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1 Introduction

Over the last �fteen years, say, the interest in nonlinear time series models has been steadily

increasing. In applications to economic time series, models which allow for state-dependent

or regime-switching behaviour have been most popular. This paper provides a survey of

recent developments related to one of these regime-switching models, that is, the smooth

transition model, where we mainly consider variants of the smooth transition autoregressive

[STAR] time series model. The discussion is aimed towards practitioners and, therefore,

is organized around the empirical modelling cycle for STAR models devised by Ter�asvirta

(1994). The cycle allows modelling time series with STAR models in an organized fashion.

It consists of speci�cation, estimation and evaluation stages and, thus, is similar to the

modelling cycle for linear models of Box and Jenkins (1970).

Previous reviews of the smooth transition model include Granger and Ter�asvirta (1993),

Ter�asvirta (1998) and Potter (1999). Compared with these surveys, we put more emphasis

on aspects such as model evaluation by means of out-of-sample forecasting and impulse

response analysis, and the in
uence of possible outliers on the analysis of smooth transition

type nonlinearity. We also discuss recently introduced extensions of the basic smooth

transition model.

The plan of this paper is as follows. In Section 2, representation of the smooth transi-

tion model and interpretation of the model parameters are discussed. Three extensions of

the basic model, involving multiple regimes, time-varying smooth transition nonlinearity

and smooth transition models for vector time series, are discussed in Section 3. Hypothesis

testing in the STAR framework is reviewed in Section 4. This concerns both testing linear-

ity against smooth transition nonlinearity and misspeci�cation testing in smooth transition

models. The empirical modelling cycle for smooth transition models is outlined in Section

5. The modelling cycle consists of speci�cation, estimation and evaluation stages, which

are discussed in more detail in turn. Section 5.1 deals with speci�cation. Estimation of

the model parameters is the subject of Section 5.2. Evaluation of estimated smooth tran-

sition models by means of diagnostic tests, local spectra and impulse response analysis

is addressed in Sections 5.3. Out-of-sample forecasting with smooth transition models is

discussed in Section 6. In Section 7, we analyze a monthly US unemployment rate series

to illustrate the various elements of the modelling cycle. Finally, Section 8 concludes.
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2 Representation of the basic STAR model

The smooth transition autoregressive [STAR] model for a univariate time series yt, which

is observed at t = 1� p; 1� (p� 1); : : : ;�1; 0; 1; : : : ; T � 1; T , is given by

yt = (�1;0 + �1;1yt�1 + � � � + �1;pyt�p) (1�G(st; 
; c))

+ (�2;0 + �2;1yt�1 + � � �+ �2;pyt�p)G(st; 
; c) + "t; t = 1; : : : ; T; (1)

or

yt = �
0
1xt(1�G(st; 
; c)) + �

0
2xtG(st; 
; c) + "t; (2)

where xt = (1; ~x0t)
0 with ~xt = (yt�1; : : : ; yt�p)

0 and �i = (�i;0; �i;1; : : : ; �i;p)
0, i = 1; 2.

It is straightforward to extend the model to allow for exogenous variables z1t; : : : ; zkt as

additional regressors. The resultant smooth transition regression [STR] model is discussed

at length in Ter�asvirta (1998). The "t's are assumed to be a martingale di�erence sequence

with respect to the history of the time series up to time t� 1, which is denoted as 
t�1 =

fyt�1; yt�2; : : : ; y1�(p�1); y1�pg, that is, E["tj
t�1] = 0. For simplicity, we also assume

that the conditional variance of "t is constant, E["
2
t j
t�1] = �

2. An extension of the STAR

model which allows for (possibly asymmetric) autoregressive conditional heteroscedasticity

[ARCH] is considered in Lundbergh and Ter�asvirta (1998).

The transition function G(st; 
; c) is a continuous function that is bounded between

0 to 1. In the STAR model as discussed in Ter�asvirta (1994), the transition variable

st is assumed to be a lagged endogenous variable, that is, st = yt�d for certain integer

d > 0. We do not make this assumption here. Thus, the transition variable can also be

an exogenous variable (st = zt), or a (possibly nonlinear) function of lagged endogenous

variables (st = h(~xt;�) for some function h, which depends on the (q�1) parameter vector

�). Finally, the transition variable can be a (function of a) linear time trend (st = t), which

gives rise to a model with smoothly changing parameters, see Lin and Ter�asvirta (1994).

Two interpretations of the STAR model are possible. On the one hand, the STAR

model be thought of as a regime-switching model that allows for two regimes, associated

with the extreme values of the transition function, G(st; 
; c) = 0 and G(st; 
; c) = 1,

where the transition from one regime to the other is smooth. On the other hand, the

STAR model can be said to allow for a `continuum' of regimes, each associated with a

di�erent value of G(st; 
; c) between 0 and 1. In this paper we will use the `two-regime'

interpretation.

The regime that occurs at time t can be determined by the observable variable st and

the associated value of G(st; 
; c). Di�erent choices for the transition function G(st; 
; c)

give rise to di�erent types of regime-switching behaviour. A popular choice for G(st; 
; c)
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is the �rst-order logistic function

G(st; 
; c) = (1 + expf�
(st � c)g)�1; 
 > 0; (3)

and the resultant model is called the logistic STAR [LSTAR] model. The parameter c in

(3) can be interpreted as the threshold between the two regimes, in the sense that the

logistic function changes monotonically from 0 to 1 as st increases, and G(c; 
; c) = :5.

The parameter 
 determines the smoothness of the change in the value of the logistic

function and, thus, the smoothness of the transition from one regime to the other. As 


becomes very large, the change of G(st; 
; c) from 0 to 1 becomes almost instantaneous at

st = c and, consequently, the logistic function G(st; 
; c) approaches the indicator function

I[st > c], de�ned as I[A] = 1 if A is true and I[A] = 0 otherwise. Hence, the LSTAR

model (1) with (3) nests a two-regime threshold autoregressive [TAR] model as a special

case. In case st = yt�d, this model is called a self-exciting TAR [SETAR] model. An

extensive discussion of (SE)TAR models can be found in Tong (1990). When 
 ! 0, the

logistic function becomes equal to a constant (equal to 0.5) and when 
 = 0, the LSTAR

model reduces to a linear model.

In the LSTAR model, the two regimes are associated with small and large values of

the transition variable st relative to c. This type of regime-switching can be convenient

for modelling, for example, business cycle asymmetry to distinguish expansions and re-

cessions. If yt is the growth rate of an output variable, and if the transition variable is

the growth rate in the previous period, st = yt�1, and if c � 0, the model distinguishes

between periods of positive and negative growth, that is, between expansions and con-

tractions. The LSTAR model has been successfully applied by Ter�asvirta and Anderson

(1992) and Ter�asvirta, Tj�stheim and Granger (1994) to characterize the di�erent dynam-

ics of industrial production indexes in a number of OECD countries during expansions and

recessions.

In certain applications another type of regime-switching behaviour might be more

appropriate. For example, it can be argued that the behaviour of the real exchange rate

depends on the size of the deviation from purchasing power parity [PPP]. In particular, the

presence of transaction costs, such as costs of transportation and storage of goods, leads

to the notion of di�erent regimes in real exchange rates. The pro�ts from commodity

arbitrage do not make up for the costs involved in the necessary transactions for small

deviations from the equilibrium real exchange rate, which implies the existence of a band

around the equilibrium rate in which there is no tendency of the real exchange rate to revert

to its equilibriumvalue. Outside this band, commodity arbitrage becomes pro�table, which

forces the real exchange rate back towards the band. See Taylor, Peel and Sarno (2000)

for a review and discussion of theoretical models that incorporate e�ects of transaction

costs as described above. If regime-switching of this form is to be captured by a STAR
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model with yt denoting the real exchange rate and st = yt�d, it appears more appropriate

to specify the transition function such that the regimes are associated with small and large

absolute values of st. This can be achieved by using, for example, the exponential function

G(st; 
; c) = 1� expf�
(st � c)2g; 
 > 0: (4)

The exponential function has the property that G(st; 
; c) ! 1 both as st ! �1 and

st ! 1 whereas G(st; 
; c) = 0 for st = c. The resultant exponential STAR [ESTAR]

model has been applied to real exchange rates by Michael, Nobay and Peel (1997) and

Taylor, Peel and Sarno (2000) and to real e�ective exchange rates by Sarantis (1999).

A drawback of the exponential function (4) is that for either 
 ! 0 or 
 ! 1, the

function collapses to a constant (equal to 0 and 1, respectively). Hence, the model becomes

linear in both cases and the ESTAR model does not nest a SETAR model as a special case.

If this is thought to be desirable, one can instead use the second-order logistic function

G(st; 
; c) = (1 + expf�
(st � c1)(st � c2)g)�1; c1 � c2; 
 > 0; (5)

where now c = (c1; c2)
0, as proposed by Jansen and Ter�asvirta (1996). In this case, if


 ! 0, the model becomes linear, whereas if 
 !1 and c1 6= c2, the function G(st; 
; c) is

equal to 1 for st < c1 and st > c2 and equal to 0 in between. Hence, the STAR model with

this particular transition function nests a restricted three-regime (SE)TAR model, where

the restriction is that the outer regimes are identical. Note that for moderate values of


, the minimum value of the second-order logistic function, attained for st = (c1 + c2)=2,

remains between zero and 1/2, unless 
 !1. In the latter case, the minimum value does

equal zero. This has to be kept in mind when interpreting estimates from models with

this particular transition function.

Finally, the transition functions (3) and (5) are special cases of the general nth-order

logistic function

G(st; 
; c) = (1 + expf�

nY
i=1

(st � ci)g)�1; c1 � c2 � : : : � cn; 
 > 0; (6)

which can be used to obtain multiple switches between the two regimes.

3 Recent developments: extensions of the basic STARmodel

Recently, several extensions of the basic STAR model as given in (2) have been proposed.

Below we discuss extensions which allow for multiple regimes, time-varying properties in

conjunction with regime-switching behaviour, and modelling several time series jointly. A

model which can be used to describe regime-switching behaviour in both autoregressive

dynamics and in seasonal properties is discussed in Franses, de Bruin and van Dijk (2000).
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3.1 Multiple regime STAR models

The representation of the STAR model in (2) highlights the basic characteristic of the

model, which is that at any given point in time, yt is determined as a weighted average of

two AR models, where the weights assigned to the two models depend on the value taken

by the transition function G(st; 
; c). Hence, it follows that the STAR model cannot ac-

commodate more than two regimes, irrespective of what form the transition function takes.

Even though two regimes might be suÆcient in many applications, it can be desirable to

allow for multiple regimes.

To obtain a STAR model that accommodates more than two regimes, it is useful to

distinguish two cases, depending on whether the regimes can be characterized by a single

transition variable st or by a combination of several variables s1t; : : : ; smt, say. In case the

prevailing regime is determined by a single variable, one can start with the LSTAR model

(2) with (3), rewritten as

yt = �
0
1xt + (�2 � �1)

0
xtG1(st; 
1; c1) + "t; (7)

where a subscript 1 has been added to the logistic transition function and the parameters

contained therein for reasons that will become clear shortly. A three-regime model can be

obtained by adding a second nonlinear component to give

yt = �
0
1xt + (�2 � �1)

0
xtG1(st; 
1; c1) + (�3 � �2)

0
xtG2(st; 
2; c2) + "t: (8)

If it is assumed that c1 < c2, the autoregressive parameters in this model change smoothly

from �1 via �2 to �3 for increasing values of st, as �rst the function G1 changes from 0

to 1, followed by a similar change of G2. More generally, one can de�ne a set of m � 1

smoothness parameters 
1; : : : ; 
m�1, and a set of m�1 location parameters c1; : : : ; cm�1,

to arrive at a STAR model with m regimes as

yt = �
0
1xt + (�2 � �1)

0
xtG1(st) + (�3 � �2)

0
xtG2(st) + � � � + (�m � �m�1)

0
xtGm�1(st) + "t;

(9)

where the Gj(st) � Gj(st; 
j ; cj); j = 1; : : : ;m� 1, are logistic functions as in (3). In case

all smoothness parameters become very large, the STAR model in (9) e�ectively becomes

a SETAR model with m regimes.

Extending the basic STAR model in case the regimes are determined by a combination

of di�erent variables is done most easily by building upon the notation used in (2). A 4-

regime model can be obtained by `encapsulating' two di�erent two-regime LSTAR models

as follows:

yt = [�01xt(1�G1(s1t; 
1; c1)) + �
0
2xtG1(s1t; 
1; c1)][1 �G2(s2t; 
2; c2)]

+ [�03xt(1�G1(s1t; 
1; c1)) + �
0
4xtG1(s1t; 
1; c1)]G2(s2t; 
2; c2) + "t: (10)
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The e�ective relationship between yt and its lagged values is given by a linear combination

of four linear AR models, each associated with a particular combination of G1(s1t) and

G2(s2t) being equal to 0 or 1. This so-called Multiple Regime STAR [MRSTAR] model

is discussed in detail in van Dijk and Franses (1999). The MRSTAR model as given in

(10) allows for a maximum of four di�erent regimes, but it is obvious that by applying the

principle of encapsulating repeatedly, the model can be extended to contain 2m regimes

with m > 2, at least conceptually.

The MRSTARmodel reduces to a (SE)TARmodel with multiple regimes determined by

multiple sources in case the smoothness parameters 
1 and 
2 become arbitrarily large, such

that the logistic functions G1 and G2 approach indicator functions I[s1t > c1] and I[s2t >

c2], respectively. The resultant Nested TAR [NeTAR] model is discussed in Astatkie, Watts

and Watt (1997). The name nested TAR model stems from the fact that the time series yt

can be thought of as being described by a two-regime SETAR model with regimes de�ned

by s1t, and within each of those regimes by a two-regime SETAR model with regimes

de�ned by s2t, or vice versa.

The MRSTAR model also nests the 
exible coeÆcient smooth transition time series

model considered in Medeiros and Veiga (2000). This model is obtained by assuming that

the transition variables s1t and s2t are linear combinations of lagged dependent variables,

that is, sit = �
0
i~xt, i = 1; 2, and imposing the restriction ��4;j � �1;j ��2;j ��3;j +�4;j = 0

for j = 0; 1; : : : ; p. This restriction ensures that the interaction term �
�0
4 xtG1(s1t)G2(s2t)

drops out of the model, which now can be rewritten as

yt = �
�0
0 xt + �

�0
1 xtG1(�

0
1~xt; 
1; c1) + �

�0
2 xtG2(�

0
2~xt; 
2; c2) + "t; (11)

where ��0 = �1, �
�
1 = �2 � �1 and �

�
2 = �3 � �1. �Ocal and Osborn (2000) apply a

special case of this 
exible coeÆcient model to describe business cycle nonlinearity in UK

macroeconomic time series. In their models it is assumed that �1 and �2 are (p�1) vectors

with unity as d-th and e-th element and zeros elsewhere for certain 1 � d; e � p, such that

s1t = yt�d and s2t = yt�e.

Finally, note that the 
exible coeÆcient model in (11) includes a (single hidden layer)

arti�cial neural network [ANN] model as a special case. This ANN is obtained from (11)

by leaving �i, i = 1; 2, unspeci�ed and imposing the restrictions ��i;j = 0; i = 0; 1; 2; j =

1; : : : ; p. It is well-known that by incorporating additional nonlinear components or so-

called hidden units ��i;0Gi(�
0
i~xt; 
i; ci), i = 3; 4; : : : in the model, an ANN with a �nite

number of hidden units can approximate any continuous function to any desired degree of

accuracy, see Hornik, Stinchcombe and White (1989, 1990), among others. It follows that

the same holds true for the 
exible coeÆcient model and, hence, for the MRSTAR model.

For reviews of ANN models, see Kuan and White (1994) and Franses and van Dijk (2000,

Chapter 5).
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3.2 Time Varying STAR models

Nonlinearity is only one of many di�erent features a time series can possess. Another

important characteristic, especially of macro-economic time series observed over long time

spans, is structural instability, see, for example, Stock and Watson (1996). Despite a large

amount of evidence indicating that both nonlinearity and structural change are relevant

for many time series, to date these features have mainly been analyzed in isolation. It is

our impression that this dichotomy is due to how time series modelling usually is carried

out. Typically, such modelling starts with specifying a linear model. The estimated

linear model is routinely subjected to a battery of misspeci�cation tests, including tests

of linearity and parameter constancy. If certain misspeci�cation tests indicate that the

linear model is inadequate, the model is modi�ed accordingly. The modelling usually ends

with estimating this alternative model. Thus, when nonlinearity is found and modelled,

parameter constancy of the estimated nonlinear model is rarely tested, and thus even

more seldom rejected. Conversely, when parameter constancy is rejected in a linear model,

testing the alternative time-varying parameter model for nonlinearity is not normally done.

The motivation for considering either nonlinearity or parameter non-constancy, and not

both, as alternative to linearity might be that empirically the two can be close substitutes.

For example, it is not diÆcult to parameterize a nonlinear time series model in such a way

that its realizations resemble series that are subject to occasional level shifts, see Granger

and Ter�asvirta (1999) for an example. Casual inspection of a graph of such a series might

suggest that a model with time-varying parameters is an appropriate characterization of

its properties. Conversely, as discussed by Timmermann (2000), structural breaks can

be described by a nonlinear time series model with infrequent regime shifts. Garcia and

Perron (1996) provide an illustrative empirical example of this phenomenon. The 3-regime

Markov Switching model which they estimate for the US real interest rate exhibits only 2

regime shifts over the 40-year sample period. Consequently, statistical procedures might

have diÆculty to distinguish nonlinearity from structural change. For example, Carrasco

(1997) and Clements and Smith (1998) �nd that tests for SETAR type nonlinearity reject

the null hypothesis of linearity with high probability when the data in fact are generated

by a structural change model, and vice versa. In a similar vein, Koop and Potter (2000)

use Bayesian techniques to show that a lot of evidence for nonlinearity in economic time

series might in fact be due to structural change.

Given the above, nonlinearity, and regime-switching behaviour in particular, and struc-

tural change can be regarded as competing alternatives to linearity and it might be diÆcult

to distinguish between the two. Of course, it is also possible that a time series displays

both nonlinearity and structural instability.

An interesting special case of the MRSTAR model can be used to allow for both
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nonlinear dynamics of the STAR-type and time-varying characteristics. This so-called

time-varying STAR [TVSTAR] model arises if one of the transition variables in (10) is

taken to be time, say, s2t = t. The TVSTAR model implies that yt follows a STAR model

at all times, with a smooth change in the autoregressive parameters in both regimes, from

�1 and �2 to �3 and �4 for G(s1t; 
1; c1) = 0 and G(s1t; 
1; c1) = 1, respectively, which can

easily be seen from the alternative representation

yt = �1(t)
0
xt(1�G1(s1t; 
1; c1)) + �2(t)

0
xtG1(s1t; 
1; c1) + "t; (12)

with

�1(t) = �1[1�G2(t; 
2; c2)] + �3G2(t; 
2; c2); (13)

�2(t) = �2[1�G2(t; 
2; c2)] + �4G2(t; 
2; c2): (14)

The TVSTAR model is discussed in detail in Lundbergh, Ter�asvirta and van Dijk (2000).

3.3 Vector STAR models

Linear vector AR [VAR] models constitute the most common way of modelling vector

time series. In some situations, it could be worthwhile to consider nonlinear models for

this purpose. Regime-switching at di�erent phases of the business cycle could serve as an

example, see Diebold and Rudebusch (1996), Koop, Pesaran and Potter (1996), Ravn and

Sola (1995) and Weise (1999). Conceptually it is straightforward to extend the existing

univariate regime-switching models to a multivariate context. However, the interest in

multivariate nonlinear modelling has started to develop only very recently and, therefore,

the relevant statistical theory is not yet fully developed. Krolzig (1997) and Tsay (1998)

consider vector Markov-Switching models and threshold models, respectively. Here we

concentrate on vector STAR models.

Let Yt = (y1t; : : : ; ykt)
0 be a (k � 1) vector time series. A k-dimensional analogue of

the univariate 2-regime STAR model (1) can be speci�ed as

Yt = (�1;0 +�1;1Yt�1 + � � �+�1;pYt�p)(1�G(st; 
; c))

+ (�2;0 +�2;1Yt�1 + � � �+�2;pYt�p)G(st; 
; c) + "t; (15)

where �i;0, i = 1; 2, are (k � 1) vectors, �i;j, i = 1; 2, j = 1; : : : ; p, are (k � k) matrices,

and "t = ("1t; : : : ; "kt)
0 is a k-dimensional vector white noise process with mean zero and

(k � k) positive de�nite covariance matrix �.

Notice that in (15) the regimes are common to the k variables, in the sense that one and

the same transition function determines the prevailing regime and the switches between

regimes in all k equations of the model. It is straightforward to generalize the model
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to incorporate equation-speci�c transition functions G1(s1t; 
1; c1); : : : ; Gk(skt; 
k; ck) and

thereby allow for equation-speci�c regime-switching.

Judging from applications of multivariate regime-switching models that are available

at present, it seems that a model of particular interest is one in which the components of Yt

are linked by a linear long-run equilibrium relationship, whereas adjustment towards this

equilibrium is nonlinear and can be characterized as regime-switching, with the regimes

determined by the size and/or sign of the deviation from equilibrium. In linear time se-

ries, this type of behaviour is captured by cointegration and error-correction models, see

Banerjee, Dolado, Galbraith and Hendry (1993), Johansen (1995), and Hatanaka (1996)

for in-depth treatments. Recently, nonlinear extensions of these concepts have been con-

sidered. Here we concentrate on incorporating the smooth transition mechanism in an

ECM to allow for nonlinear or asymmetric adjustment, see Granger and Swanson (1996)

for more general discussion. A smooth transition error-correction model [STECM] is given

by

�Yt = (�1;0 + �1zt�1 +

p�1X
j=1

�1;j�Yt�j)(1 �G(st; 
; c))

+ (�2;0 + �2zt�1 +

p�1X
j=1

�2;j�Yt�j)G(st; 
; c) + "t; (16)

where �i, i = 1; 2 are k � 1 vectors and zt = �
0
Yt for some k � 1 vector � denote the

error-correction term, that is, zt is the deviation from the equilibrium relationship which

is given by �
0
Yt = 0. The model can be extended to incorporate multiple equilibrium

relationships, �01Yt; : : : ; �
0
rYt say, for certain 1 � r � k, see Swanson (1999).

It appears that relevant forms of nonlinear error correction often concern di�erent

adjustment to positive and negative or to large and small deviations from equilibrium.

(Of course, other forms of nonlinear error correction, which do not depend directly on

the deviation from equilibrium itself, are possible, see Siklos and Granger (1997) for an

example.) Both types of asymmetry arise in a natural way when modelling prices of so-

called equivalent assets in �nancial markets, see Yadav, Pope and Paudyal (1994) and

Anderson (1997) for elaborate discussions. Equivalent assets in a certain sense represent

the same underlying value. Examples of equivalent assets include stocks and futures, and

bonds of di�erent maturity. Since they are traded in the same market, or in markets linked

by arbitrage-related forces, the prices of equivalent assets should be such that investors

are indi�erent between holding either one of them. Deviations from the equilibrium create

arbitrage opportunities that drive the prices back together. However, market frictions can

give rise to asymmetric adjustment of such deviations. Due to short-selling constraints,

for example, the response to negative deviations from equilibrium might be di�erent from

the response to positive deviations. Alternatively, transaction costs prevent adjustment of
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equilibrium errors as long as the bene�ts from adjustment, which equal the price di�erence,

are smaller than those costs. These market frictions suggest that the degree of error

correction is a function of the sign and/or size of the deviation from equilibrium.

Asymmetric e�ects of positive and negative deviations from equilibrium can be ob-

tained by de�ning G(st; 
; c) as in (3) and setting st = zt�1. In the resultant model, the

strength of reversion of zt to its attractor changes monotonically for increasing values of

zt�1. The constant c in (3) can be set equal to zero to render the change symmetric around

the equilibrium value of zero. Asymmetric behaviour for small and large equilibrium errors

can be achieved by taking G(st; 
; c) to be the exponential function (4) with st = zt�1,

where again c should be set equal to 0 to center the function at the equilibrium, or the

quadratic logistic function (5) with st = zt�1 and �c1 = c2 > 0. This results in gradually

changing strength of adjustment for larger (both positive and negative) deviations from

equilibrium.

The smooth transition ECM with the exponential transition function (4) is used by

Taylor, van Dijk, Franses and Lucas (2000) to describe the relationship between spot

and futures prices of the FTSE100 index in the presence of transaction costs. Other

applications of smooth transition error correction models include the term structure of

interest rates (Anderson (1997), van Dijk and Franses (2000)), although both consider

only single-equation (conditional) error-correction models) and the relationship between

money and output (Swanson (1999) and Rothman, van Dijk and Franses (1999)).

The smooth transition error correction model with a quadratic logistic function resem-

bles the threshold error correction model, introduced by Balke and Fomby (1997). The

threshold error correction model is obtained from (16) by letting 
 ! 1 in (5) and im-

posing the restriction �1 = 0. Intuitively, each element of Yt then contains a unit root as

long as zt�1 2 (c1; c2) and the component time series yit, i = 1; : : : ; k behave as nonsta-

tionary non-cointegrated variables. When zt�1 becomes smaller than c1 or larger than c2,

Yt is cointegrated. Threshold error correction models are applied by Dwyer, Locke and Yu

(1996), Martens, Kofman and Vorst (1998), Tsay (1998), and Forbes, Kalb and Kofman

(1999) to describe the relationship between spot and futures prices of the S&P 500 index.

Common nonlinearity

In the case of vector time series, there exists the possibility that nonlinearity is caused by

common nonlinear components. Following Anderson and Vahid (1998), the k-dimensional

time series Yt is said to contain s common nonlinear components if there exist k� s linear

combinations �0iYt, i = 1; : : : ; k � s, whose conditional expectations are linear in the past

10



of Yt. Rewriting model (15) as

Yt = ��
1;0 +��

1;1Yt�1 + � � � +��
1;pYt�p + (��

2;0 +��
2;1Yt�1 + � � �+��

2;pYt�p)G(st; 
; c) + "t;

where ��
1;j = �1;j and ��

2;j = �2;j � �1;j, j = 0; 1; : : : ; p, the existence of s common

nonlinear components means that there exists a (k � k � s) matrix A such that

A
0(��

2;0 +��
2;1Yt�1 + � � � +��

2;pYt�p)G(st; 
; c) = 0; (17)

for all Yt�1; : : : ; Yt�p and st. Anderson and Vahid (1998) develop test statistics for the

existence of common nonlinearity based upon canonical correlations.

4 Hypothesis testing in the STAR framework

Before presenting the modelling cycle for STAR models mentioned in the Introduction, we

discuss hypothesis testing in the STAR framework. This involves tests of linearity against

the alternatives of LSTAR and ESTAR nonlinearity in Section 4.1, and misspeci�cation

tests of smooth transition models in Section 4.2. The complications that arise in these

testing procedures due to the presence of unidenti�ed nuisance parameters under the null

hypothesis are considered in Section 4.1. Finally, in Section 4.3 we review newly developed

test procedures which can handle outliers.

4.1 Testing linearity against STAR

Testing linearity against STAR constitutes a �rst step towards building STARmodels. The

null hypothesis of linearity can be expressed as equality of the autoregressive parameters

in the two regimes of the STAR model in (2). Thus, H0 : �1 = �2, whereas the alternative

hypothesis is H1 : �1;j 6= �2;j for at least one j 2 f0; : : : ; pg.

The testing problem is complicated by the presence of unidenti�ed nuisance parameters

under the null hypothesis. Informally, the STAR model contains parameters which are not

restricted by the null hypothesis, but about which nothing can be learned from the data

when the null hypothesis holds true. For example, the null hypothesis �1 = �2 does not

restrict the parameters in the transition function, 
 and c, but when the null hypothesis

is valid, the likelihood is una�ected by the values of 
 and c.

An alternative way to illustrate the presence of unidenti�ed nuisance parameters in this

case is to note that the null hypothesis of linearity can be formulated in di�erent ways.

Besides equality of the AR parameters in the two regimes, H0 : �1 = �2, the alternative

null hypothesis H 0
0 : 
 = 0 also gives rise to a linear model. For example, if 
 = 0 the

logistic function (3) is equal to 0.5 for all values of st, and the STAR model (2) reduces to

an AR model with parameters (�1 + �2)=2. In case H 0
0 is used, the location parameter c
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and the parameters �1 and �2 are the unidenti�ed parameters. Under H 0
0, �1 and �2 can

take any value as long as their average remains the same.

The problem of unidenti�ed nuisance parameters under the null hypothesis was �rst

considered by Davies (1977, 1987) and occurs in many testing problems, see Andrews and

Ploberger (1994), Hansen (1996) and Stinchcombe and White (1998) for recent general

accounts. The main consequence of the presence of such nuisance parameters is that the

conventional statistical theory is not available for obtaining the asymptotic null distribu-

tion of the test statistics. Instead, the test statistics tend to have non-standard distribu-

tions for which analytic expressions are most often not available. This implies that critical

values have to be determined by means of simulation.

The problem of testing linearity against STAR alternatives was addressed in Luukko-

nen, Saikkonen and Ter�asvirta (1988a). Their proposed solution is to replace the transition

function G(st; 
; c) by a suitable Taylor series approximation. In the reparametrized equa-

tion, the identi�cation problem is no longer present, and linearity can be tested by means

of a Lagrange Multiplier [LM] statistic with a standard asymptotic �2-distribution under

the null hypothesis. This approach has two main advantages. First, the model under the

alternative hypothesis need not be estimated and, second, standard asymptotic theory is

available for obtaining (asymptotic) critical values for the test statistics.

Tests against LSTAR

Consider the LSTAR model (2) with (3), rewritten as

yt = �
0
1xt + (�2 � �1)

0
xtG(st; 
; c) + "t; (18)

and assume that f"tg � n.i.d.(0; �2). In order to derive a linearity test against (18),

Luukkonen et al. (1988a) suggest to approximate the logistic function G(st; 
; c) = 1=(1 +

expf�
(st � c)g) with a �rst-order Taylor approximation around 
 = 0. This results in

the auxiliary regression

yt = �
0
0xt + �

0
1xtst + et; (19)

where �i = (�i;0; �i;1; : : : ; �i;p)
0
; i = 0; 1, and et = "t + (�2 � �1)

0
xtR1(st; 
; c), with

R1(st; 
; c) the remainder term from the Taylor expansion. Under the null hypothesis,

R1(st; 
; c) � 0 and et = "t. Consequently, this remainder term does not a�ect the

properties of the errors under the null hypothesis and, hence, the asymptotic distribution

theory. The parameters �i, i = 0; 1, in the auxiliary regression (19) are functions of the

parameters in the STAR model (18) such that the restriction 
 = 0 implies �0;j 6= 0 and

�1;j = 0 for j = 0; : : : ; p. Hence, testing the null hypothesisH 0
0 : 
 = 0 (or H0 : �1 = �2) in

(18) is equivalent to testing the null hypothesisH 00
0 : �1 = 0 in (19). This hypothesis can be
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tested by a standard variable addition test in a straightforward manner. The test statistic,

to be denoted as LM1, has an asymptotic �2 distribution with p + 1 degrees of freedom

under the null hypothesis of linearity. As the LM1 statistic does not test the original null

hypothesis H 0
0 : 
 = 0 but rather the auxiliary null hypothesis H 00

0 : �1 = 0, this test is

usually referred to as an LM-type statistic. The test statistic can also be developed from

�rst principles as a genuine LM statistic, see Granger and Ter�asvirta (1993, pp. 71-72). It

can be shown that the statistic is in fact the supremum of the pointwise statistics for �xed

�2��1 and c and is thus similar in spirit to the test statistic that is commonly applied to

test for (SE)TAR nonlinearity, see Hansen (1997).

Note that in case st = yt�d for certain integer 1 � d � p, �1;0st should be dropped from

the auxiliary regression (19) to avoid perfect multi-collinearity. As noted by Luukkonen

et al. (1988a), for this choice of transition variable, the LM1 statistic does not have power

in situations where only the intercept di�ers across regimes, that is, when �1;0 6= �2;0

but �1;j = �2;j for j = 1; : : : ; p. This problem can be solved by approximating the

transition function G(st; 
; c) by a third-order Taylor approximation. This yields the

auxiliary regression

yt = �
0
0xt + �

0
1xtst + �

0
2xts

2
t + �

0
3xts

3
t + et; (20)

where et = "t+(�2��1)0xtR3(st; 
; c), and �0;0 and the �i; i = 1; 2; 3; again are functions

of the parameters �1; �2; 
 and c. Inspection of the exact relationships shows that the

null hypothesis H 0
0 : 
 = 0 now corresponds to H 00

0 : �1 = �2 = �3 = 0, which again can

be tested by a standard LM-type test. Under the null hypothesis of linearity, the test

statistic, to be denoted as LM3, has an asymptotic �2 distribution with 3(p+1) degrees of

freedom. Again, if st = yt�d for certain integer d � p, the terms �i;0s
i
t, i = 1; 2; 3; should

be dropped from the auxiliary regression.

The expressions of �i; i = 1; 2; 3; in (20) in terms of �1; �2; 
 and c also reveal that,

in case st is not included in ~xt, the only parameters that depend on the constants �1;0

and �2;0 are �1;0, �2;0 and �3;0. Hence, a parsimonious, or `economy', version of the LM3

statistic can be obtained by augmenting the auxiliary regression (19) with regressors s2t

and s3t , that is,

yt = �
0
0xt + �

0
1xtst + �2;0s

2
t + �3;0s

3
t + et; (21)

and testing the null hypothesisH 00
0 : �1 = 0 and �2;0 = �3;0 = 0. The resultant test statistic,

denoted LMe
3, has an asymptotic �2 distribution with p + 3 degrees of freedom. The

advantage of the LMe
3 statistic over the the LM2 statistic is that it requires considerably

less degrees of freedom. In case st = yt�d for certain d � p, the only parameters in the

auxiliary regression that are informative about �1;0 and �2;0 are �2;d and �3;d, and the

LMe
3 statistic is obtained by augmenting the auxiliary regression (19) with y3t�d and y

4
t�d.
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Sometimes the appropriate transition variable st under the alternative may not be

obvious. In case the choice is between yt�1; : : : ; yt�p, one can de�ne the linear combination

st = �
0~xt with � = (0; : : : ; 0; 1; 0; : : : ; 0)0, where the position of the only unity element is

left unspeci�ed. The LM1, LM3 and LMe
3 statistics then become become LM-type tests

against LSTAR with st = yt�d with the delay parameter d assumed unknown. Notice that

in this case the auxiliary regression used in computing the LM1 statistic becomes

yt = �
0
0xt +

pX
i=1

pX
j=i

�1;ijyt�iyt�j + et;

and the resultant test in fact is identical to the general linearity test of Tsay (1986).

Tests against ESTAR

Saikkonen and Luukkonen (1988) suggest testing linearity against an ESTAR alternative

by using the auxiliary regression

yt = �
0
0xt + �

0
1xtst + �

0
2xts

2
t + et; (22)

where et = "t + (�2 � �1)
0
xtR2(st; 
; c). Equation (22) is based on the �rst-order Taylor

series expansion of (2) with (4) [or (5)]. The expressions for �i; i = 0; 1; 2, show that the

restriction 
 = 0 corresponds with �1 = �2 = 0 in (22). The LM2 statistic which tests this

null hypothesis has an asymptotic �2 distribution with 2(p+ 1) degrees of freedom.

Escribano and Jord�a (1999) claim that a �rst-order Taylor approximation of the ex-

ponential function is not suÆcient to capture its characteristic features, the two in
exion

points of this function in particular. They suggest that a second-order Taylor approxima-

tion is necessary, yielding the auxiliary regression,

yt = �
0
0xt + �

0
1xtst + �

0
2xts

2
t + �

0
3xts

3
t + �

0
4xts

4
t + et: (23)

The null hypothesis to be tested now is H 0
0 : �1 = �2 = �3 = �4 = 0. The resultant LM-

type test statistic, denoted LM4, has an asymptotic �2 distribution with 4(p+ 1) degrees

of freedom under the null hypothesis. There is a trade-o� between the extra variables in

the auxiliary regression and the increase in the dimension of the null hypothesis. Neither

one of the tests based on (22) or (23) dominates the other in terms of power.

Computational aspects

In small samples, it is a good strategy to use F -versions of the LM test statistics because

these have better size properties than the �2 variants, which may be heavily oversized in

small samples. Both the �2 and F versions can be computed by means of two auxiliary
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linear regressions. As an example, the LM3 statistic based on (20) can be computed as

follows:

1. Estimate the model under the null hypothesis of linearity by regressing yt on xt.

Compute the residuals "̂t and the sum of squared residuals SSR0 =
PT

t=1 "̂
2
t .

2. Estimate the auxiliary regression of yt on xt and xts
i
t; i = 1; 2; 3. Compute the

residuals êt and the sum of squared residuals SSR1 =
PT

t=1 ê
2
t .

3. The �2 version of the LM3 statistic can now be computed as

LM3 =
T (SSR0 � SSR1)

SSR0
; (24)

whereas the F version can be computed as

LM3 =
(SSR0 � SSR1)=3(p+ 1)

SSR1=(T � 4(p+ 1))
: (25)

Under the null hypothesis, the F version of the test is approximately F distributed

with 3(p+ 1) and T � 4(p+ 1) degrees of freedom.

4.2 Misspeci�cation tests of STAR models

Before an estimated STAR model can be accepted as adequate, it should be subjected to

a thorough evaluation, including a number of misspeci�cation tests. Obvious hypotheses

which might be tested are no residual autocorrelation, no remaining nonlinearity and

parameter constancy. Eitrheim and Ter�asvirta (1996) develop LM-type tests for these

three hypotheses in the basic two-regime STAR model. In that context, the tests of no

remaining nonlinearity and parameter constancy also can be interpreted as tests against

the alternatives of a multiple regime STAR model and a TVSTARmodel, respectively. It is

straightforward to generalize the misspeci�cation tests to MRSTAR and TVSTAR models,

see van Dijk and Franses (1999) and Lundbergh et al. (2000), respectively. Extensions of

the misspeci�cation tests to the vector STAR framework are considered in Anderson and

Vahid (1998, Appendix D).

4.2.1 Testing the hypothesis of no residual autocorrelation

Consider the STAR model (2) and denote the so-called skeleton of the model as

F (xt; �) = �
0
1xt(1�G(st; 
; c)) + �

0
2xtG(st; 
; c): (26)

An LM-test for q-th order serial dependence in "t can be obtained as nR2, where R2 is

the coeÆcient of determination from the regression of "̂t on rF (xt; �̂) = @F (xt; �̂)=@�,

with � = (�1; �2; 
; c)
0, and q lagged residuals "̂t�1; : : : ; "̂t�q. Hats indicate that the
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relevant quantities are estimates under the null hypothesis of serial independence of "t.

The resultant test statistic, to be denoted as LMSI(q), is asymptotically �
2 distributed

with q degrees of freedom. This test statistic is a generalization of the LM-test for serial

correlation in an AR(p) model of Godfrey (1979), which is obtained by setting F (xt; �) =

�
0
xt.

Testing the hypothesis of no remaining nonlinearity

Eitrheim and Ter�asvirta (1996) develop an LM statistic to test the two-regime LSTAR

model (18) against the alternative of an additive STAR model de�ned in (8). The null

hypothesis of a two-regime model can be expressed as either H 0
0 : 
2 = 0 or H0 : �3 = �2.

Evidently, this testing problem su�ers from a similar identi�cation problem as encountered

in testing linearity against a two-regime STAR model, see Section 4.1. The solution to this

identi�cation problem again is to replace the transition function G2(st; 
2; c2) by a Taylor

series approximation around 
2 = 0. Using a third-order approximation, the resultant

approximation to model (8) becomes

yt = �
0
0xt + (�2 � �1)

0
xtG1(st; 
1; c1) + �

0
1xtst + �

0
2xts

2
t + �

0
3xts

3
t + et; (27)

where the parameters �i; i = 0; 1; 2; 3; are functions of the parameters �1; �2; �3; 
2 and

c2. The null hypothesis H
0
0 : 
2 = 0 in (8) translates into H 00

0 : �1 = �2 = �3 = 0 in (27).

The test statistic can be computed as nR2 from the auxiliary regression of the residuals

obtained from estimating the model under the null hypothesis on the partial derivates of

the regression function with respect to the parameters in the two-regime model, �1; �2; 
1

and c1, evaluated under the null hypothesis, and the auxiliary regressors xts
i
t, i = 1; 2; 3.

The resultant test statistic LMAMR;3 has an asymptotic �2 distribution with 3(p + 1)

degrees of freedom, where the subscript AMR is used to indicate that this statistic is

designed as a test against an additive multiple regime model. Note that in going from (8)

to (27), we have implicitly assumed that st is not an element of xt. If it is, the auxiliary

regressors �i;0s
i
t, i = 1; 2; 3 should be omitted from (27).

van Dijk and Franses (1999) derive an LM-type test for testing the null of the two-

regime LSTAR model (18) against the MRSTAR alternative given in (10). The null

hypothesis can be expressed as either H 0
0 : 
2 = 0 or H0 : �1 = �3 and �2 = �4. In case

the transition function G2(s2t; 
2; c2) is replaced with a third-order Taylor series approxi-

mation, the corresponding approximation to (10) can be written as

yt = �
0
1xt + �

0
2xtG1(s1t; 
1; c1) + �

0
1xts2t + �

0
2xts

2
2t + �

0
3xts

3
2t

+ (�04xts2t + �
0
5xts

2
2t + �

0
6xts

3
2t)G1(s1t; 
1; c1) + et: (28)
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The parameter vectors �i = (�i;1; : : : ; �i;p)
0, i = 1; : : : ; 6, in (28) are de�ned in terms

of ��i , i = 1; : : : ; 4, 
2 and c2, such that the null hypothesis can be reformulated as

H
0
0 : �i = 0, i = 1; : : : ; 6. The resultant test statistic LMEMR;3 is asymptotically �

2

distributed with 6(p+1) degrees of freedom, where the subscript EMR is used to indicate

that this statistic is designed as a test against an `encapsulated' multiple regime model.

Again it is implicitly assumed that s2t is not an element of xt. If it is, the terms �i;0s
i
2t;

i = 1; 2; 3, and �i;0s
i�3
2t G1(s1t; 
1; c1); i = 4; 5; 6, do not appear in (28).

Testing the hypothesis of parameter constancy

By testing the hypothesis 
2 = 0 in (12), one can test for parameter constancy in the

two-regime STAR model (18), against the alternative of smoothly changing parameters.

The appropriate LM-type test statistic based on a third-order Taylor approximation of

G2(t; 
2; c2), to be denoted as LMC;3, is identical to the LMEMR;3 statistic with s2t = t.

Note that the asymptotic distribution theory remains the same even if the transition

variable is a non-stationary deterministic trend, see Lin and Ter�asvirta (1994).

Computational aspects

Eitrheim and Ter�asvirta (1996) point out potential numerical problems in the computation

of the misspeci�cation tests. In particular, if 
̂1 is very large, such that the transition

between the two regimes in the model under the null hypothesis is rapid, the partial

derivatives of the transition function G1(s1t; 
1; c1) with respect to 
1 and c1 approach

zero functions, with the possible exception of a few `blips'. The `blips' in these partial

derivatives occur simultaneously, and as a result the moment matrix of the regressors

in the auxiliary regressions used in computing the test statistics becomes near-singular.

However, because the contributions of the terms involving these partial derivatives are

likely to be very small for all t = 1; : : : ; T when 
̂1 is very large, they contain little

information and these terms can simply be omitted from the auxiliary regression without

a�ecting the power properties of the test statistics. Another practical problem is that

the residuals "̂t of the two-regime STAR model may not always be exactly orthogonal to

the gradient matrix. This may be the case if the model does not �t the data very well,

so that the numerical algorithm applied in parameter estimation has diÆculty �nding an

optimum. Eitrheim and Ter�asvirta (1996) suggest accounting for this replacing by "̂t with

the residuals from the regression of "̂t on the elements of the gradient @F (xt; �̂)=@�. By

construction, these residuals are orthogonal to the gradient.
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4.3 Recent developments

The LM-type tests discussed above are sensitive to several kinds of misspeci�cation of the

model under the null hypothesis. For example, it is well-known that residual autocorrela-

tion in a linear AR model may lead to spurious �ndings of nonlinearity. In this section we

discuss the e�ects of two other forms of misspeci�cation, neglected heteroskedasticity and

outliers, and ways to robustify the LM-type tests against these e�ects.

Heteroskedasticity and tests for STAR nonlinearity

The LM-type tests assume constant (conditional) variance. Neglected heteroskedasticity

has similar e�ects on tests for nonlinearity as residual autocorrelation, in that it may

lead to spurious rejection of the null hypothesis. Davidson and MacKinnon (1985) and

Wooldridge (1990, 1991) develop speci�cation tests which can be used in the presence

of heteroskedasticity, without the need to specify the form the heteroskedasticity (which

often is unknown) explicitly. Their procedures may be readily applied to robustify the

tests against STAR nonlinearity, see also Granger and Ter�asvirta (1993, pp. 69-70). For

example, a heteroskedasticity robust variant of the LM3 statistic based upon (20) can be

computed as follows:

(i) Regress yt on xt and obtain the residuals "̂t.

(ii) Regress the auxiliary regressors xts
i
t, i = 1; 2; 3, on xt and compute the residuals r̂t.

(iii) Regress 1 on "̂tr̂t. The explained sum of squares from this regression is the LM-type

statistic.

Lundbergh and Ter�asvirta (1998) present simulation evidence which suggests that in

some cases this robusti�cation removes most of the power of the linearity tests, so that

existing nonlinearity may not be detected. If the objective of the analysis is to �nd and

model nonlinearity in the conditional mean, robusti�cation therefore cannot be recom-

mended. It might be expected that false rejections of the null hypothesis of linearity

due to heteroskedasticity are discovered at the estimation or evaluation stages of model

building. It may also be added that the standard tests of constant conditional variance

against ARCH have power against nonlinearity in the conditional mean; for simulation

evidence see, for example, Luukkonen, Saikkonen and Ter�asvirta (1988b) and Lee, White

and Granger (1993).

Outliers and tests for STAR nonlinearity

STAR models can be parameterized to generate very asymmetric realizations, in the sense
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that its realizations resemble linear time series with a few outliers. An interesting question

then is how the LM-type tests for STAR nonlinearity perform when the data-generating

process is a linear model but the observations are contaminated by occasional outliers. van

Dijk, Franses and Lucas (1999) show that in the presence of additive outliers, these tests

tend to reject the correct null hypothesis of linearity too often, even asymptotically. As

a solution to this problem, van Dijk et al. (1999) suggest to use outlier-robust estimation

techniques (see Huber (1981), Martin (1981), Hampel, Ronchetti, Rousseeuw and Stahel

(1986), and Lucas, Franses and van Dijk (2001), among others).

Robust estimators are designed to obtain better parameter estimates in the presence

of contamination, by assigning less weight to in
uential observations such as outliers. For

example, a robust estimator for the AR(p) model yt = �
0
xt + "t can be de�ned as the

solution of the �rst order conditions

TX
t=1

wr(rt)xt(yt � �
0
xt) = 0; (29)

where rt denotes the standardized residual, rt � (yt��0xt)=(�"wx(xt)), with �" a measure

of scale of the residuals "t � yt � �
0
xt and wx(�) and wr(�) are weight functions that

are bounded between 0 and 1. From (29) it can be seen that the robust estimator is a

type of weighted least squares estimator, with the weight for the t-th observation given

by the value of wr(�). The functions wx(�) and wr(�) should be chosen such that the t-th

observation receives a relatively small weight if either the regressor xt or the standardized

residual (yt � �
0
xt)=�" becomes unusually large. The weight function wr(rt) usually is

speci�ed in terms of a function  (rt) as wr(rt) =  (rt)=rt for rt 6= 0 and wr(0) = 1. See

Hampel et al. (1986) for a discussion of possible speci�cations for  (rt).

In addition to rendering better estimates of the model under the null hypothesis, robust

estimation procedures allow to construct test statistics that are robust to outliers. A

robust equivalent to the LM3 statistic to test H 00
0 : �1 = �2 = �3 = 0 in (20) is given by

nR
2, using the R2 from the regression of the weighted residuals  ̂(r̂t) = ŵr(r̂t)r̂t on the

weighted regressors ŵx(xt) � (x0t; x
0
tst; x

0
ts
2
t ; x

0
ts
3
t )

0, where � denotes element-by-element

multiplication. The weights ŵr(r̂t) and ŵx(xt) are obtained from robust estimation of

the AR(p) model under the null. The resultant LM-type statistic has an asymptotic �2-

distribution with 3(p+1) degrees of freedom. An outlier-robust equivalent of the F -version

of the tests can also be computed without diÆculty.

Simulation results in van Dijk et al. (1999) suggest that the robusti�ed LM-type tests

have good size properties in small samples, also in the presence of outliers. As expected, in

case no outliers occur, the power of the robust tests is somewhat lower than that of their

non-robust counterparts. However, in the presence of outliers, the power of the standard

tests decreases dramatically, whereas the power of the robust tests is hardly a�ected.
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5 The modelling cycle

Granger (1993) strongly recommends a `speci�c-to-general' strategy for building nonlinear

time series models. This implies starting with a simple or restricted model and proceeding

to more complicated ones only if diagnostic tests indicate that the maintained model is

inadequate. In the present situation, an additional (statistical) motivation for such an

approach is that the identi�cation problems discussed above prevent us from starting with

a STAR model and reducing its size by, say, a series of likelihood ratio tests. The data-

based modelling cycle for STAR models put forward by Ter�asvirta (1994) follows this

approach and consists of the following steps.

1. Specify a linear AR model of order p for the time series under investigation.

2. Test the null hypothesis of linearity against the alternative of STAR nonlinearity. If

linearity is rejected, select the appropriate transition variable st and the form of the

transition function G(st; 
; c).

3. Estimate the parameters in the selected STAR model.

4. Evaluate the model, using diagnostic tests and impulse response analysis.

5. Modify the model if necessary.

6. Use the model for descriptive or forecasting purposes.

Steps 2-4 in the modelling cycle are described in detail in the subsections below. Forecast-

ing with STAR models is discussed in Section 6.

The main element involved in the �rst step is the choice of the appropriate lag order p

in the AR(p) model for yt, that is,

yt = �0 + �1yt�1 + � � �+ �pyt�p + "t: (30)

This lag order should be such that the corresponding residuals are approximately white

noise, as the tests for nonlinearity that are used in the second step of the modelling cycle

are sensitive to remaining linear residual autocorrelation. The order of the AR model can

be selected by conventional methods, such as the Akaike Information Criterion [AIC], the

Schwarz Information Criterion [BIC] or the Ljung-Box statistic. It should be kept in mind

that if linearity is rejected in the second step of the modelling cycle, the lag order used in

the AR model is not necessarily the appropriate lag order in the alternative STAR model,

although usually it provides a reasonable �rst guess.
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5.1 Speci�cation

The second stage of the modelling cycle presented above is labeled speci�cation, as the

main objectives, besides testing of linearity, are to select the appropriate transition variable

in the STAR model and the most suitable form of the transition function.

Selecting the transition variable

Even though the LM3 statistic was developed as a test against the LSTAR alternative, it

has power against ESTAR alternatives as well. An intuitive way to understand this is to

note that all auxiliary regressors in the �rst-order approximation to the ESTAR model in

(22) are contained in (20). This suggests that the appropriate transition variable in the

STARmodel can be determined �rst, without specifying the form of the transition function,

by computing the LM3 statistic for various candidate transition variables s1t; : : : ; smt, say,

and selecting the one for which the p-value of the test is smallest. The rationale behind

this procedure is that the test should have maximum power in case the alternative model

is correctly speci�ed, that is, if the correct transition variable is used. Simulation results in

Ter�asvirta (1994) suggest that this approach works quite well. Notice that the signi�cance

level of the linearity test is not under control in this selection procedure. This is not

problematic however, as the test statistic is used here as a model speci�cation tool rather

than as a strict linearity test.

This selection procedure may be preceded by a general test for STAR nonlinearity

assuming only that the appropriate transition variable is one of the candidates s1t; : : : ; smt,

by computing the LM3 statistic with transition variable st =
Pm

i=1 �isit, with �d = 1 for

certain d 2 f1; : : : ;mg and �i = 0 for i 6= d.

Selecting the transition function

When linearity is rejected in favor of STAR nonlinearity and the transition variable has

been selected, the �nal decision to be made at this stage concerns the appropriate form of

the transition function G(st; 
; c). In practice, the choice may be limited to that between

the �rst-order logistic function (3) on the one hand and the exponential function (4) or

the second-order logistic function (5) on the other. Consider the following sequence of null

hypotheses:

H03 : �3 = 0;

H02 : �2 = 0j �3 = 0;

H01 : �1 = 0j �3 = �2 = 0;

21



in (20), all of which can be tested by LM-type tests. Closer inspection of the expressions of

the auxiliary parameters �1; �2 and �3 in terms of parameters of the original STAR model

reveals that (i) �3 6= 0 only if the model is an LSTAR model, (ii) �2 = 0 if the model is an

LSTAR model with �1;0 = �2;0 and c = 0 but is always nonzero if the model is an ESTAR

model, and (iii) that �1 = 0 if the model is an ESTAR model with �1;0 = �2;0 and c = 0

but is always nonzero if the model is an LSTAR model. Combining these three properties

of the auxiliary parameters leads to the following decision rule: if the p-value of the test

corresponding to H02 is the smallest, an ESTAR model should be selected, while in all

other cases an LSTAR model is to be the preferred choice.

Escribano and Jord�a (1999) propose an alternative transition function selection pro-

cedure, which makes use of LM4 as a test for general STAR nonlinearity. Their decision

rule for choosing between the LSTAR and ESTAR alternatives is based on the observation

that, assuming �1;0 = �2;0 and c = 0 in (18), the properties of �1 and �2 given above also

apply to �3 and �4 in (23), respectively. Therefore they suggest to test the hypotheses

H0E : �2 = �4 = 0;

H0L : �1 = �3 = 0;

in (23) and to select an LSTAR (ESTAR) model if the minimum p-value is obtained for

H0L (H0E).

This is a neat idea in that it corrects an asymmetry in the original selection rule. When

the true model is an ESTAR model behaving almost like an LSTAR one (see Ter�asvirta,

1994, for discussion), the original rule often tends to choose the LSTAR model, at least

in small samples. The Escribano-Jord�a rule does not have this property. On the other

hand, if the true model is an LSTAR model or an ESTAR model which can not be approx-

imated adequately with an LSTAR model, both rules lead to selecting this model with

high probability. In general, neither procedure dominates the other.

Recent increases in computational power have made these decision rules less important

in practice. It is now easy to estimate a number of both LSTAR and ESTAR models and to

choose between them at the evaluation stage by misspeci�cation tests. It is also possible

to develop non-nested hypothesis tests for distinguishing between these two families of

models. Nevertheless, the two decision rules seem to work well in practice, and carrying

out the tests may be recommended even if the actual decision were postponed to the

evaluation stage of the modelling cycle.

5.2 Estimation

Once the transition variable st and the transition function G(st; 
; c) have been selected,

the next stage in the modelling cycle is estimation of the parameters in the STAR model.
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The discussion below is framed in terms of the basic two-regime model, but the issues that

are addressed also apply to the MRSTAR and TVSTAR models.

Estimation of the parameters in the STAR model (2) is a relatively straightforward

application of nonlinear least squares [NLS], that is, the parameters � = (�01; �
0
2; 
; c)

0 can

be estimated as

�̂ = argmin
�

QT (�) = argmin
�

TX
t=1

(yt � F (xt; �))
2
; (31)

where F (xt; �) is the skeleton of the model given in (26). Under the additional assumption

that the errors "t are normally distributed, NLS is equivalent to maximum likelihood.

Otherwise, the NLS estimates can be interpreted as quasi maximum likelihood estimates.

Under certain regularity conditions, which are discussed inWooldridge (1994) and P�otscher

and Prucha (1997), among others, the NLS estimates are consistent and asymptotically

normal, that is,

p
T (�̂ � �0)! N(0; C); (32)

where �0 denotes the true parameter values. The asymptotic covariance-matrix C of �̂ can

be estimated consistently as bA�1
T
bBT
bA�1
T , where bAT is the Hessian evaluated at �̂

bAT = �
1

T

TX
t=1

r2
qt(�̂) =

1

T

TX
t=1

�
rF (xt; �̂)rF (xt; �̂)0 �r2

F (xt; �̂)"̂t

�
; (33)

with qt(�̂) = (yt � F (xt; �̂))
2, and bBT is the outer product of the gradient

bBT =
1

T

TX
t=1

rqt(�̂)rqt(�̂)0 =
1

T

TX
t=1

"̂
2
trF (xt; �̂)rF (xt; �̂)

0
: (34)

The estimation can in principle be performed using any conventional nonlinear opti-

mization procedure, see Quandt (1983), Hamilton (1994, Section 5.7) and Hendry (1995,

Appendix A5) for surveys. Issues deserving particular attention here include concentrat-

ing the sum of squares function, the choice of starting-values for the parameters, and the

estimation of the smoothness parameter 
 in the transition function.

Concentrating the sum of squares function

As suggested by Leybourne, Newbold and Vougas (1998), the estimation problem can be

simpli�ed by concentrating the sum of squares function. Note that when the parameters


 and c in the transition function are known and �xed, the STAR model is linear in the

autoregressive parameters �1 and �2. Conditional upon 
 and c, estimates of � = (�01; �
0
2)

0
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can be obtained by ordinary least squares [OLS] as

�̂(
; c) =

 
TX
t=1

xt(
; c)xt(
; c)
0

!�1 TX
t=1

xt(
; c)yt

!
; (35)

where xt(
; c) = (x0t(1 � G(st; 
; c)); x
0
tG(st; 
; c))

0 and the notation �(
; c) is used to

indicate that the estimate of � is conditional upon 
 and c. Thus, the sum of squares

function QT (�) can be concentrated with respect to �1 and �2 as

QT (
; c) =

TX
t=1

(yt � �(
; c)0xt(
; c))
2
:

This reduces the dimensionality of the NLS estimation problem considerably, as Q(
; c)

needs to be minimized with respect to the two parameters 
 and c only.

Starting values

From the conditional linearity of the STAR model, it immediately follows that sensible

starting-values for the nonlinear optimization can be easily obtained by a two-dimensional

grid search over 
 and c. Replacing the transition function (36) by

G(st; 
; c) = (1 + expf�

nY
i=1

(st � ci)=�̂
n
st
g)�1; (36)

where �̂st is the sample standard deviation of st, makes 
 approximately scale-free. This

helps in determining a useful set of grid values for this parameter. A meaningful set of grid

values for the location parameter c may be de�ned as sample percentiles of the transition

variable st. This guarantees that the values of the transition function contain enough

sample variation for each choice of 
 and c. If the transition function remains almost

constant in the whole sample, the moment matrix of the regression (35) is ill-conditioned,

and the estimation fails.

It should be noted that if the logistic function (6) is used with n > 1, or if an MRSTAR

model (10) or a TVSTAR model (12) is estimated, the dimension of the grid increases.

Still, the grid search is worth undertaking, as it likely renders starting-values which are

reasonably close to the optimum. This reduces the burden on the nonlinear optimization

considerably. Furthermore, if analytical second derivatives are used in computing the Hes-

sian (as in the Newton-Raphson method, for example), good starting-values are absolutely

necessary for convergence of the algorithm.

The estimate of 


It is diÆcult to obtain a very accurate estimate of the smoothness of the transition between
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the two regimes, characterized by 
, when this parameter is large. This is due to the fact

that for such large values of 
, the STAR model is similar to a threshold model, as the

transition function comes close to a step function. To obtain an accurate estimate of


, one then needs many observations in the immediate neighborhood of c, because even

large changes in 
 only have a small e�ect on the shape of the transition function. The

estimate of 
 may therefore be rather imprecise and often appear to be insigni�cant when

judged by its t-statistic, see Bates and Watts (1988, p.87) for discussion in a more general

context. This should, however, not be interpreted as evidence for weak nonlinearity, as

the t-statistic does not have its customary asymptotic t-distribution under the hypothesis

that 
 = 0, due to the identi�cation problems discussed in Section 4.1. In this situation,

the causes of a large standard error estimate are purely numerical. Besides, for the very

reason that large changes in 
 have only a minor e�ect on the transition function, high

accuracy in estimating 
 is not necessary.

5.3 Evaluation

After estimating the parameters in a STAR model, the next stage in the modelling cycle is

evaluation of the properties of the �tted model. Next to `common sense' diagnostics, such

as examining the properties of the skeleton and inspecting the regimes that are implied

by the model, the model should be subjected to misspeci�cation tests such as the ones

discussed in Section 4.2. Rejection of one or more of the null hypotheses should lead to

reconsidering the speci�cation of the model. Other methods to evaluate the properties

of estimated STAR models include local or sliced spectra and impulse response analysis,

which are discussed below.

5.3.1 Sliced spectra

Parameter estimates generally do not provide much information about the dynamics of

an estimated STAR model. To characterize local dynamic behaviour, one can compute

the roots of the characteristic polynomial of the model for given values of the transition

function G(st; 
; c), as in Ter�asvirta and Anderson (1992) and Ter�asvirta (1994), among

others. Skalin and Ter�asvirta (1999) suggest a more economic way to summarize the local

dynamics by using the local or sliced spectrum of the STAR model (1). This is de�ned as

fyy(!; st) =
1

2�

248<:1�
pX

j=1

�1;j(1�G(st; 
; c)) + �2;jG(st; 
; c) exp
�ij!

9=;
�

8<:1�
pX

j=1

�1;j(1 �G(st; 
; c)) + �2;jG(st; 
; c) exp
ij!

9=;
35�1 ; (37)
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for �� � ! � �, see Priestley (1981, Section 4.12). Obviously, the spectrum is de�ned

only for points where the estimated STAR model is locally stationary, that is, only for

those values of G(st; 
; c) for which the roots of the lag polynomial

1�
pX

j=1

(�1;j(1�G(st; 
; c)) + �2;jG(st; 
; c))L
j
;

where L is the lag operator, have modulus larger than unity.

The `global' dynamics of an estimated STAR model are better characterized by a

`model' spectrum. As this cannot be computed analytically, it has to be obtained by

simulation.

5.3.2 Impulse response functions

Another useful way of considering the dynamic behaviour of an estimated STAR model is

to examine the e�ects of the shocks "t on the future patterns of the time series yt. Impulse

response functions are a convenient tool to carry out such an analysis, as they provide a

measure of the response of yt+h, h = 1; 2; : : : to a shock or impulse Æ at time t.

The impulse response commonly used in the analysis of linear models is de�ned as the

di�erence between two realizations of yt+h which start from identical histories of the time

series up to time t� 1, denoted as !t�1. In one realization, the process is `hit' by a shock

of size Æ at time t, while in the other realization no shock occurs at time t. All shocks in

intermediate periods between t and t+ h are set equal to zero in both realizations. That

is, the traditional impulse response function [TI] is given by

TIy(h; Æ; !t�1) = E[yt+hj"t = Æ; "t+1 = : : : = "t+h = 0; !t�1]�

E[yt+hj"t = 0; "t+1 = : : : = "t+h = 0; !t�1]; (38)

for h = 0; 1; 2; : : : . The second conditional expectation usually is called the benchmark

pro�le.

The traditional impulse response function as de�ned above has some simple properties

when the underlying model is linear. First, the TI is symmetric, in the sense that a shock

of size �Æ has an e�ect exactly opposite to that of a shock of size +Æ. Furthermore, it

might be called linear, as the impulse response is proportional to the size of the shock.

Finally, the impulse response is history independent as its shape does not depend on the

particular history !t�1. For example, in the AR(1) model yt = �0+ �1yt�1+ "t, it follows

easily that the impulse response TIy(h; Æ; !t�1) = �
h
1Æ, h = 0; 1; 2; : : : .

These properties do not carry over to nonlinear models, including the STAR model.

In nonlinear models, the impact of a shock depends on the history of the process, as well

as on the sign and the size of the shock. Furthermore, if the e�ect of a shock on the
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time series h > 1 periods ahead is to be analyzed, the assumption that no shocks occur in

intermediate periods may give a misleading picture of the propagation mechanism of the

model. Pesaran and Potter (1997) provide an example.

The Generalized Impulse Response Function [GI], introduced by Koop et al. (1996)

o�ers a useful generalization of the concept of impulse response to nonlinear models. The

GI for a speci�c shock "t = Æ and history !t�1 is de�ned as

GIy(h; Æ; !t�1) = E[yt+hj"t = Æ; !t�1]� E[yt+hj!t�1]; (39)

for h = 0; 1; 2; : : : . In the GI, the expectation of yt+h given that a shock Æ occurs at time t is

conditioned only on the history and this shock. Put di�erently, the problem of dealing with

shocks occurring in intermediate time periods is handled by averaging them out. Given

this choice, the natural benchmark pro�le for the impulse response is the expectation of

yt+h conditional only on the history of the process !t�1. Thus, in the benchmark pro�le

the current shock is averaged out as well. It is easily seen that for linear models the GI is

equivalent to the TI.

The GI is a function of Æ and !t�1 that are realizations of the random variables "t and


t�1. Koop et al. (1996) point out that GIy(h; Æ; !t�1) itself is a realization of a random

variable, de�ned as

GIy(h; "t;
t�1) = E[yt+hj"t;
t�1]� E[yt+hj
t�1]: (40)

De�nition (40) allows a number of conditional versions of potential interest. For example,

one might consider only a particular history !t�1 and treat the GI as a random variable

in terms of "t, that is,

GIy(h; "t; !t�1) = E[yt+hj"t; !t�1]� E[yt+hj!t�1]: (41)

It is equally possibly to reverse the roles of the shock and the history by �xing the shock

at "t = Æ and de�ning the GI to be a random variable with respect to the history 
t�1.

In general, one might consider the GI to be random conditional on particular subsets A

and B of shocks and histories respectively, that is, GIy(h;A;B). For example, one might

condition on all histories in a particular regime and consider only negative shocks.

In case of the STAR model, analytic expressions for the conditional expectations in-

volved in the GI are not available for h > 1. Stochastic simulation has to be used to

obtain estimates of the impulse response measures. See Koop et al. (1996) for a detailed

description of the relevant techniques.

Measuring persistence of shocks

A shock "t = Æ is said to be transient at history !t�1 if GIy(h; Æ; !t�1) becomes equal to 0 as
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h!1. If this is not the case, the shock is said to be persistent. It is intuitively clear that if

a time series process is stationary and ergodic, the e�ects of all shocks eventually converge

to zero for all possible histories of the process. Hence, the distribution of GIy(h; "t;
t�1)

collapses to a spike at 0 as h!1. By contrast, for nonstationary time series the dispersion

of the distribution of GIy(h; "t;
t�1) is positive for all h. Potter (1995) and Koop et al.

(1996) suggest that the dispersion of the distribution of GIy(h; "t;
t�1) at �nite horizons

can be interpreted as a measure of persistence of shocks. Conditional versions of the GI are

particularly suited to assess this persistence. For example, one can compare densities of

GIs conditional on positive and negative shocks to �nd out whether, say, negative shocks

are more persistent than positive ones, or vice versa. The notion of second-order stochastic

dominance might be a useful measure of dispersion in this context, see Potter (2000).

Measuring asymmetric impulse response

Another use of the GI is to assess the signi�cance of asymmetric e�ects over time. Potter

(1994) de�nes a measure of asymmetric response to a particular shock "t = Æ given a

particular history !t�1 as the sum of the GI for this particular shock and the GI for the

shock of the same magnitude but with opposite sign, that is,

ASYy(h; Æ; !t�1) = GIy(h; Æ; !t�1) + GIy(h;�Æ; !t�1): (42)

By taking into account parameter uncertainty as an additional source of randomness,

ASYy(h; Æ; !t�1) can still be interpreted as a random variable. Potter (1995) uses a

straightforward simulation procedure to assess whether the asymmetry measure is sig-

ni�cantly di�erent from zero or not.

Alternatively, one could consider the distribution of the random asymmetry measure

ASYy(h; "
+
t ;
t�1) = GIy(h; "

+
t ;
t�1) + GIy(h;�"+t ;
t�1) (43)

where "+t = f"tj"t > 0g indicates the set of all possible positive shocks. If positive and

negative shocks have exactly the same e�ect (with opposite sign), ASYy(h; "
+
t ;
t�1) should

be equal to zero almost surely. More generally, we say that shocks have a symmetric e�ect

(on average) when ASYy(h; "
+
t ;
t�1) has a symmetric distributionwith mean equal to zero.

The dispersion of this distribution might be interpreted as a measure of the asymmetry in

the e�ects of positive and negative shocks.

6 Forecasting

Forecasting with nonlinear models is more involved than forecasting with linear models,

see Tong (1990, Chapter 6) and Granger and Ter�asvirta (1993, Section 8.1) for general
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reviews. In this section we discuss several issues related to out-of-sample forecasting with

STAR models, see also Lundbergh and Ter�asvirta (2001). Techniques for constructing

point and interval forecasts are considered in Sections 6.1 and 6.2, respectively. In Section

6.3 the questions of how to evaluate forecasts from STAR models and how to compare

forecasts from linear and STAR models in particular are addressed.

6.1 Point forecasts

Consider the case where yt is described by the STAR model (1) with st = yt�1, that is

yt = F (xt; �) + "t; (44)

where F (xt; �) is given by

F (xt; �) = �
0
1xt(1�G(yt�1; 
; c)) + �

0
2xtG(yt�1; 
; c); (45)

with xt = (1; yt�1; : : : ; yt�p)
0. Denote the optimal point forecast of yt+h made at time t as

ŷt+hjt = E[yt+hj
t], and the associated forecast or prediction error as et+hjt = yt+h� ŷt+hjt.

Using the fact that E["t+1j
t] = 0, the optimal 1-step ahead forecast of yt+1 is easily

obtained as ŷt+1jt = E[yt+1j
t] = F (xt+1; �), which is equivalent to the optimal 1-step

ahead forecast in case the model F (xt; �) is linear. When the forecast horizon is larger

than 1 period, things become more complicated however. For example, the optimal 2-step

ahead forecast follows from (44) as

ŷt+2jt = E[yt+2j
t] = E[F (x̂t+2jt; �)j
t]; (46)

where x̂t+2jt = (1; ŷt+1jt + "t+1; yt; : : : ; yt�(p�2))
0. The exact expression for (46) is

ŷt+2jt =

Z 1

�1

F (x̂t+2jt; �)f(")d"; (47)

where f denotes the density of "t+1. As an analytic expression for the integral (47) is not

available, it needs to be approximated using numerical techniques. Even though such nu-

merical integration is not complicated, the dimension of the integral grows with the forecast

horizon, which makes forecasting rather time-consuming and possibly inaccurate. Several

methods to obtain forecasts while avoiding numerical integration have been developed.

First, by extrapolating the skeleton (45) a 2-step ahead forecast can be obtained as

ŷ
(n)

t+2jt
= F (x̂t+2jt; �): (48)

This is called the `na��ve' approach (Granger and Ter�asvirta, 1993), as it e�ectively boils

down to interchanging the (linear) conditional expectation operator E with the (nonlin-

ear) operator in (46). As E[F (x̂t+2jt; �)] 6= F (E[x̂t+2jt; �]), this approach renders biased

forecasts.
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An alternative approach is to use Monte Carlo or bootstrap methods to approximate

the conditional expectation (46). The 2-step ahead Monte Carlo forecast is given by

ŷ
(mc)

t+2jt
=

1

k

kX
i=1

F (x̂
(i)

t+2jt
; �); (49)

where k is some large number and the values of "t+1 in x̂
(i)

t+2jt
are drawn from the presumed

distribution of "t. The bootstrap forecast ŷ
(b)

t+2jt
is very similar, the only di�erence being

that the "t+1 are drawn with replacement from the residuals from the estimated model,

"̂t; t = 1; : : : ; T . The advantage of the bootstrap over the Monte Carlo method is that no

assumptions need to be made concerning the distribution of "t.

Clements and Smith (1997) compare various methods of obtaining multiple-step ahead

forecasts for SETAR models, respectively. Their main �ndings are that the Monte Carlo

and bootstrap methods compare favorably to the exact and na��ve methods. An additional

advantage of the Monte Carlo and bootstrap methods is that the individual realizations

F (x̂
(i)

t+2jt
; �) e�ectively form a forecast density, which can be used to construct interval

forecasts as discussed below.

Note that in the above we have assumed that the parameters in the STAR model

are known. In practice the parameters of course have to be estimated, which leads to

additional forecast uncertainty. This sampling uncertainty can be taken into account by

extending the Monte Carlo or bootstrap forecast with an additional averaging over di�erent

parameter values as

ŷ
(mc)

t+2jt
=

1

kr

kX
i=1

rX
j=1

F (x̂
(i)

t+2jt
; �(j)); (50)

where the �(j) are drawn from the large-sample distribution of the parameter estimates �̂.

6.2 Interval forecasts

Point forecasts may be combined with con�dence intervals. For forecasts obtained from

linear models, the standard forecast con�dence region is taken to be a symmetric interval

around the point forecast. This is the case because the conditional distribution g(yt+hj
t)

of a linear time series is symmetric around E[yt+hj
t] (which is estimated by ŷt+hjt). For

nonlinear models, the conditional distribution g(yt+hj
t) need not be symmetric, and it

can even contain multiple modes. This is possible for STAR models as well. How to

construct forecast con�dence regions in this situation is discussed in detail in Hyndman

(1995). He lists three methods of de�ning a 100(1 � �)% forecast region for ŷt+hjt:

1. An interval symmetric around the point forecast

S� = (ŷt+hjt � w; ŷt+hjt + w);
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where w > 0 is such that P (yt+h 2 S�j
t) = 1� �.

2. The interval de�ned by the �=2 and (1��=2) quantiles of the forecast distribution,

denoted q�=2 and q1��=2, respectively,

Q� = (q�=2; q1��=2):

3. The highest-density region [HDR]

HDR� = fyt+hjg(yt+hj
t) � g�g; (51)

where g(�) is the density of its argument and g� is such that P (yt+h 2 HDR�j
t) =

1� �.

For symmetric and unimodal distributions, these three regions are identical. For asymmet-

ric or multimodal distributions they are not. Hyndman (1995) argues that the HDR is the

most natural choice, for the following reasons. First, HDR� is the smallest of all possible

100(1��)% forecast regions. Second, every point inside the HDR has conditional density

g(yt+hj
t) at least as large as every point outside the region. Furthermore, only the HDR

will immediately reveal features such as asymmetry or multimodality of the conditional

distribution g(yt+hj
t). HDRs are straightforward to compute when the Monte Carlo or

bootstrap methods are used to compute the point forecast ŷt+hjt. Let y
i
t+hjt, i = 1; 2; : : : ,

denote the i-th element used in computing the Monte Carlo forecast (49). Note that the

y
i
t+hjt can be thought of as being realizations drawn from the conditional distribution of

interest g(yt+hj
t). Estimates gi � g(yi
t+hjtj
t), i = 1; : : : ; k, then can be obtained by

using a standard kernel density estimator, that is

gi =
1

k

kX
j=1

K([yit+hjt � y
j

t+hjt
]=b); (52)

where K(�) is a kernel function such as the Gaussian density and b > 0 is the bandwidth.

An estimate of g� in (51) is given by ĝ� = g(b�kc), where the g(i) are the ordered gi and b�c

denotes integer part. See Hyndman (1996) for more details. Finally, it should be noted

that HDR's are also useful in summarizing sets of GI densities, see Section 7 and Skalin

and Ter�asvirta (1999, 2000) for applications to STAR models.

6.3 Evaluating forecasts

It is good practice to evaluate the quality of forecasts from a time series model. Relative

forecast performance can also be used as a model selection criterion, as an alternative or

complement to an in-sample comparison of di�erent models. Out-of-sample forecasting

thus can also be considered as a way to evaluate estimated models. Especially comparison
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of the forecasts from nonlinear models with those from a benchmark linear model might

enable one to determine the added value of the nonlinear features of the model.

Traditionally, forecasts are evaluated using the mean squared prediction error [MSPE],

MSPE = 1
m

Pm�1
j=0 (ŷT+h+jjT+j � yT+h+j)

2, where m is the number of h-steps ahead fore-

casts, and related criteria. Models with smaller MSPE have a better forecast performance.

Diebold and Mariano (1995) discuss various statistics that can be used to examine whether

the MSPEs of two alternative models are signi�cantly di�erent from each other.

Experience with (empirical) forecasting with STARmodels is rather limited. Ter�asvirta

and Anderson (1992) obtain mixed results for forecasts of quarterly industrial production

series. In some cases the STAR model yields better (1-step ahead) point forecasts than a

linear model, in other cases the forecasts are worse. Sarantis (1999) uses STAR models to

forecast monthly real e�ective exchange rates of major industrialized countries with similar

results, in that STAR models do not consistently produce more or less accurate forecasts

than linear models. The STAR model is found to outperform a Markov-Switching model

though. Finally, Stock and Watson (1999) apply STAR models to forecast a large number

of monthly US macroeconomic time series and �nd that on average forecasts from STAR

models do not improve upon forecasts from linear models, although they do improve upon

forecasts from neural networks.

In general, the fact that a nonlinear model describes the features of a time series within

the estimation sample better than a linear model is no guarantee that the nonlinear model

also renders better out-of-sample forecasts. In fact, it is reported quite often that, even

though a nonlinear model appears to describe certain characteristics of the time series at

hand much better than a linear model, the forecasting performance of a linear model is no

worse or even better than that of the nonlinear model, see de Gooijer and Kumar (1992)

among others. Clements and Hendry (1998) discuss reasons for this, see also Diebold and

Nason (1990). For example, the nonlinearity may be `spurious', in the sense that other

features of the time series, such as heteroskedasticity, structural breaks or outliers, suggest

the presence of nonlinearity. Even though one may successfully estimate a nonlinear model

for such a series, it is not obvious that this will result in improved forecasts compared to

ones from linear models.

Another possible cause for the (relatively) poor forecast performance of nonlinear mod-

els is that traditional criteria such as the MSPE might not do full justice to the nonlinear

model. As noted by Tong (1995), `how well we can forecast depends on where we are.' In

case of a STAR model, it might very well be that the forecastability of the time series is dif-

ferent in the di�erent regimes corresponding with G(st; 
; c) = 0 and G(st; 
; c) = 1. One

therefore might evaluate the forecasts for each regime separately to investigate whether the

nonlinear model is especially useful to obtain forecasts in a particular regime or state, see

Tiao and Tsay (1994) and Clements and Smith (1999) for applications to SETAR models.
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Also, MSPE and related criteria focus on the quality of point forecasts. It might very

well be that the real strength of a nonlinear model lies in producing superior interval and

density forecasts, see Pesaran and Potter (1997) for an example. Thus, to assess the merits

of a nonlinear model it might be worthwhile to evaluate interval and density forecasts as

well, using techniques recently developed in Christo�ersen (1998) and Diebold, Gunther

and Tay (1998).

Finally, a nonlinear model may not render better forecasts simply because the non-

linearity does not show up during the forecast period. In case of the STAR model, for

example, it might be that only one of the regimes is realized during the forecast period.

Hence, empirical forecasts do not always allow to assess the forecasting quality of the

STAR model completely. A potential solution to this problem is to perform a simulation

experiment in which an estimated STAR model is used to generate arti�cial time series

and an out-of-sample forecasting exercise is performed on each of those series using AR

and STAR models. In this controlled environment one can make sure that forecasts in each

of the regimes are involved. See Clements and Smith (1999,2000) for applications of this

approach with SETAR models. This simulation approach can also be applied to compare

the forecast performance of alternative nonlinear models by using each of the alternatives

as DGP in turn, see Clements and Krolzig (1998).

As a �nal remark, notice that the second conditional expectation in the right-hand side

of (39) is the optimal point forecast of yt+h at time t � 1, whereas the �rst conditional

expectation can be interpreted as the optimal forecast of yt+h at time t in case "t = Æ.

Therefore the GI can be interpreted as the change in forecast of yt+h at time t relative to

time t� 1, given that a shock Æ occurs at time t. This also suggests that if the density of

the conditional GI (41) (or other versions of the GI) e�ectively is a spike at zero for certain

h � m, the nonlinear model is not useful for forecasting more than m periods ahead.

7 Modelling US unemployment with STAR models

As discussed in Section 2, STAR models have been successfully applied to describing the

behaviour of various macro-economic time series, such as output and (un)employment, at

di�erent phases of the business cycle. In this section, we analyze a US unemployment rate

series to illustrate the modelling cycle for STAR models.

The series we consider represents the seasonally unadjusted unemployment rate among

US males aged 20 and over, at the monthly frequency covering the period June 1968 until

December 1999 (379 observations). The series is constructed by taking the ratio of the

unemployment level and civilian labor force of this population group, which are obtained

from the Bureau of Labor Statistics.

- insert Figure 1 about here -
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The series, which is shown in Figure 1, contains three dominant features: asymmet-

ric behaviour over the business cycle, large persistence, and a distinct seasonal pattern.

The behaviour of the unemployment rate over the business cycle can be characterized as

steep increases during recessions, followed by slow(er) declines during expansions. Sev-

eral theories, such as asymmetric labor adjustment costs of enterprises, insider-outsider

relationships, and asymmetries in capital destruction and reconstruction have been de-

veloped to explain this asymmetry in the dynamic behaviour of the unemployment rate.

Plenty of evidence of this type of nonlinearity has been compounded over the years. Using

nonparametric methods, Neft�ci (1984) found that increases in the unemployment rate are

steeper than decreases, see also Sichel (1989) and Rothman (1991). Furthermore, Neft�ci

(1993) showed that conventional linear models are able to replicate the observed patterns

in the unemployment rate only with very small probability. Various parametric nonlinear

time series models have also been �tted to a number of unemployment rates, see Peel and

Speight (1996), Hansen (1997), Bianchi and Zoega (1998), Montgomery, Zarnowitz, Tsay

and Tiao (1998), Rothman (1998), Br�ann�as and Ohlsson (1999), Koop and Potter (1999),

Caner and Hansen (2000), and Skalin and Ter�asvirta (2000), among others. In general, it is

found that nonlinear models improve upon linear models both in describing the in-sample

properties of the unemployment rate and in out-of-sample forecasting.

From Figure 1 it is also clear that the unemployment rate is very persistent. In fact, the

persistence of the unemployment rate has received much more attention than its asym-

metry properties. The two competing viewpoints are the `natural rate' hypothesis and

the hysteresis hypothesis of Blanchard and Summers (1987). Under the natural rate hy-

pothesis, the unemployment rate is mean-reverting, whereas it is non-stationary under

the hysteresis hypothesis. Thus, the two hypotheses imply that di�erent transformations

(levels and �rst di�erences, respectively) of the unemployment rate are appropriate. Here

we follow Bianchi and Zoega (1998) and Skalin and Ter�asvirta (2000) by assuming that the

unemployment rate is globally stationary but possibly nonlinear and locally nonstationary.

Finally, Figure 1 also shows that the unemployment rate contains a pronounced sea-

sonal pattern. Typically, unemployment is above average during the winter (January-

March) and below average during the late summer and fall (August-October). We assume

that the systematic component of seasonality can be adequately captured by monthly

dummy variables, which are denoted as Di;t, i = 1; : : : ; 11, where Di;t = 1 if observation t

corresponds to month i and Di;t = 0 otherwise.

We use the series up to December 1989 for estimation and testing and reserve the

�nal 10 years for out-of-sample forecasting. Following the modelling cycle as outlined in

Section 5, we start by specifying a linear AR model. In order to anticipate the structure

of the STAR model, the AR model is parameterized in �rst di�erences, including a single

level term at the �rst lag. We allow for a maximum of pmax = 18 lagged �rst di�erences,
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such that the e�ective estimation sample runs from January 1970 until December 1989

(240 observations). Both AIC and BIC indicate that an AR(p) model with 3 lagged �rst

di�erences is appropriate. Upon estimation we �nd that this model is too parsimonious,

as it leaves considerable autocorrelation in the residuals. This problem is solved only once

the number of lagged �rst di�erences is increased to 15. As quite a few of the lagged

�rst di�erences in the unrestricted model are insigni�cant and do not contribute to the

explanatory power of the model, we remove lagged �rst di�erences and seasonal dummies

for which the t-statistic of the corresponding parameter is less than 1 in absolute value.

We �nally arrive at the following linear model:

�yt = 0:385

(0:069)

� 0:021

(0:009)

yt�1 + 0:143

(0:060)

�yt�1 + 0:279

(0:059)

�yt�2 + 0:169

(0:063)

�yt�3

� 0:090

(0:053)

�yt�6 � 0:090

(0:057)

�yt�8 + 0:093

(0:051)

�yt�11 � 0:069

(0:062)

�yt�14 � 0:086

(0:061)

�yt�15

+ 0:639

(0:074)

D1;t � 0:425

(0:111)

D2;t + 0:786

(0:143)

D3;t � 0:818

(0:126)

D4;t � 0:462

(0:068)

D5;t

� 0:146

(0:084)

D7;t � 0:394

(0:082)

D8;t � 0:553

(0:103)

D9;t � 0:252

(0:069)

D10;t + "̂t; (53)

�̂" = 0:201, SK = 0:71, EK = 1:00,JB = 30(3:0� 10�7), ARCH(1) = 5:76(0:02), ARCH(4) =

8:69(0:07), LMSI(4) = 0:15(0:96), LMSI(8) = 0:31(0:96), LMSI(12) = 0:31(0:99), AIC =

�3:049; BIC = �2:774,

where OLS standard errors are given in parentheses below the parameter estimates, "̂t

denotes the regression residual at time t, �̂" is the residual standard deviation, SK is skew-

ness, EK excess kurtosis, JB the Jarque-Bera test of normality of the residuals, ARCH(q)

is the LM test of no ARCH e�ects up to order q, and LMSI(j) is the Breusch-Godfrey

test for no residual autocorrelation up to and including lag j. The numbers in parentheses

following the test statistics are p-values.

The linear model appears adequate in that the errors seem serially uncorrelated,

whereas the excess kurtosis and apparent heteroskedasticity are caused entirely by large

positive residuals in January 1975 and April 1980. The skewness of the errors is a more

serious problem, as it does not appear to be due to only a few aberrant residuals.

The next stage is to test linearity against STAR nonlinearity using the LM-type statis-

tics discussed in Section 4.1. As we are concerned with the behaviour of the unemploy-

ment rate over the business cycle, the transition variable in the STAR model should re
ect

the property that recession and expansion regimes are sustained periods of increase and

decline in the unemployment rate, respectively. This makes the monthly change in the un-

employment rate unsuitable as an indicator of the business cycle regime as it is too noisy.

Furthermore, using the monthly (or any other intra-year) change as transition variable is

impractical due to the seasonal 
uctuations in the unemployment rate. Following Skalin
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and Ter�asvirta (2000), we therefore consider the twelve-month di�erence as transition vari-

able, that is, st = �12yt�d � yt�d � yt�d�12, d = 1; : : : ; dmax. We set the maximum value

of the delay parameter dmax equal to 6.

The upper three blocks of Table 1 contain p-values of the standard, heteroskedasticity

robust and outlier robust LM1, LM3, LM
e
3 and LM4 tests with �12yt�d, d = 1; : : : ; 6, as

transition variable. LM-type tests against the alternative of smoothly changing parame-

ters, where st = t, are given as well. The tests are based on an AR model with 15 lagged

�rst di�erences under the null hypothesis, that is, the `holes' in the model given in (53)

are ignored. Linearity is tested for the monthly dummy variables and lagged dependent

variables jointly and separately.

First concentrate on the tests of linearity of either all regressors or the intercept and

lagged dependent variables only. The p-values of the standard LM3 and LM4 tests indicate

that linearity can be rejected at the 10% signi�cance level only if �12yt�2 is used as

transition variable. The p-values for the LMe
3 statistic indicate that �12yt�1 and �12yt�3

may also be considered as transition variable. The results of the robust tests suggest that

the evidence for nonlinearity might perhaps be due to neglected heteroskedasticity, but not

to neglected outliers. The observations that are down-weighted in the robust estimation

of the linear model are indicated by whiskers on the horizontal axis in Figure 1, where the

height of the whiskers is equal to one minus the weight wr(�). It is seen that only very

few observations receive weights smaller than 1. Note that the observations for January

1975 and April 1980, which had large residuals in the OLS estimation of the restricted

linear model (53), both receive weight equal to 0. Admittedly, the statistical evidence of

nonlinearity is not strong. This may be due to the use of an unrestricted AR model with

15 lagged �rst di�erences under the null hypothesis, which may reduce the power of the

linearity tests. The results of the LM-type tests applied to the restricted model (53) are

qualitatively similar though and do not lead to more convincing rejections of linearity.

The large p-values for the tests of linearity of the intercept and monthly dummies sug-

gest that the seasonal pattern in the unemployment rate is constant over the business cycle

and over time. This in fact allows us to investigate a possible cause for the weak evidence

for nonlinearity, namely the dominant periodic features of the series. The regression of

the �rst di�erence of the unemployment rate on a constant and monthly dummies already

yields R2 = 0:75. Hence, any nonlinearity present in the series is relatively subtle, and

accounting for it would only lead to a comparatively small improvement in �t. Thus the

linearity tests may not reject the null very strongly (if at all). To shed light on this issue,

we compute the linearity tests for a seasonally adjusted series, which is obtained as the

residuals from the regression of �yt on a constant and Di;t, i = 1; : : : ; 11. The p-values

of these tests are shown in the lower block of Table 1. It is seen that the standard tests

now consistently reject linearity for st = �12yt�d for d = 1; 2; 3 at the 10% signi�cance
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level, whereas the LM1 and LMe
3 tests suggest that �12yt�d with d = 4; 5 or 6 may also

be considered as transition variable.

- insert Table 1 about here -

Table 2 presents p-values of the LM-type statistics which test the sub-hypotheses in

the speci�cation procedures of Ter�asvirta (1994) and Escribano and Jord�a (1999), applied

to the seasonally adjusted series. Based on the decision rule of the procedure of Ter�asvirta

(1994), all three variants of the tests (standard, heteroskedasticity- and outlier-robust)

suggest that an LSTAR model is most appropriate for all candidate transition variables.

The results from the statistics used in the Escribano-Jord�a procedure generally con�rm

this suggestion, although sometimes they are less conclusive.

- insert Table 2 about here -

The combined evidence in Tables 1 and 2 suggests that the lagged 12-month change in

the unemployment rate �12yt�d may indeed be a transition variable in an LSTAR model

where only the lagged dependent variables enter nonlinearly. The appropriate value of the

delay parameter d cannot be uniquely determined from the test results. For that reason

we estimate LSTAR models with st = �12yt�d for d = 1; 2 and 3 and defer the choice of

the delay parameter until the evaluation stage. We �nd that, whereas the three models

provide a comparable in-sample �t, the model with d = 1 performs much better in terms

of out-of-sample forecasting. In the following, we therefore present results for that model

only.

Starting with an unrestricted AR model with 15 lagged �rst di�erences in both regimes,

we sequentially remove the lagged �rst di�erence with the lowest t-statistic (in absolute

value), until all parameters of the remaining lagged �rst di�erences have t-statistics ex-

ceeding 1 in absolute value. The �nal model is estimated as

�yt = 0:479

(0:064)

+ 0:645

(0:065)

D1;t � 0:342

(0:097)

D2;t � 0:680

(0:081)

D3;t � 0:725

(0:102)

D4;t � 0:649

(0:090)

D5;t

� 0:317

(0:081)

D6;t � 0:410

(0:086)

D7;t � 0:501

(0:079)

D8;t � 0:554

(0:086)

D9;t � 0:306

(0:066)

D10;t

+ [� 0:040

(0:008)

yt�1 � 0:146

(0:068)

�yt�1 � 0:101

(0:062)

�yt�6 + 0:097

(0:063)

�yt�8

� 0:123

(0:063)

�yt�10 + 0:129

(0:063)

�yt�13 � 0:103

(0:057)

�yt�15]� [1�G(�12yt�1; 
; c)]

+ [� 0:011

(0:008)

yt�1 + 0:225

(0:078)

�yt�1 + 0:307

(0:076)

�yt�2 � 0:119

(0:067)

�yt�7

� 0:155

(0:089)

�yt�13 � 0:215

(0:085)

�yt�14 � 0:235

(0:085)

�yt�15]�G(�12yt�1; 
; c) (54)

G(�12yt�1; 
; c) = (1 + expf� 23:15

(20:68)

(�12yt�1 � 0:27

(0:05)

)=��12yt�1g)
�1 (55)
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�̂" = 0:185, �̂STAR=�̂AR = 0:92, SK = 0:64, EK = 0:56, JB = 19:5(5:9 � 10�5), ARCH(1) =

0:86(0:35), ARCH(4) = 1:32(0:86), AIC = �3:162, BIC = �2:785,

where �̂STAR and �̂AR denote the residual standard deviations in the estimated STAR and

AR models, respectively. The residual variance of the LSTAR model (54) is about 8%

smaller than that of the AR model (53). Nevertheless, this is enough to compensate for

the increase in the number of parameters (from 19 to 27) for the LSTAR model to be pre-

ferred over the AR model by both AIC and BIC. Both the skewness and excess kurtosis are

reduced in the LSTAR model, although normality of the errors is still rejected. The tests

against ARCH do not reject the null hypothesis any longer. Finally, results of the diagnos-

tic tests in Table 3 suggest that the model is adequate as there is no evidence for remaining

residual autocorrelation, time-variation in the parameters or remaining nonlinearity.

- insert Table 3 about here -

Figure 2 shows the negative of the sum of squares functionQT (
; c) in the neighborhood

of the NLS estimate (
̂; ĉ) = (23:15; 0:27). The negative of QT yields a more instructive

graph than QT itself. It is seen that the sum of squares function is essentially 
at in the

direction of 
 for �xed values of c. This illustrates the previous discussion on large NLS

estimates of 
. For large values of 
, the value of the logistic transition function changes

from 0 to 1 almost instantaneously at c, and even large changes in 
 have only little e�ect

on the shape of the function. This is re
ected in the standard error for 
̂.

- insert Figure 2 about here -

The transition function G(�12yt�1; 
; c), given in (55), is shown in Figure 3, both over

time and against the transition variable �12yt�1. The estimates of the parameters 
 and

c are such that the change of the logistic function G(�12yt�1; 
; c) from 0 to 1 takes place

for values of �12yt�1 between 0 and 0.5. The bottom panel of Figure 3 also contains

the (rescaled) seasonally adjusted unemployment rate obtained as described above, where

circles indicate individual peaks and troughs as dated by the NBER. These peaks and

troughs di�er from the reference business cycle turning points, as the unemployment rate

is, on average, leading at peaks and lagging at troughs. The two regimes in the LSTAR

model correspond reasonably close to the contractions and expansions as identi�ed by these

turning points simply because G(�12yt�1) is a monotonic transformation of the transition

variable �12yt�1. As the transition variable is the change in the unemployment rate over

the previous year, the switches between the regimes do not coincide exactly with the peaks

and troughs of the unemployment rate but usually take place a few months later.

- insert Figure 3 about here -
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The dominant root of the characteristic polynomial for G(�12yt�1; 
; c) = 0 is real with

modulus equal to 0.97. As the value of the transition function increases, the modulus of

the dominant root increases monotonically and is greater than unity for G(�12yt�1; 
; c) >

0:93. At the same time, however, for G(�12yt�1; 
; c) > 0:83 the dominant root becomes

a complex pair, which means that the series recovers from a recession quite quickly. This

is the source of nonlinearity here. Note in particular that transitions from low to high un-

employment do not occur in the same fashion. This �nding is con�rmed by deterministic

extrapolation of the LSTAR model, starting from an arbitrary point in the history of the

series. Doing this for the estimated two-regime LSTAR model reveals that, irrespective

of the starting point, the extrapolated series converges to a unique seasonal pattern rep-

resented by the seasonal dummy variables, where the unemployment rate varies between

4.95% in January and 3.4% in September. The extrapolated series starting from December

1989, the last month of the estimation period, is shown in Figure 4.

- insert Figure 4 about here -

To gain further insight in the dynamic properties of the estimated STAR model,

we assess the propagation of shocks by computing several generalized impulse response

functions. We compute history- and shock-speci�c GIs as de�ned in (39) for all ob-

servations in the estimation sample and values of the normalized initial shock equal to

Æ=�̂" = �3;�2:9; : : : ;�0:2;�0:1, where �̂" denotes the estimated standard deviation of

the residuals from the LSTAR model. For each combination of history and initial shock,

we compute GI�y(h; Æ; !t�1) for horizons h = 0; 1; : : : ; N with N = 60. The conditional

expectations in (39) are estimated as the means over 1000 realizations of �yt+h, obtained

by iterating on the LSTAR model, with and without using the selected initial shock to ob-

tain �yt and using randomly sampled residuals of the estimated LSTAR model elsewhere.

Impulse responses for the level of the unemployment rate are obtained by accumulating the

impulse responses for the �rst di�erences, that is GIy(h; Æ; !t�1) =
Ph

i=0GI�y(i; Æ; !t�1).

TheGI's for speci�c histories and shocks are used to estimate the density ofGIy(h;A;B),

where A and B denote sets of selected shocks and histories, respectively. The set of shocks

A is the set of all negative or positive shocks, whereas the set B consists of the histories for

which the value of the transition function G(�12yt�1; 
; c) in (55) is greater (`recession')

and less (`expansion') than 0.5. The densities are obtained with a standard Nadaraya-

Watson kernel estimator, using �(Æ=�̂") as weight for GIy(h; Æ; !t�1), where �(z) denotes

the standard normal probability distribution. The reason for using this weighting scheme is

that the standardized shocks Æ=�̂" then e�ectively are sampled from a discretized normal

distribution and the resulting distribution of GIy(h; "t;
t�1) should resemble a normal

distribution if the e�ect of shocks is symmetric and proportional to their magnitude (as is
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the case in linear models). Finally, the highest density regions are then estimated using

the density quantile method outlined in Hansen (1996).

- insert Figure 5 about here -

Figure 5 shows HDRs for distributions of GIy(h;A;B) for h = 0; 3; 6; : : : ; 60. It appears

that several interesting asymmetries in the impulse responses exist. First, shocks occurring

during recessions tend to be magni�ed during the �rst 6 months, after which their e�ect

declines gradually towards zero. Shocks occurring during expansions reach their maximum

e�ect only after 12 months, where it should also be noted that the e�ect of (especially)

negative shocks appears to become smaller initially (during the �rst 3 months). Second,

the e�ect of positive shocks during expansions is much larger than the e�ect of negative

shocks during the �rst 3 years after impact. On the other hand, there does not appear to be

much asymmetry between the impulse responses for positive and negative shocks occurring

during recessions. The latter observations are con�rmed by the measure of asymmetric

impulse response ASYy(h; Æ; !t�1) de�ned in (42). Table 4 contains means and standard

deviations of the random asymmetry measures ASYy(h;A
+
; B) for h = 12; 24; 36; 48 and

60, for di�erent sets of shocks A de�ned as A(ll) = f"tg, S(mall) = f"tj1 � j"t=�̂"j > 0g,

M(edium) = f"tj2 � j"t=�̂"j > 1g and L(arge) = f"tj3 � j"t=�̂"j > 2g. The set B con-

sists of all histories (`unconditional') or only of those histories for which the transition

function G(�12yt�1; 
; c) in (55) is larger (`recession') and smaller (`expansion') than 0.5.

To judge whether the mean of ASYY (h;A
+
; B) is signi�cantly di�erent from zero, we use

�ASYY (h;A+;B)=
p
nA, where �ASYY (h;A+;B) is the standard deviation of ASYY (h;A

+
; B)

and nA is the number of shocks Æ in the set A for which ASYY (h; Æ; !t�1) is computed, as

standard error for the mean. The reason for dividing by nA is that di�erent realizations

ASYY (h; Æ; !t�1) are not independent across histories !t�1 but are independent across

shocks Æ. It is seen that symmetry can almost never be rejected for impulse responses for

shocks occurring during recessions, while asymmetry for shocks occurring during expan-

sions is found for all sizes of shocks at all horizons considered.

- insert Table 4 about here -

The �nal 10 years of data, from January 1990 until December 1999, are used to evaluate

the forecast performance of the estimated AR and LSTAR models. For each point from

December 1989 up to December 1998, we compute 1 to 12-steps ahead forecasts of the

unemployment rate from the AR model given in (53) and the LSTAR model as given in

(54)-(55). To obtain the forecasts from the LSTAR model we use the bootstrap method

outlined in Section 6.1. We thus obtain 109 1- to 12-step ahead forecasts. The parameters

are not updated as new observations become available. Table 5 contains several forecast
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evaluation criteria, based upon the entire forecast period and conditional upon the regime

that is realized at the forecast origin. That is, the forecasts yt+hjt are grouped depending

on whether the transition function G(�12yt�1; 
; c) in (55) is smaller or larger than 0.5.

Interestingly, MPE and MedPE suggest that both models render biased forecasts in both

regimes. When the unemployment rate is declining, that is, during periods of expansions,

both models are overly pessimistic and predict too high unemployment rates on average.

When the unemployment rate is increasing, it is consistently under-predicted by the AR

model. In this case, the STAR model overpredicts but seems closer to the mark than

the AR model. Comparing the MSPE for the AR and STAR models, it is seen that the

nonlinear models o�er improved forecast performance at short forecast horizons during

expansions and at long horizons during recessions, where a reduction of up to 30% in the

MSPE is attained.

- insert Table 5 about here -

This example shows that nonlinear STAR models can yield informative inference on a

macroeconomic time series, and that it also may forecast well.

8 Concluding remarks

In this paper we have surveyed recent developments related to the STAR model, includ-

ing several novel extensions of the basic 2-regime model and recently designed model

and forecast evaluation techniques. So far the STAR model has mainly been applied to

macroeconomic time series. Applications in other areas, such as �nance and marketing,

may therefore be a major area of future research. While there has been some work on

vector STAR models, more research is needed to investigate the properties of such models.

Finally, incorporating smooth transitions in panel data models is another challenging new

area. A recent paper by Johansen (1999) is one of the �rst attempts in this direction.
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Table 1: LM-type tests for STAR nonlinearity for monthly US unemployment rate

Transition Standard tests Heterosked. rob. tests Outlier robust tests

variable st LM1 LM3 LMe
3

LM4 LM1 LM3 LMe
3

LM4 LM1 LM3 LMe
3

LM4

All regressors

�12yt�1 0.039 0.150 0.044 0.532 0.017 0.316 0.023 0.810 0.062 0.098 0.063 0.541

�12yt�2 0.100 0.037 0.126 0.093 0.068 0.373 0.088 0.628 0.080 0.070 0.100 0.576

�12yt�3 0.129 0.162 0.160 0.326 0.130 0.737 0.162 0.592 0.078 0.269 0.098 0.416

�12yt�4 0.308 0.665 0.354 0.745 0.244 0.755 0.291 0.657 0.133 0.523 0.158 0.379

�12yt�5 0.404 0.662 0.503 0.886 0.250 0.677 0.330 0.561 0.197 0.463 0.276 0.691

�12yt�6 0.378 0.588 0.430 0.306 0.130 0.603 0.185 0.899 0.191 0.315 0.256 0.262

t 0.386 0.978 0.434 0.864 0.319 0.966 0.362 0.548 0.447 0.924 0.503 0.698

Intercept and monthly dummies

�12yt�1 0.530 0.753 0.539 0.791 0.530 0.505 0.528 0.418 0.502 0.728 0.533 0.874

�12yt�2 0.738 0.760 0.628 0.862 0.681 0.804 0.698 0.796 0.637 0.799 0.564 0.947

�12yt�3 0.881 0.913 0.783 0.934 0.832 0.822 0.806 0.722 0.774 0.882 0.657 0.940

�12yt�4 0.482 0.966 0.812 0.966 0.850 0.821 0.807 0.894 0.857 0.892 0.715 0.953

�12yt�5 0.941 0.946 0.834 0.961 0.891 0.873 0.676 0.875 0.889 0.921 0.801 0.983

�12yt�6 0.803 0.857 0.781 0.856 0.798 0.824 0.719 0.853 0.897 0.880 0.890 0.925

t 0.107 0.616 0.144 0.847 0.145 0.731 0.193 0.775 0.152 0.442 0.192 0.649

Intercept and lagged dependent variables

�12yt�1 0.025 0.073 0.021 0.135 0.009 0.186 0.013 0.331 0.061 0.110 0.053 0.287

�12yt�2 0.053 0.019 0.066 0.064 0.028 0.279 0.041 0.505 0.091 0.061 0.110 0.237

�12yt�3 0.050 0.158 0.064 0.268 0.022 0.283 0.033 0.517 0.063 0.171 0.078 0.258

�12yt�4 0.161 0.842 0.176 0.710 0.055 0.598 0.077 0.594 0.093 0.617 0.091 0.412

�12yt�5 0.208 0.460 0.284 0.476 0.083 0.491 0.133 0.686 0.099 0.273 0.140 0.308

�12yt�6 0.289 0.057 0.319 0.119 0.043 0.183 0.075 0.306 0.123 0.083 0.165 0.128

t 0.662 0.976 0.715 0.991 0.303 0.936 0.331 0.916 0.639 0.962 0.703 0.963

Seasonally adjusted series

�12yt�1 0.009 0.062 0.010 0.086 0.003 0.135 0.005 0.220 0.013 0.054 0.013 0.126

�12yt�2 0.011 0.009 0.016 0.008 0.008 0.111 0.012 0.174 0.016 0.017 0.025 0.086

�12yt�3 0.007 0.065 0.011 0.168 0.007 0.280 0.011 0.325 0.007 0.050 0.011 0.142

�12yt�4 0.029 0.501 0.041 0.500 0.016 0.381 0.023 0.511 0.014 0.243 0.019 0.194

�12yt�5 0.058 0.270 0.095 0.450 0.027 0.418 0.054 0.777 0.023 0.100 0.038 0.186

�12yt�6 0.087 0.046 0.094 0.120 0.015 0.265 0.026 0.402 0.031 0.065 0.043 0.104

t 0.619 0.963 0.685 0.966 0.302 0.934 0.357 0.805 0.585 0.947 0.649 0.942

p-values of F variants of the LM-type tests for STAR nonlinearity of the monthly US unemployment rate, January

1970-December 1989. The tests are applied in an AR(15) model for the �rst di�erences, including a lagged level

term and monthly seasonal dummies. The LM1, LM3, LM
e
3 and LM4 statistics are based on the auxiliary regression

models given in (19), (20), (21) and (23), respectively.
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Table 2: STAR model selection for monthly US unemployment

rate

Transition Ter�asvirta Escribano-Jorda

variable st H03 H02 H01 H0L H0E

Standard tests

�12yt�1 0.495 0.347 0.009 0.107 0.612

�12yt�2 0.014 0.769 0.011 0.002 0.079

�12yt�3 0.150 0.889 0.007 0.091 0.618

�12yt�4 0.657 0.976 0.029 0.371 0.676

�12yt�5 0.408 0.751 0.058 0.262 0.595

�12yt�6 0.047 0.538 0.087 0.025 0.159

t 0.917 0.880 0.619 0.878 0.885

Heteroskedasticity robust tests

�12yt�1 0.052 0.359 0.003 0.268 0.237

�12yt�2 0.019 0.526 0.008 0.303 0.201

�12yt�3 0.243 0.720 0.007 0.028 0.194

�12yt�4 0.448 0.814 0.016 0.263 0.416

�12yt�5 0.159 0.478 0.027 0.109 0.542

�12yt�6 0.070 0.263 0.015 0.275 0.119

t 0.845 0.938 0.302 0.387 0.752

Outlier robust tests

�12yt�1 0.199 0.304 0.013 0.286 0.566

�12yt�2 0.021 0.511 0.017 0.220 0.494

�12yt�3 0.134 0.705 0.007 0.157 0.520

�12yt�4 0.479 0.884 0.014 0.154 0.372

�12yt�5 0.143 0.579 0.023 0.040 0.174

�12yt�6 0.159 0.505 0.031 0.060 0.202

t 0.896 0.771 0.585 0.880 0.780

p-values of F variants of the LM-type tests used in the speci�cation procedures

of Ter�asvirta (1994) and Escribano and Jord�a (1999), applied to the monthly

US unemployment rate, January 1970-December 1989. The tests are applied in

an AR model for the seasonally adjusted series with 15 lagged �rst di�erences

and including a lagged level term. The hypotheses H01, H02, H03, H0L and

H0E are discussed in Section 5.1.
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Table 3: Diagnostic tests of LSTAR model estimated for monthly US unemployment rate

Tests for q-th order serial correlation

q 2 4 6 8 10 12

p-value 0.386 0.454 0.693 0.859 0.814 0.927

Tests for parameter constancy

Constant and dummies Lagged dependent variables

LMC,1 LMC,2 LMC,3 LMC,1 LMC,2 LMC,3

p-value 0.565 0.638 0.894 0.536 0.730 0.847

Tests for remaining nonlinearity

Transition Constant and dummies Lagged dependent variables

variable s2t LMEMR;1 LMEMR;2 LMEMR;3 LMEMR;1 LMEMR;2 LMEMR;3

�12yt�1 0.628 0.717 0.828 0.603 0.858 0.923

�12yt�2 0.379 0.623 0.686 0.629 0.822 0.225

�12yt�3 0.505 0.787 0.584 0.821 0.980 0.293

�12yt�4 0.586 0.664 0.777 0.684 0.975 0.825

�12yt�5 0.441 0.571 0.845 0.739 0.947 0.880

�12yt�6 0.221 0.483 0.648 0.747 0.921 0.984

Diagnostic tests for estimated LSTARmodel for the monthly US unemployment rate. LMEMR;j and LMC;j ,

j = 1; 2; 3, denote the LM-type tests for no remaining nonlinearity and parameter constancy, respectively,

based on (28) including auxiliary regressors �0ixts
i
2t and �

0

3+ixts
i
2tG1(s1t; 
1; c1) for i = 1; : : : ; j.

Table 4: Asymmetry measures for impulse responses in LSTAR model

Unconditional Recession Expansion

h A S M L A S M L A S M L

12 �0:00 �0:04� 0:06� 0:26� 0:00 0:00 0:00 0:02 �0:00 �0:06� 0:09� 0:38�

(0:15) (0:08) (0:16) (0:40) (0:07) (0:05) (0:09) (0:23) (0:18) (0:09) (0:18) (0:41)

24 0:00 �0:03� 0:05� 0:19� 0:00 �0:01 0:02� 0:06� 0:00 �0:04� 0:07� 0:26�

(0:11) (0:06) (0:12) (0:26) (0:06) (0:04) (0:07) (0:20) (0:12) (0:07) (0:13) (0:26)

36 0:00 �0:01� 0:02� 0:06� 0:00 �0:00 0:00 0:02 0:00 �0:01� 0:03� 0:08�

(0:06) (0:04) (0:06) (0:14) (0:05) (0:03) (0:05) (0:14) (0:06) (0:04) (0:06) (0:14)

48 �0:00 0:00 �0:00 �0:01 0:00 0:00 0:00 0:00 �0:00 0:00 �0:00 �0:02�

(0:03) (0:03) (0:03) (0:07) (0:03) (0:03) (0:04) (0:08) (0:03) (0:03) (0:03) (0:06)

60 �0:00� 0:00 �0:01� �0:02� 0:00 0:00 �0:00 �0:00 �0:00� 0:00 �0:01� �0:03�

(0:03) (0:02) (0:03) (0:05) (0:02) (0:02) (0:03) (0:04) (0:03) (0:03) (0:03) (0:05)

Mean and standard deviation (in parentheses) of distribution of asymmetry measure ASY =y (h; A
+
; B) in estimated

LSTAR model for the monthly US unemployment rate. Means larger than two times �ASYY (h;A+;B)=
p
nA are marked

with an asterisk, where �ASYY (h;A+;B) is the standard deviation of ASYY (h;A
+
; B) and nA is the number of shocks

Æ for which ASYY (h; Æ; !t�1) is computed. The di�erent sets of shocks are de�ned as A(ll) = f"tg, S(mall) = f"tj1 �
j"t=�̂"j > 0g, M(edium) = f"tj2 � j"t=�̂"j > 1g and L(arge) = f"tj3 � j"t=�̂"j > 2g. Recession and expansion relate to

histories for which the value of the transition function G(�12yt�1; 
; c) is smaller and larger than 0.5, respectively.
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Figure 1: Monthly seasonally unadjusted US unemployment rate, males aged 20 and above,

June 1968-December 1999.

Figure 2: Negative of the sum of squares function QT (
; c) of the LSTAR model for

the monthly US unemployment rate in the neighborhood of the NLS estimate (
̂; ĉ) =

(23:15; 0:27).
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(a) Transition function versus �12yt�1

(b) Transition function versus time

Figure 3: Transition function in LSTAR model for monthly seasonally unadjusted US

unemployment rate against the transition variable �12yt�1 and over time, during the

estimation period (solid line) and forecasting period (dashed line). The dotted line repre-

sents the (rescaled) monthly seasonally adjusted unemployment rate. Solid circles indicate

NBER-dated unemployment peaks (P) and troughs (T).
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Figure 4: Deterministic extrapolation of LSTAR model for the monthly US unemployment

rate.
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(a) positive shocks, recession (b) positive shocks, expansion

(c) negative shocks, recession (d) negative shocks, expansion

Figure 5: 50% (black), 75% (hatched) and 90% (white) highest density regions for gen-

eralized impulse responses in the LSTAR model for the monthly US unemployment rate.

Recession and expansion relate to histories for which the value of the transition function

G(�12yt�1; 
; c) in (55) is larger and smaller than 0.5, respectively.
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