≤ C7

and

∫
f(x, v)dv ≤ C7ε. (2.12)

Proof. Assume f(x, v) �= 0. If (x, v) ∈ S− ∪ S0, then f(x, v) = εF (x, v) so |v| ≤ C2.

Suppose (x, v) ∈ (D × R
2) ∪ S+. By (2.7) |V (s)| �= 0 for all s ∈ [α, 0], so

|v| = |V (α)|+
∫ 0

α

V (s)

|V (s)| · E(X(s))ds

≤ C2 + |α|‖E‖∞ ≤ C2 + 2T 0C6.

Also, (2.12) follows since ‖f‖∞ = ‖εF‖∞, completing the proof. �

Lemma 2.4. There exists C8 > 0 such that

‖∇f‖∞ ≤ C8e
C8‖∇E‖∞ε

if ‖E‖∞ < C6.

Proof. Let (x, v) ∈ S−. Then f(X(s), V (s)) = εF (x, v), and since f is C1 it follows

that

v · ∇xf + (E + v ∧B) · ∇vf = 0.
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By using a regularization argument it follows that

∂xi
f(X(s), V (s)) = ε∂xi

F (x, v)

−
∫ s

0

(∂xi
E(X) + V ∧ ∂xi

B(X)) · ∇vf(X,V )du

for i = 1, 2,

∂v1f(X(s), V (s)) = ε∂v1F (x, v)

−
∫ s

0

(∂x1
f(X,V )−B(X)∂v2f(X,V ))du

and
∂v2f(X(s), V (s)) = ε∂v2F (x, v)

−
∫ s

0

(∂x2
f(X,V ) +B(X)∂v1f(X,V ))du.

Hence

|∇xf(X(s), V (s))| ≤ ‖∇xF‖∞ε

+(
√
2‖E‖∞ + C7‖∇B‖∞)

∫ s

0

|∇vf(X,V )|du

and
|∇vf(X(s), V (s))| ≤ ‖∇vF‖∞ε

+

∫ s

0

(|∇xf(X,V )|+ ‖B‖∞|∇vf(X,V )|)du.

Hence

|∇f(X(s), V (s))| ≤ Cε+ C(1 + ‖∇E‖∞)

∫ s

0

|∇f(X,V )|du,

and by Gronwall’s inequality

|∇f(X(s), V (s))| ≤ CεeC(1+‖∇E‖∞)s

≤ CεeC(1+‖∇E‖∞)2T 0

= CeC‖∇E‖∞ε.

The lemma now follows. �
Next define

ρ =

∫
f dv,

∼
U by ⎧⎪⎨

⎪⎩
Δ

∼
U = −4πρ on D

∼
U = 0 on ∂D,

and
∼
E = −∇

∼
U.
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Lemma 2.5. There exist C9 > 1 such that

‖
∼
E‖∞ ≤ C9‖ρ‖∞

and

‖∇
∼
E‖∞ ≤ C9(1 + ‖ρ‖∞) ln(C9(1 + ‖ρ‖∞ + ‖∇ρ‖∞)).

The proof is deferred to the appendix.

3. Iteration. Define f0 = 0, ρ0 = 0, and E0 = 0. For En ∈ C1(D) known with

‖En‖∞ < C6, define fn+1, ρn+1, and En+1 as follows. Let E = En. Then take f, ρ,

and
∼
E as in the previous section. Now define fn+1 = f, ρn+1 = ρ, and En+1 =

∼
E. By

Lemmas 2.5 and 2.3

‖En+1‖∞ ≤ C9‖ρn+1‖∞
and

‖ρn+1‖∞ ≤ C7ε.

We require

ε <
C6

C9C7

so that

‖En+1‖∞ < C6.

By induction it follows that fn, ρn, and En are defined and satisfy

‖En‖∞ < C6

and

‖ρn‖∞ ≤ C7ε < C6/C9 (3.1)

for all n. Also

‖En‖∞ < C9C7ε (3.2)

for all n.

Lemma 3.1. There exist C10 > 0 and C11 > 0 such that if ε < C10, then

‖∇En‖∞ < C11

for all n.

Proof. By Lemmas 2.5, 2.3, 2.4 and by (3.1) we have

‖∇En+1‖∞ ≤ C9(1 + ‖ρn+1‖∞) ln(C9(1 + ‖ρn+1‖∞ + ‖∇ρn+1‖∞))

≤ (C9 + C6) ln(C9 + C6 + C9‖∇ρn+1‖∞)

≤ (C9 + C6) ln(C9 + C6 + C9πC
2
7C8e

C8‖∇En‖∞ε).

So there is C12 > 0 such that

‖∇En+1‖ ≤ C12 ln(C12(1 + eC12‖∇En‖∞ε)).
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Take
C11 = C12 ln(2C12),

C10 = min(C6C
−1
7 C−1

9 , e−C12C11),

and

ε < C10.

If ‖∇En‖∞ < C11, then

‖∇En+1‖∞ ≤ C12 ln(C12(1 + eC12C11ε))

< C12 ln(C12(1 + 1)) = C11.

The lemma now follows by induction. �
Before addressing the convergence of this iteration, a preliminary lemma is needed.

Lemma 3.2. Assume E ∈ C1(D) and ‖E‖∞ < C6. For any δ > 0 there is r ∈ [C1, R)

such that if |x| ∈ [r, R) and

v · (−x)

|x| ≥ δ,

then

α(x, v) ≥ −R− |x|
1
2δ

(3.3)

and

V (s, x, v) · (−X(s, x, v))

|X(s, x, v)| ≥ 1

2
δ (3.4)

for all s ∈ [α(x, v), 0].

Proof. Let αδ = max

(
α,

−δ

2C6

)
. For s ∈ [αδ, 0],

V (s) · (−X(s))

|X(s)| = v · (−x)

|x|

+

∫ 0

s

(
E(X) · X

|X| +
|X|2|V |2 − (X · V )2

|X|3

)
du

≥ δ −
∫ 0

s

C6 du = δ + C6 s ≥
1

2
δ

(3.5)

and

|X(s)| = |x|+
∫ 0

s

V · (−X)

|X| du ≥ |x| − 1

2
δs. (3.6)

Take

r = max

(
C1, R− δ2

8C6

)
.

If α ≤ −δ

2C6
, then αδ =

−δ

2C6
and

R ≥ |X(αδ)| ≥ |x| − 1

2
δαδ ≥ r +

δ2

4C6
≥ R+

δ2

8C6
,
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a contradiction. Hence α >
−δ

2C6
, and (3.4) follows from (3.5). Also by (3.6) we have

R = |X(α)| ≥ |x| − 1

2
δα,

and (3.3) follows, completing the proof. �
Define (Xn+1(s, x, v), Vn+1(s, x, v)) by⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dXn+1

ds
= Vn+1 Xn+1(0, x, v) = x

dVn+1

ds
= En(Xn+1) + Vn+1 ∧B(Xn+1) Vn+1(0, x, v) = v

and

αn(x, v) = inf {t < 0 : X(s, x, v) ∈ D ∀s ∈ (t, 0)} ,
as in (2.1) and (2.3).

Now consider (x, v) ∈ (D×R
2)∪ S+ with either fn(x, v) �= 0 or fn+1(x, v) �= 0. We’ll

consider the case fn(x, v) �= 0; the other case may be handled similarly. Then

αn(x, v) ≥ −2T 0,

|Vn| ≤ C7,

and

Vn · (−Xn)

|Xn|

∣∣∣∣
(αn(x,v),x,v)

≥ C3. (3.7)

For s ∈ [max(αn, αn+1), 0] let

dn(s, x, v) = dn(s) = |Xn+1(s)−Xn(s)|+ |Vn+1(s)− Vn(s)|.

Then

dn(s) =

∣∣∣∣
∫ 0

s

(Vn+1 − Vn) du

∣∣∣∣
+

∣∣∣∣
∫ 0

s

(En(Xn+1) + Vn+1 ∧B(Xn+1)− En−1(Xn)− Vn ∧B(Xn))du

∣∣∣∣
≤

∫ 0

s

(dn + ‖∇En‖∞dn + ‖En − En−1‖∞ + ‖B‖∞dn + |Vn| ‖∇B‖∞dn)du

≤
∫ 0

s

(Cdn + ‖En − En−1‖∞)du.

Since

s ≥ max(αn, αn+1) ≥ αn ≥ −2T 0

we have

dn(s) ≤ 2T 0‖En − En−1‖∞ + C

∫ 0

s

dndu,
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and Gronwall’s inequality yields

dn(s) ≤ 2T 0‖En − En−1‖∞eC|s|

≤ 2T 0‖En − En−1‖∞eC2T 0

= C13‖En − En−1‖∞.

(3.8)

By (3.2) we have

dn(s) < C132C9C7ε. (3.9)

We further restrict ε so that

C132C9C7ε <
1

2
C3. (3.10)

Now we choose r by using Lemma 3.2 with δ =
1

2
C3. Further restrict ε again so that

C132C9C7ε < R− r. (3.11)

Define

Dn(x, v) = Dn = sup {dn(s) : s ∈ [max(αn, αn+1), 0]}
and claim (with an additional restriction on ε) that

|αn+1 − αn| ≤ 4C−1
3 Dn (3.12)

and there is C14 > 0 such that

|fn+1(x, v)− fn(x, v)| ≤ C14εDn. (3.13)

To establish (3.12) consider the case that αn+1 ≤ αn first. By (3.9) and (3.11) we

have

|Xn+1(αn)| ≥ |Xn(αn)| −Dn = R −Dn

≥ R− (R− r) = r.

Also, by (3.9) ∣∣∣∣Vn+1 ·
Xn+1

|Xn+1|
− Vn · Xn

|Xn|

∣∣∣∣
∣∣∣∣
αn

≤ |Vn+1 − Vn|+ |Vn|
|(Xn+1 −Xn)|Xn|+Xn(|Xn| − |Xn+1|)|

|Xn+1||Xn|

≤ Dn +
C7

C1
2Dn <

(
1 +

2C7

C1

)
C132C9C7ε.

We restrict ε so that (
1 +

2C7

C1

)
C132C9C7ε <

1

2
C3.

Now using (3.7) we have

Vn+1 ·
(−Xn+1)

|Xn+1|

∣∣∣∣
αn

≥ Vn · (−Xn)

|Xn|

∣∣∣∣
αn

− 1

2
C3 ≥ 1

2
C3.
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Now by Lemma 3.2 we have

αn+1 ≥ αn − R − |Xn+1(αn)|
1
2δ

= αn − |Xn(αn)| − |Xn+1(αn)|
1
4C3

≥ αn − 4Dn

C3
,

and (3.12) follows when αn+1 ≤ αn.

To establish (3.13) note first that by (3.9) we have

Dn ≤ C,

so (3.12) implies

αn+1 ≥ αn − 4C−1
3 Dn ≥ −2T 0 − 4C−1

3 C = −C,

so for all s ∈ [αn+1, 0],

|Vn+1(s)| ≤ |v|+ ‖E‖∞|s| ≤ C7 + C6C = C.

Hence,

|fn+1(x, v)− fn(x, v)|

= ε|F (Xn+1(αn+1), Vn+1(αn+1))− F (Xn(αn), Vn(αn))|

≤ ε‖∇F‖∞(|Xn+1(αn+1)−Xn(αn)|+ |Vn+1(αn+1)− Vn(αn)|)

≤ Cε

(
sup

[αn+1,0]

|Vn+1||αn+1 − αn|+ |Xn+1(αn)−Xn(αn)|

+C6|αn+1 − αn|+ |Vn+1(αn)− Vn(αn)|
)

≤ Cε(|αn+1 − αn|+Dn) ≤ CεDn,

which is (3.13).

Establishing (3.12) and (3.13) in the case that αn+1 > αn is highly similar and is

omitted. Also, (3.12) and (3.13) may be shown to hold in the case that fn+1(x, v) �= 0

with minor changes to the above estimates.

Combining (3.8) and (3.13) yields

|fn+1(x, v)− fn(x, v)| ≤ Cε‖En − En−1‖∞ (3.14)

if fn+1(x, v) �= 0 or fn(x, v) �= 0. But if fn+1(x, v) = fn(x, v) = 0, (3.14) still holds, so

‖fn+1 − fn‖∞ ≤ Cε‖En − En−1‖∞.

But by Lemmas 2.3 and 2.5 we have

‖En − En−1‖∞ ≤ C9‖ρn − ρn−1‖∞

≤ C9πC
2
7‖fn − fn−1‖∞
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so

‖fn+1 − fn‖∞ ≤ C15ε‖fn − fn−1‖∞.

Requiring ε < C−1
15 implies that fn converges uniformly onD to some continuous function

f . Let

ρ =

∫
f dv,

⎧⎨
⎩

ΔU = −4πρ

U |∂D = 0,

E = −∇U.

Then ρn → ρ and En → E uniformly. By (3.8) and (3.12) it also follows that αn converges

uniformly; call the limit α. From (3.8) it follows that Dn → 0 uniformly, and hence Xn

and Vn converge uniformly on
{
(s, x, v) : (x, v) ∈ (D × R

2) ∪ S+ and s ∈ (α(x, v), 0]
}
,

say to X and V . Furthermore,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X(s, x, v) = x+

∫ s

0

V (u, x, v)du

V (s, x, v) = v +

∫ s

0

(E(X) + V ∧B(X))du.

(3.15)

By Lemmas 3.1 and 2.4 we have

‖∇fn‖∞ ≤ C8e
C8‖∇En‖∞ε ≤ C8e

C8C11ε ≤ C,

so
|f(x, v)− f(y, w)| ≤ |f(x, v)− fn(x, v)|

+|fn(x, v)− fn(y, w)|+ |fn(y, w)− f(y, w)|

≤ 2‖fn − f‖∞ + C|(x, v)− (y, w)|
for all n. Hence

|f(x, v)− f(y, w)| ≤ C|(x, v)− (y, w)|.
Also, ρ is Lipschitz continuous, and it follows from Theorem 4.13 of [2] that E is C1.

Now by (3.15) it follows that X and V are C1. Then it further follows that α and hence

f(x, v) = εF (X(α(x, v), x, v), V (α(x, v), x, v)) (3.16)

are C1. Finally, that f satisfies the Vlasov equation follows from (3.16), and the proof

of Theorem 1.1 is complete.

Appendix.

Proof of Lemma 2.5. For x ∈ D and ε ≥ 0 let

P ε(x) =

∫
D

ρ(y)Gε(x− y)dy

where

Gε(z) = ln(
√
ε2 + |z|2).
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Let δ ∈ (0, R] and

Bδ =
{
y ∈ R

2 : |x− y| < δ
}
.

Also let e(1) = (1, 0) and e(2) = (0, 1). Then for ε > 0,

∂xkx�
P ε(x) =

∫
D

ρ(y)∂xkx�
Gε(x− y)dy

=

∫
D\Bδ

ρ(y)∂xkx�
Gε(x− y)dy

−
∫
D∩Bδ

ρ(y)∇y · (∂x�
Gε(x− y)e(k))dy

=

∫
D\Bδ

ρ(y)∂xkx�
Gε(x− y)dy

+

∫
D∩Bδ

∇ρ(y) · e(k)∂x�
Gε(x− y)dy

−
∫
(∂Bδ)∩D

ρ(y)∂x�
Gε(x− y)e(k) · ndSy

−
∫
(∂D)∩Bδ

ρ(y)∂x�
Gε(x− y)e(k) · ndSy

= I + II + III + IV.

Note that

|∂xk
Gε(z)| ≤ 1√

ε2 + |z|2

and

|∂xkx�
Gε(z)| ≤ 3

ε2 + |z|2 ,
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so

|I| ≤ ‖ρ‖∞
∫
D\Bδ

3

ε2 + |x− y|2 dy

≤ 3‖ρ‖∞
∫ 2R

δ

2πrdr

r2
= 6π‖ρ‖∞ ln

(
2R

δ

)
,

|II| ≤ ‖∇ρ‖∞
∫
D∩Bδ

dy√
ε2 + |x− y|2

≤ ‖∇ρ‖∞
∫ δ

0

2πrdr

r
= 2π‖∇ρ‖∞δ,

|III| ≤ ‖ρ‖∞
∫
(∂Bδ)∩D

1√
ε2 + |x− y|2

dSy

≤ ‖ρ‖∞
∫ 2π

0

δdθ√
ε2 + δ2

≤ 2π‖ρ‖∞.

To estimate IV consider x �= 0 and let

n0 =
x

|x| = (cos θ0, sin θ0).

Write

IV =

∫
(∂D)∩Bδ

(
(ρ(x)− ρ(y))e(k) · n− ρ(x)e(k) · (n− n0)

−ρ(x)e(k) · n0

)
∂x�

Gε(x− y)dSy = IV1 + IV2 + IV3.

Then

|IV1| ≤ ‖∇ρ‖∞
∫
(∂D)∩Bδ

|x− y| dSy√
ε2 + |x− y|2

≤ C‖∇ρ‖∞δ.

For IV2 note that

|x− y|2 = |x|2 + R2 − 2x · y = |x|2 +R2 − 2|x|Rn0 · n

= |x|2 + R2 − |x|R(2− |n− n0|2)

= (R− |x|)2 + |x|R|n− n0|2,

so for |x| ≤ 1

2
R,

|x− y|2 ≥ (R− 1

2
R)2 =

1

4
R2 ≥ 1

16
R2|n− n0|2

and for |x| ≥ 1

2
R,

|x− y|2 ≥
(
1

2
R

)
R|n− n0|2.
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Hence

|IV2| ≤ ‖ρ‖∞
∫
(∂D)∩Bδ

|n− n0|√
ε2 + |x− y|2

dSy

≤ ‖ρ‖∞
∫
∂D

|n− n0|
1
4R|n− n0|

dSy = 8π‖ρ‖∞.

For |IV3| note that

IV3 = −ρ(x)e(k) · n0

(∫
(∂D)∩Bδ

x− y

ε2 + |x− y|2 dSy

)
�

.

It suffices to bound this integral when x = (|x|, 0), in which case

∫
(∂D)∩Bδ

x− y

ε2 + |x− y|2 dSy = (I, 0)

where

I =

∫
(∂D)∩Bδ

|x| − y1
ε2 + |x− y|2 dSy.

For |x| ≤ 1

2
R,

||x| − y1|
ε2 + |x− y|2 ≤

1
2R+R

( 12R)2
=

6

R

so

|I| ≤
∫
∂D

6

R
dSy = 12π.

Consider |x| ≥ 1

2
R. Writing y = R(cos θ, sin θ) with |θ| ≤ π we have

∣∣∣∣ |x| − y1
ε2 + |x− y|2

∣∣∣∣ =

∣∣∣∣ |x| −R cos θ

ε2 + |x|2 +R2 − 2|x|R cos θ

∣∣∣∣
=

1

2|x|

∣∣∣∣1− ε2 +R2 − |x|2
ε2 + (R− |x|)2 + 2|x|R(1− cos θ)

∣∣∣∣
≤ 1

2( 12R)

(
1 +

ε2 +R2 − |x|2
ε2 + (R− |x|)2 + 2( 12R)RCθ2

)
,
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and hence for ε ≤ 2R,

|I| ≤
∫ π

−π

R−1

(
1 +

ε2 +R2 − |x|2
ε2 + (R− |x|)2 + CR2θ2

)
Rdθ

≤ 2π +

∫ ∞

−∞

ε2 +R2 − |x|2
ε2 + (R− |x|)2 + CR2θ2

dθ

= 2π + (ε2 +R2 − |x|2) π√
CR2

√
ε2 + (R− |x|)2

= 2π + C
ε2 +R2 − |x|2√
ε2 + (R− |x|)2

≤ 2π + C
ε2 + 2R(R − |x|)
1√
2
(ε+R − |x|)

= 2π +
√
2 C

2Rε+ 2R(R− |x|)
ε+R − |x| = C.

Hence

|IV3| ≤ C‖ρ‖∞
and

|IV | ≤ C‖ρ‖∞ + C‖∇ρ‖∞δ (A.1)

for x �= 0. By continuity (A.1) holds for x = 0 also.

Collecting terms we have

|∂xkx�
P ε(x)| ≤ C

(
‖ρ‖∞ ln

(
2R

δ

)
+ ‖∇ρ‖∞δ

)
for all δ ∈ (0, R]. If ‖ρ‖∞ < ‖∇ρ‖∞R take

δ = ‖ρ‖∞/‖∇ρ‖∞,

which yields

|∂xkx�
P ε(x)| ≤ C‖ρ‖∞

(
1 + ln

(
2R‖∇ρ‖∞

‖ρ‖∞

))
.

If ‖ρ‖∞ ≥ ‖∇ρ‖∞R take δ = R, which yields

|∂xkx�
P ε(x)| ≤ C‖ρ‖∞ + CR‖∇ρ‖∞ ≤ C‖ρ‖∞.

In both cases it follows that

|∂xkx�
P ε(x)| ≤ C(1 + ‖ρ‖∞)(1 + ln(1 + ‖∇ρ‖∞)). (A.2)

Note also that

|∂xk
P ε(x)| = |

∫
D

ρ(y)∂xk
Gε(x− y)dy|

≤ ‖ρ‖∞
∫
D

dy√
ε2 + |x− y|2

≤ ‖ρ‖∞
∫ 2R

0

2πrdr

r

≤ 4πR‖ρ‖∞.

(A.3)

Letting ε → 0 shows that (A.2) and (A.3) hold for ε = 0 also.
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Next let

H(x) =

∫
D

ρ(y) ln

(
|y|
R

∣∣∣∣x− R2y

|y|2

∣∣∣∣
)
dy

for x ∈ D. Then ⎧⎨
⎩

Δ(P 0 −H) = 2πρ in D

P 0 −H = 0 on ∂D.

Letting z = R2y/|y|2 we have y = R2z/|z|2 and

dy = R4|z|−4dz,

so

H(x) =

∫
|z|>R

ρ

(
R2z

|z|2

)
ln

(
R

|z| |x− z|
)
R4|z|−4dz.

Let

σ(z) = R4|z|−4ρ

(
R2z

|z|2

)
and

CH =

∫
|z|>R

σ(z) ln

(
R

|z|

)
dz;

then

H(x) = CH +

∫
|z|>R

σ(z) ln(|x− z|)dz.

Note that

‖σ‖∞ ≤ ‖ρ‖∞
and

|∂zkσ(z)| ≤ R4(4|z|−5‖ρ‖∞ + 6R2|z|−6‖∇ρ‖∞)

≤ 4R−1‖ρ‖∞ + 6‖∇ρ‖∞.

Proceeding as for P 0 yields

|∂xkx�
H(x)| ≤ C(1 + ‖σ‖∞)(1 + ln(1 + ‖∇σ‖∞))

≤ C(1 + ‖ρ‖∞)(1 + ln(1 + C‖ρ‖∞ + C‖∇ρ‖∞))

and

|∂xk
H(x)| ≤ C‖ρ‖∞.

Hence

|∂xkx�
(P 0 −H)(x)| ≤ C(1 + ‖ρ‖∞)(1 + ln(1 + C‖ρ‖∞ + C‖∇ρ‖∞)) (A.4)

and

|∂xk
(P 0 −H)(x)| ≤ C‖ρ‖∞ (A.5)

for x ∈ D. By Theorem 6.14 of [2], P 0 − H ∈ C2(D), so (A.4) and (A.5) hold on D.

Lemma 2.5 now follows. �
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