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Abstract

It has been shown in the literature that the task of estimating the parameters
of nonlinear models may be tackled with optimization heuristics. Thus, we at-
tempt to carry these intuitions over to the estimation procedure of smooth tran-
sition autoregressive (STAR, Teräsvirta, 1994) models by introducing the fol-
lowing three stochastic optimization algorithms: Simulated Annealing, (Kirk-
patrick, Gelatt, and Vecchi, 1983), Threshold Accepting (Dueck and Scheuer,
1990) and Differential Evolution (Storn and Price, 1995, 1997). Besides consid-
ering the performance of these heuristics in estimating STAR model parameters,
our paper additionally picks up the problem of identifying redundant parame-
ters which, according to our view, has not been addressed in a satisfactory way by
now. The resulting findings of our simulation studies seem to argue for an imple-
mentation of heuristic approaches within the STAR modeling cycle. In partic-
ular for the case of STAR model specification, an application of these heuristics
might offer valuable information to empirical researchers.

Keywords: Univariate time series modeling, Regime-switching models, Model
specification, Heuristic optimization.

JEL classification: C22, C51, C63

1 Introduction

Nonlinear modeling approaches attracted a great deal of attention over the past
decades. Hence, at least for prominent representatives like the threshold model of
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2 STAR Models 2

Tong (1978, 1983) and Tong and Lim (1980), the Markov-switching model of Hamil-
ton (1989), the artificial neural network model (see White, 1989 for an exposition)
or the smooth transition model (see Teräsvirta, 1998 for an exhaustive introduction)
we might assert that they have been well established not only in the theoretical time
series literature but also on many areas of application.1 The smooth transition model
which takes center stage in the following originated from Bacon and Watts (1971) and
was incorporated into an empirical modeling cycle by Teräsvirta (1994). Basically, it
can be described as a regime-switching model with the current state of the system
being defined by an observable variable and the transition between different regimes
being determined by a continuous parametric function. Within this framework we
are going to argue that the “problem of sensible starting values” (corresponding to
the well know fact that results of the optimization algorithms commonly used for es-
timation are affected by the choice of initial starting values) as well as the “problem of
redundant parameters” (i.e., the problem of imposing zero restrictions on individual
parameters) have not been addressed satisfactorily yet: Both requirements depend
on personal judgement by the model builder. Moreover, with rising lag lengths both
working stages turn out to be quite elaborate and time consuming.

Smooth Transition Autoregressive (STAR) models may be taken as generalized
TAR models. For the later, Wu and Chang (2002) and Baragona, Battaglia, and Cucina
(2004) already suggested an application of heuristic approaches for parameter esti-
mation. Thus, we consider it worthwhile an attempt carrying forward the general
perceptions of those authors to the STAR framework. Yet, our study supplements
theirs by introducing new heuristics within the STAR context. Moreover, our sug-
gested algorithms explicitly target the “problem of redundant parameters” which has
neither been considered by Wu and Chang (2002) nor by Baragona et al. (2004).

Based on a summarized representation of the methodological properties of STAR
models in section 2, section 3 introduces two optimization heuristics which seem
generally capable of estimating STAR-model parameters. Given these encouraging
findings, section 4 broadens the conceptual formulation to the “problem of redun-
dant parameters” and introduces a third heuristic estimation approach: Based on
two STAR-specifications taken from the literature we demonstrate by means of Monte
Carlo simulations that heuristics optimization techniques might be adopted to the
challenge of finding parsimonious model specifications. Section 5 concludes.

2 STAR Models

2.1 Methodological Representation

This section summarizes the methodological framework under consideration. The
chosen specifications are based on the article of van Dijk, Teräsvirta, and Franses

1 See Franses and van Dijk (2000) or Teräsvirta (2006) for overviews of the most common nonlinear
models in applied econometrics.
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2 STAR Models 3

(2002) which represents a recent overview of the STAR models literature. See also
Teräsvirta (1994, 1998) for further reading.

Let yt , st denote two time series. If we assume yt to depend on a vector of covari-
ates xt with the functional relationship between yt and xt being determined by the
“transition variable” st , a general approximation to this interrelationship might be
carried out as

yt =φ′
1xt +φ′

2xt ·G(st ;γ,c)+εt , (1)

with φi (i ∈ 1,2) marking two different parameter vectors, G(st ;γ,c) denoting a con-
tinuous “transition function” and εt representing the error term.2 Whereas equa-
tion (1) already depicts the original smooth transition approach of Teräsvirta (1994),
a minor modification results in the following specification

yt =φ′
1xt · (1−G(st ;γ,c))+φ′

2xt ·G(st ;γ,c)+εt . (2)

For G(st ;γ,c) ∈ [0,1], equation (2) has the straightforward interpretation as a two-
regime-switching model allowing for a smooth passage between those regimes ap-
pointed to the extreme values of the transition function.

A very popular choice for the transition function is given by the logistic function

G(st ;γ,c)= (1+exp{−γ(st −c)})−1 , γ> 0 . (3)

With increasing values for st , function (3) changes monotonically from 0 to 1 with
the so-called “threshold parameter” c locating a well balanced situation between both
regimes as G(c ;γ,c) = 0.5. γ can be interpreted as a steepness parameter which de-
termines the speed of transition between both regimes. For γ → ∞, function (3)
collapses into a discrete indicator function whereby equation (4) reproduces a two-
regime case of the threshold autoregressive (TAR) model introduced by Tong (1978)
and Tong and Lim (1980).

Within this general class of models we turn our attention to the smooth transition
autoregressive (STAR) model. Along the lines of specification (2), STAR models can
be represented as

yt =(φ1,0 +φ1,1yt−1 + . . .+φ1,p yt−p) · (1−G(st ;γ,c)) (4)

+ (φ2,0 +φ2,1yt−1 + . . .+φ2,p yt−p) ·G(st ;γ,c)+εt .

Equations (3) and (4) constitute a “logistic smooth transition autoregressive”
(LSTAR) model. With regards to alternative STAR model variants (see, e.g., van
Dijk et al. (2002) for an overview of alternative STAR specifications) like “exponential

2 Basically, εt has to meet the requirements of a martingale difference sequence but most appli-
cations consider normally distributed error terms as this condition establishes equality between
nonlinear least squares estimation approaches and maximum likelihood estimation. Regularity
conditions for nonlinear least squares estimates being consistent and asymptotically normal are
given by (among others) Pötscher and Prucha (1997) or Wooldridge (1994).
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2 STAR Models 4

smooth transition autoregressive models” (ESTAR), it seems that LSTAR specifica-
tions reached an outstanding popularity in econometric applications: On the area of
business cycle analysis Teräsvirta and Anderson (1992) prefer LSTAR specifications
for modeling industrial production growth rates in nine out of the 14 cases under con-
sideration. Lütkepohl, Teräsvirta, and Wolters (1999) prefer a logistic transition func-
tion for modeling non-linearity in a German M1 demand equation. Finally, within the
field of financial econometrics Sarantis (2001), e.g., estimates STAR models of annual
stock price growth rates. His results indicate that the dynamics of the indices under
consideration point to LSTAR models in five out of seven cases. Hence, due to its out-
standing prominence, the logistic transition function does provide a natural starting
point for our Monte Carlo examples.3 Moreover, there are also methodological in-
ducements for a closer examination of the LSTAR model. As indicated by Chan and
McAleer (2002), the general problems of gradient based optimization techniques in
estimating STAR models might especially arise in the LSTAR framework.

The smooth transition regression framework might of course also be applied to
multivariate vector processes. Additionally, an introduction of further transition
functions to equation (1) would allow to incorporate further regime dependencies.
However, a majority of empirical applications has been confined to univariate settings
with the number of regimes being restricted to two (see, e.g., Skalin and Teräsvirta,
1999, Sarantis, 2001 or Skalin and Teräsvirta, 2002). Hence, our study also confines
its focus to the class of smooth transition models given by equations (1) or (2).4

2.2 Conventional Modeling Procedure

A detailed description of the STAR modeling cycle is given by Teräsvirta (1994). The
essential steps of this specification procedure might be summarized as

1. Specification of a linear AR model,

2. Testing the linear AR model against pre-selected STAR model candidates by a
sequence of Lagrange multiplier tests,

3. STAR model estimation by nonlinear least squares and model evaluation.

It goes beyond the aims of this paper to give a comprehensive account of the par-
ticulars of this well-established modeling cycle. The interested reader is referred to
the supplementary annotations of Escribano and Jordá (1999), Leybourne, Newbold,
and Vougas (1998) and Chen (2003) as well as to the survey of van Dijk et al. (2002)

3 See also Chan and McAleer (2003, p. 586): “STAR models, especially LSTAR models, have been
successfully applied in a number of areas.”

4 See the references in van Dijk et al. (2002) for further readings on more complex STAR speci-
fications. A recent contribution to the issue of vector smooth transition models has also been
published by Camacho (2004).
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2 STAR Models 5

hereunto. Instead, we focus our attention to the latter of the mentioned topics: Model
estimation, evaluation and re-specification.

The adjusted standard deviation of the residuals

σe =
√

e′e/(T −k)

with e denoting the vector of residuals, T marking the number of observations and
k representing the number of estimated variables, usually serves as objective func-
tion for selecting the final STAR model specification . However, we also consider the
information criteria5 suggested by Akaike (AIC) and Schwartz (SBC)

AIC = ln(e′e)+2(T −k)/T

SBC= ln(e′e)+ (T −k) ln(T )/T

in our specification experiments. These standard statistics have been chosen as they
are usually being published in econometric analyses. Hence, as will be seen in the
following sections, they provide natural benchmarks for our own simulation results.

For a given set of parameters (γ0,c0) the task of estimating equation (1) (or, alter-
natively equation (2)) reduces to a straightforward application of the ordinary least
squares approach (Leybourne et al., 1998). The parameters of the transition func-
tion, however, are generally not known and cannot be derived from a closed form
solution. Estimation conventionally starts with a two dimensional grid-search over
(γ,c). Assuming plausible ranges for the values of c and γ, [r c

l ;r c
u] and [r γl ;r γu ], n

equidistant points can be selected within these intervals with ri = rl + (i − 1) · ru−rl
n−1

for i = 1 . . .n. For any pair (r c
i ,r γj ), the parameter vectors (φ1,φ2) are then estimated

via OLS. The outcome of this is a set of estimates (φ̂0
1, φ̂0

2; γ̂0, ĉ0). Eventually, a com-
bination of (r c

i ,r γj ) is chosen that corresponds to the global minimum of the residual
sum of squares. Yet, with n chosen too small the actual optimum might easily be
overlooked whereas large values for n increase the computational time substantially
(note that the grid consists of n2 combinations). Therefore, the recommended pro-
cedure (see, e.g., van Dijk et al., 2002, p. 19-21) starts with a coarse grid over γ and
c yielding initial starting values (φ̂0

1, φ̂0
2; γ̂0, ĉ0) which is then repeatedly refined by

means of numerical optimization algorithms like downhill or gradient search (e.g.,
the popular Broyden-Fletcher-Goldfarb-Shanno (BFGS) method). However, the solu-
tion space tends to have many local minima and the literature is well aware of the as-
sociated problems of deterministic numerical optimization techniques that are either
based on first order calculus (such as gradient search) or on complete enumeration

5 See Anderson (2002) for a simulation study considering the performance of various information
criteria in nonlinear settings.
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3 Heuristic Parameter Estimation 6

(as mimicked by grid search).6 Heuristic methods, on the other hand, are a new class
of optimization techniques that are able to overcome these problems.

3 Heuristic Parameter Estimation

The following pages might be conceived as introductory notes to the topic of heuristic
optimization in a STAR context. Subsection 3.1 transposes two single agent based op-
timization heuristics to the LSTAR estimation problem which has been constituted at
the end of section 2. Applied details of the suggested algorithms as well as simulation
results clarifying their persuasive performance in estimating the set of parameters
(φ1,φ2;γ,c) are presented within subsection 3.2.

3.1 Threshold Accepting and Simulated Annealing

Unlike traditional deterministic numerical methods, heuristic methods incorporate
non-deterministic stochastic elements. This randomness might flow into the gener-
ation of new candidate solutions and/or into the acceptance criterion for new solu-
tions.

3.1.1 The Threshold Accepting Algorithm

Table 1 opposes the gradient search approach to threshold accepting (TA), a method
introduced in Dueck and Scheuer (1990).7 x indicates the vector of objective variables
and f (x) is the corresponding value of the objective function. Both approaches are
neighborhood search methods where the new solution is within a certain distance
from the current solution.

The main differences between these two methods are that (i) TA starts off with a
random initial value, and (ii) TA also allows impairments of x that are not too bad, i.e.,
do not exceed a certain threshold (hence the name). Consequently, local optima can
be overcome, and, even if the initial solution is close to a local optimum, TA does not
tenaciously drive the convergence process towards this inferior solution. Typically,
the threshold is rather generous in the beginning, in the course of iterations, however,
it is lowered towards zero such that in the last iterations the behavior of this approach
assimilates the gradient search in that it does not allow impairments any longer. Yet,
even if the threshold equals zero, due to its inherent stochastics, TA still does not
equal gradient search

6 Chan and McAleer investigated finite sample properties of this conventional estimation proce-
dure by means of numerical simulations. For the STAR models under investigation they con-
clude: As LSTAR is a more complicated model than ESTAR, it is more difficult for the algorithm
to converge to the true values. BFGS is not a robust algorithm for estimating LSTAR. (Chan and
McAleer, 2002, p. 518f)

7 For presentations and applications see, e.g., Winker (2001), Maringer (2005), and Winker and
Maringer (2007).
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3 Heuristic Parameter Estimation 7

Table 1: Numerical search methods for minimization problems min
x

f (x)

(a) Gradient search

Initialize x with �good� guess

REPEAT
make sophisticated guess for ∆x
xn := x +∆x
if f (xn)< f (x)

then x := xn

UNTIL converged

(b) Threshold Accepting

Initialize x with random guess

REPEAT
make random guess for ∆x
xn := x+∆x
if f (xn)< f (x) + Threshold

then x := xn

lower Threshold
UNTIL halting criterion met

In the STAR estimation problem with a given lag structure, the variables of in-
terest are x = (c,γ) which are initialized randomly. In the search process itself, the
generation of ∆x consists of randomly deciding which i ∈ (1,2) of the two variables to
alter, and adding a normally distributed variable ∆xi ∼ N(0,ri ) to it. ri indicates the
range of the neighborhood from which the new solution will be drawn. Another main
ingredient of the TA is the threshold sequence which determines how tolerant the ac-
ceptance criterion is towards impairments. The initial value for the threshold should
be such that a certain percentage of impairments are accepted; this fraction ought
then to be lowered towards zero implying that only improvements are accepted. The
thresholds should therefore be chosen with respect to the distribution of the changes
in the objective function, ∆ f , – which is obviously linked to the distribution of the
∆xi ’s via the ri ’s.

3.1.2 The Simulated Annealing Algorithm

TA is a modified version of Simulated Annealing (SA, Kirkpatrick et al., 1983) which
uses a stochastic acceptance rule: impairments are accepted with a certain probability
p = 1/(1+exp(∆ f /Ti )) (Boltzmann function) or p = min(1,exp(−∆ f /θi )) (Metropo-
lis function) where θi is the “temperature” in iteration i . Initially, a high temperature
makes the acceptance of even large impairments quite likely; in the course of itera-
tions, the temperature is lowered – and so is the likelihood of accepting an impairing
∆x. For either function, the probability is the lower the more severe the impairment.
Note however that with the Metropolis function, improvements are always accepted
while the Boltzmann function accepts them with an increasing probability which is
always above 0.5. TA is computationally slightly less demanding because of its de-
terministic acceptance rule. In SA, on the other hand, even very severe downhill
steps have a non-zero probability of being accepted which might be advantageous if
changes in some of the decision variables have more severe effects on the objective
function than others (as we will find applies to our problem). Apart from the neigh-

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
Problem



3 Heuristic Parameter Estimation 8

borhood for generating new candidate solutions, the second main ingredient for this
heuristic is the cooling sequence which, akin to TA’s threshold sequence, ought to be
linked to the magnitude and distribution of the ∆ f ’s.

3.2 Implementation and Computational Results

3.2.1 Configuration

For the heuristic approaches,the initial values for γ are randomly drawn from an ex-
ponential distribution with expected value 1 while c comes from a uniform distri-
bution covering a 80% fractile of the observed transition variable series st . For the
generation of new candidate solutions in the optimization process, one of the two
variables was picked randomly and changed by a normally distributed random value
ε∼ N(0,σv ) where σc = .5 and σγ = 1. For the second main ingredient of the heuris-
tics, the threshold sequence (TA) and the cooling sequence (SA), respectively, 100 000
random combinations of γ and c and a corresponding neighbor were generated, the
remaining parameters of the STAR models where estimated and the differences in the
corresponding objective functions where computed. This resulted in a rough estimate
of the distribution of the ∆ f ’s. For TA, the initial threshold was set to the median of
these values which is then linearly lowered to 0 in the course of 80% of the iterations,
leaving the last 20% of the iterations for a strict downhill search. For SA, the stochas-
tic Metropolis function replaced the deterministic Threshold rule; the temperature
was chosen such that the corresponding TA Threshold Ti (or, if this is zero, a small
positive value ε) has a 50% probability to be exceeded, i.e., θi = max(ε,Ti )/ ln(0.5).
After the last iteration, either algorithm reports the best of all solutions found in the
search process which is often called the elitist. The number of iterations was limited
to 10 000. Implemented with Matlab 7, the runtime on a Pentium 4 pc was approxi-
mately five seconds.

In this implementation, we impose neither upper nor lower limits on the values
for γ in the search process (including the non-negativity constraint for γ). c , however,
must be within the range between the 10% and the 90% percentiles of the threshold
variable. Preliminary experiments showed that abandoning these limits in some cases
resulted in extreme values for c and γ where the transition function G was no longer
smooth or reserved one of the two regimes for a very limited number of observations
when the lag structure is optimized simultaneously.

3.2.2 Valuation of Suitability

As heuristics are non-deterministic, different runs can yield different results because
they, too, can converge to a local optimum. Repeated runs are therefore advisable,
and frequent convergence towards the known optimum or a reliable benchmark can
indicate the reliability of the method. For a first application, we chose the well-known

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
Problem



4 The Specification Problem 9

Canadian lynx data set described in and with the lag structure of Teräsvirta (1994)

yt =
∑
`∈L1

α`yt−`+
∑
`∈L2

β`yt−` ·G(γ,c, yt−3)+et (5)

G(γ,c, yt−3)=
(
1+exp

(−γ
σy

· (yt−3 −c)
))−1

(6)

where L1 = {1} and L2 = {2,3,4,9,11} are the sets of included lags. The objective is to
find values for γ and c that minimize the adjusted standard deviation of the residuals,
σu . The reported optimal values are γ∗/σ̂y = 1.73/1.8 ,c∗ = 2.73 and will be used as
benchmark.

Table 2 summarizes some key statistics from a total of 8216 runs with different
objective functions (standard deviation of the residuals, Akaike’s information crite-
rion; Schwarz Bayesian Criterion) and algorithms. The best results for the individual
settings are given by the “minimum” line whereas “maximum” identifies the worst
results found. As a measure of the algorithms’ convergence rates we also computed
the standard deviation (“SD”) for each set of estimation results. Overall, these results
indicate that both heuristics have no apparent problems in identifying the optimal
solution (γ∗,c∗) = (1.76,2.73) for this instance. (Deviations of the optimized γ̂ from
the afore mentioned benchmark solution are due to the higher precision of σ̂y .)

Table 2: Results for the Lynx data set with given lag structure
criterion σe AIC SBC
heuristic SA TA SA TA SA TA
minimum 0.186924 0.186924 -3.279613 -3.279613 -3.074974 -3.074974
average 0.186961 0.186924 -3.279613 -3.279613 -3.074973 -3.074974
maximum 0.212929 0.186925 -3.279599 -3.279609 -3.074950 -3.074973
SD 0.000776 0.000000 0.000002 0.000000 0.000002 0.000000
runs 1378 1367 1368 1368 1368 1367

4 The Specification Problem

The previous section already enlightened the ability of TA and SA heuristics to find
optimal parameter estimates (φ∗

1 ,φ∗
2 ;γ∗,c∗) within a given lag structure. Yet, from

the viewpoint of an application-oriented economist this seems to be only a neces-
sary characteristic of our estimation proposal. Model evaluation and respecification
surely represents the more demanding and time consuming challenge in empirical
applications of the STAR modeling cycle. As complete enumeration of all possible
lag structures usually proves unfeasible within reasonable time, the common way of
finding a parsimonious model is to start with a full lag structure and then to keep

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
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4 The Specification Problem 10

on estimating the parameters, removing lags whose estimates do not reach a mini-
mum level of significance.8 But this approach suffers from two severe shortcomings:
relevant lags might be excluded prematurely, and the exclusion process might be mis-
guided when one or more of the interim parameter estimations report local optima.

Indeed, experience taught us that this kind of “experimenting with more parsi-
monious models” bears its problems, as this task often turns out to be considerably
time consuming. However, this instance seems to constitute an unstudied problem
for a broader application of optimization heuristics. This section therefore analyzes
the performance of heuristics whose underlying design simultaneously targets the
estimation as well as the specification problem. Following a short description of the
upgraded TA and SA configurations employed within this section, subsection 4.2 in-
troduces the ideas of a complementary, population based heuristic (namely Differ-
ential Evolution). The performance of these three optimization heuristics is being
analyzed by the two Monte Carlo studies of subsections 4.3 and 4.4, respectively. Sub-
section 4.5 completes the resulting findings with basic diagnostics of the heuristically
optimized model specifications. Subsection 4.6, which summarizes, leads over to our
general conclusions.

4.1 Joint Optimization of Parameters and Lags with TA and SA

In the context of VEC-models, Winker and Maringer (2005) have already shown that
the lag selection problem can be solved heuristically. From the heuristic’s point of
view, the main difficulty with a joint optimization of the parameters and the lag struc-
ture is that modifications come with different changes of the fitness function: while
a slight change in γ or c will not have a dramatic effect on f , including or excluding
one lag can easily make the current parameter values useless and has therefore a much
higher impact on f . Hence, given a certain threshold or temperature for the heuristic,
a change in the parameters (with values ∆ f closer to zero) will have a higher chance
of being accepted than a change in the lag structure. There would be several different
remedies to overcome this problem. To name just two rather straightforward modifi-
cations: One might introduce one high and one low threshold (cooling) sequence and
distinguish in the acceptance decision whether the parameters or the lag structure
has been changed. Alternatively, one might allow for several search steps for the pa-
rameters after a change in the lag structure and only then decide over the acceptance
of this sequence of modifications. In preliminary experiments, however, it turned out
that sticking to the simple original version of TA and SA, respectively, and allowing

8 To the best of our knowledge, the common procedure on the evaluation stage still initiates as fol-
lows: “Because of the existence of local minima [. . . ] the first task is to check whether the estimates
look reasonable. [. . . ] Excessively large standard deviation estimates for coefficient estimators [. . . ]
suggest that the model contains redundant parameters. All of the parameters estimated with large
standard deviations need not be redundant; usually, a subset is. Experimenting with more par-
simonious models reveals which variables can actually be omitted from the model.” (Teräsvirta,
1994, p. 213).

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
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4 The Specification Problem 11

Table 3: Pseudocode for the TA implementation
Initialize x = (c,γ) with random values;
Initialize binary string L with random values;
FOR it = 1 to NumberCandidateSolutions
with probability πp

add a random value to either c or γ;
else

randomly pick one element τ of L and switch its value from 0 (1) to 1 (0);
compute the resulting change in the objective function, ∆su;
if ∆su < threshold

keep modi�cations;
else

undo modi�cations and keep previous solution;
lower threshold;

END

for more restarts was more effective than complicating the algorithm and increasing
computational costs.

For the joint optimization problem at hand, this idea can be adopted as follows:
In each iteration, the algorithm first chooses (randomly) whether to modify the pa-
rameters of the transition function (with probability πp) or the lag structure L (with
probability 1−πp). Modifications of c and γ are carried out as described in the pre-
vious section. For the modification of the lag structure, one lag ` is picked randomly
and excluded if it is included in the current model and included otherwise. This can
be implemented with a binary vector of length L where L is the maximum lag and the
vector’s `-th element indicates whether or not lag ` is included; changing the status
can then be done by simply negating this element. Table 3 summarizes the main steps
of the algorithm.

For the application to the problem (5), two cases were distinguished were either
only the lags in L2 are changed or one lag in a randomly picked set L is modified.
The probability of whether to change a lag or one of the parameters γ and c is 0.5; if
applicable, the conditional probability to pick either L1 or L2 is also 0.5. The num-
ber of iterations were increased to 50 000 and 100 000, respectively. The threshold and
cooling sequences were determined akin to the original problem based on an estima-
tion of the distribution of the ∆ f ’s which reflect the new set of decision variables.

4.2 Joint Optimization with Differential Evolution

Both TA and SA can be classified as trajectory methods where, figuratively speaking,
a single agent traverses the solution space. While this type of optimization heuristic
is considered quite powerful and easy to implement, a vast and rough solution space

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
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4 The Specification Problem 12

with many local optima can make the search cumbersome: in order to overcome local
optima, the acceptance criterion should be rather tolerant towards impairments –
which, however, might also turn the search path into a (more or less directed) random
walk. Also, when the initial solution is far away from the global optimum or the path
between them is separated by regions of infeasible solutions, it is in the nature of local
search algorithms that a high number of iterations is required.

Opposed to these single agent methods, population based methods consider sev-
eral solutions at a time. Frequently in evolution or nature based methods, new candi-
date solutions are generated by (slightly) altering a solution (“mutation”) or by com-
bination of the properties of two or more existing solutions (“cross-over”). A rather
novel approach among this group is Differential Evolution (DE), introduced in Storn
and Price (1995) which has originally been developed for optimization in continu-
ous spaces and which needs no assumption about the distribution of the ∆ f ’s. Unlike
other optimized heuristics, DE is often claimed to require little or virtually no tuning.
Vesterstrøm and Thomsen (2004) find in a computational study with 23 benchmark
problems that DE outperforms other multi-agent methods. We therefore adapt DE as
an alternative heuristic approach to the STAR model selection problem.

The basic idea of DE is that for each solution xp of the current population, a new
offspring solution op is generated. If op has a lower objective value f than xp , the
offspring replaces xp , otherwise solution xp survives. A new candidate solution xc is
generated as follows. First, three distinct members of the current population, m1, m2,
and m3, are randomly picked such that p 6= m1 6= m2 6= m3. Then, an interim solution
õp is computed according to õp = xm1 +F · (xm2 −xm3). Finally, the new solution op

consists of a crossed-over combination between xp and õp where each element has a
probability of π to come from õp and from xp otherwise. The new candidate solution
op therefore contains (combinations of) values of up to four current solutions: xm1 ,
xm2 , xm3 , and xp . If one element of x has the same value in all four of these parenting
solutions, then so will the offspring’s. If they disagree, the offspring will either inherit
p’s value (with a low probability of (1−π)) or will be given a new value which is in the
neighborhood of the corresponding value in xm1 . The rule for generating new candi-
date solutions requires all decision variables to be continuous. For the lag selection
problem (and, eventually for the dummy selection problem for our second data set),
a vector of real numbers was used where each element represents one lag (and, where
applicable, one dummy); positive (negative) values indicate inclusion (exclusion) of
this lag and dummy, respectively. Table 4 lists the pseudo-code.

For the DE implementation, the crucial parameters are the population size, the
number of iterations, the scaling factor F , and the cross-over probability π. As a gen-
eral rule, the population size should be at least twice the number of decision variables.
For the Lynx data set with at most 24 lags and STAR parameters to be optimized, the
population was therefore set to P = 50. Typically, F = 0.5 and π = 0.8 or π = 0.9 are
chosen; we used F = 0.5 and π= 0.8 for any of the following models. In order to make
the results comparable to those from SA and TA, the number of iterations in DE was
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Table 4: Pseudocode for the DE implementation
Initialize x = (c,γ) with random values;
Initialize real string L with random values;
FOR it = 1 to (NumberCandidateSolutions/PopulationSize)

Generate new o�spring solutions:
FOR p = 1 to PopulationSize

randomly pick m1, m2, and m3 with p 6= m1 6= m2 6= m3

õc = xm1 +F · (xm2 −xm3);
Õc =Lm1 +F · (Lm2 −Lm3);
FOR i = 1 to 2

if RAND <π, op,i = õp,i else op,i = xp,i , end;
END;
FOR i = 1 to length(L )

if RAND <π, Op,i = Õp,i else Op,i =Lp,i , end;
END;
compute objective value f (op ,Op)

END

replace p-th current solution if o�spring p is �tter:
FOR p = 1 to PopulationSize

if f (op ,Op)< f (xp ,Lp)
replace xp with op and Lp with Op ;

end;
END

END

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
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set to 50000/P and 100000/P , respectively, so that in all three of the methods, the
same number of candidate solutions was generated.

4.3 Results for the Lynx Data Set

Based on a total of 2 645 runs, Table 5 reports individually optimized parameters and
lag sets for the three objective functions under consideration.9 Apparently, the al-
lowance for alternative lag structures has a positive effect on model quality, as, com-
pared to the benchmark result (indicated by “Ref”), a lower standard deviation of
residuals and lower information criteria, respectively, have been achieved.

Table 5: Optimal sets and parameters for the Lynx data set; optimized values: (a) γ,c ,
(b) γ,c,L2, (b) γ,c,L1,L2

objective criterion γ∗ c∗ L ∗
1 L ∗

2
σε
Ref 0.187 1.73 2.73 1 2,3,4,9,11
σe

(a) 0.18692448 1.75809577 2.72687199 1 2,3,4,9,11
(b) 0.17705925 2.33695618 2.75052253 1 1,2,3,4,5,6,10,11
(c) 0.17146943 2.05241257 2.82026793 1,2,5,6,7,8,10 1,2,3,4,5,6,7,8,10,11
AIC
(a) -3.27961345 1.75809577 2.72687199 1 2,3,4,9,11
(b) -3.38222454 2.11907745 2.75224411 1 2,3,4,10,11
(c) -3.40979719 2.15868458 2.6688362 1,2 1,2,3,4,10,11
SBC
(a) -3.0749743 1.75809577 2.72687199 1 2,3,4,9,11
(b) -3.1775854 2.11907745 2.75224411 1 2,3,4,10,11
(c) -3.1775854 2.11907737 2.75224412 1 2,3,4,10,11

However, both, the σ̂e as well as the AIC criterion estimates eventually suggest less
parsimonious models: In particular the residuals’ standard deviation encourages the
inclusion of a higher number of lags. The SBC, on the other hand, could be improved
by including the 10th instead of the 9th lag; apart from this (and, of course, slightly
different values for γ∗ and c∗), the result is equal to the benchmark result.

4.4 Results for the Unemployment Data Set

van Dijk et al. (2002) illustrate the STAR modeling cycle by means of an exemplary
analysis of monthly US unemployment rates (UER) for the period 1968 : 06− 1989 :
12. Apart from employing a functional relationship according to equation (2), their
general approach to this modeling task resembles the requirements already known

9 As both algorithms appear to select equal solutions, we did not tabulate optimized sets subject to
the respective heuristics. However, these results are available upon request.
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from the Lynx data set. However, the complexity of the optimization set increases
dramatically, as the large persistence of the series demands for an increased lag order
whereas its noticeable seasonal pattern also demands for an additional inclusion of
seasonal dummy variables. Starting with an unrestricted model for the first difference
of the series (∆y) with 15 lagged first differences in both regimes, their multiple-stage
approach of gradually removing all lagged first differences with an absolute value of
the corresponding t-statistic less than or equal to 1 finally ends up in the specification
given by equation (7). ∆12yt−1 corresponds to the lagged twelve-month difference of
the unemployment rate which, as an business cycle indicator, serves as transition
variable. Note that our benchmarks for the residual standard deviation as well as for
both information criteria differ from the reported values.10

∆yt =α0 +
∑

d∈D

αdDd (7)

+
(
β0yt−1 +

∑
`∈L1

β`∆yt−`

)
· (1−G(γ,c,∆12yt−1))

+
(
δ0yt−1 +

∑
`∈L2

δ`∆yt−`

)
·G(γ,c,∆12yt−1))+et

G(γ,c,∆12yt−1)=
(
1+exp

( −γ
σ̂∆12 yt−1

· (∆12yt−1 −c)
))−1

, (8)

with L1 = {1,6,8,10,13,15} and L2 = {1,2,7,13,14,15} indicating the sets of included
lags, D = {1,2,3,4,5,6,7,8,9,10} denoting the set of seasonal dummies and α0 mark-
ing a constant.

Much akin to the Lynx data set, our simulation exercises addressed estimation
problems with rising degrees of complexity as

(a) only the parameters γ and c ;

(b) in addition the set L2;

(c) in addition the set L1; and

(d) in addition the set of dummy variables, D,

were optimized. In accordance to the original approach of van Dijk et al. (2002), a
maximum of 15 lags was considered in specifying L1 and L2. As each specification
was restricted to contain a constant, a maximum of 11 seasonal dummy variables was
taken into account for the specification of D. Again, the threshold (TA) and cooling

10 Running the original code (available at http://swopec.hhs.se/hastef/abs/hastef0380.htm) under
OxGauss with m@ximize we recomputed benchmark values of σ̂e = 0.1959486, AIC =−3.1541526
and SBC =−2.7625808. The benchmarks for the set (γ∗,c∗), however, reproduced the published
results and have been estimated as (23.154240,0.273687).
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(SA) sequences were determined by preliminary simulations and the number of it-
erations was set to 10 000, 25 000, 50 000, and 100 000, respectively, with regards to
the complexity of the optimization problem. The probability of modifying either the
parameters or a set was again 0.5; if more than one set was to be optimized, the con-
ditional probabilities were an even 0.5 and 1/3, respectively. For the DE heuristic, the
scaling factor and the cross-over probability were not tuned to the considered opti-
mization problem but set to the values suggested by the literature. The population
size was chosen to be 30 plus two times the maximum number of lags to choose from;
the number of iterations was again set such that the number of candidate solutions
equals those in the TA and SA heuristics.

Optimized parameter values and lag structures for the different models are given
by Table 6. Again, different objective functions lead to different specifications. Under
the AIC, the benchmark result is confirmed. When the adjusted residuals’ standard
deviation is to be minimized, then the model becomes slightly less parsimonious than
the benchmark with one additional lag in L ∗

1 (compare models (a) and (d)). The
SBC, however, prefers more parsimonious models and reduces the number of lags in
L ∗

2 and doing completely without lagged variables in the other block with L ∗
1 =;.

4.5 Comparison of Models

As a matter of course, an appraisal of the heuristics’ performance can not be accom-
plished without a closer inspection of the characteristics of the finally estimated mod-
els. Hence, this subsection aims at reporting some “common sense” diagnostics. As
elementary diagnostic statistics, we present a subset of the battery of tests presented
by van Dijk et al. (2002) in their results section. These measures are complemented
by a basic visual inspection of the dynamical properties of the selected specifications.

The rows of Table 7 summarize residual based statistics for the specifications given
by Tables 5 (case (c)) and 6 (case (d)). Apart from replicating the computed values
for σe , AIC and SBC (rows two to four), we also added the models’ R̄2-statistics as
additional information about the goodness of fit. Considering misspecification tests,
the following statistics are reported: The Lomnicki-Jarque-Bera test (LJB), residuals’
skewness (SK) and excess kurtosis (EK), the results of LM tests for the absence of
residual autocorrelation up to orders two (LM(2)) and twelve (LM(12)) as well as the
results of ARCH tests up to order one (ARCH(1)) and four (ARCH(4)).11

Compared to the reference cases (columns two and six), we might state at least,
that the specifications found by our heuristics seem to come off equally well.

In general, the graphical inspection of the optimized specifications discovers
strong similarities in their respective dynamical patterns as well as with regards to

11 Please note that, in order to achieve the comparability of measures between our results and those
of van Dijk et al. (2002), all residual correlation tests have been based on auxiliary regressions
which omitted the estimates of γ and c in the underlying gradient. See Eitrheim and Teräsvirta
(1996) for the computational aspects of this test.
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Table 7: Diagnostic Statistics of optimized models
objective

Lynx data series UER data series
Ref (σe) σe AIC SBC Ref (AIC) σe AIC SBC

σe 0.187 0.171 0.174 0.178 0.196 0.196 0.196 0.201
AIC -3.280 -3.362 -3.410 -3.382 -3.154 -3.151 -3.154 -3.135
SBC -3.075 -2.876 -3.154 -3.178 -2.763 -2.745 -2.763 -2.859
R̄2 0.890 0.907 0.905 0.900 0.816 0.816 0.816 0.806

Misspecification Tests: Statistics with corresponding p-values
LJB 0.138 0.059 0.397 0.161 19.460 17.881 19.460 35.546
p-value 0.933 0.971 0.820 0.923 0.000 0.000 0.000 0.000
SK -0.020 -0.003 -0.046 -0.094 0.638 0.610 0.638 0.662
EK -0.175 0.117 -0.290 -0.048 0.564 0.548 0.564 1.342
LM(2) 0.421 0.436 0.428 0.436 0.958 1.262 0.958 0.093
p-value 0.658 0.648 0.653 0.648 0.385 0.285 0.385 0.911
LM(12) 0.403 0.680 0.562 0.853 0.475 0.654 0.475 0.456
p-value 0.958 0.764 0.865 0.597 0.927 0.793 0.927 0.938
ARCH(1) 22.232 12.704 26.844 32.152 0.863 0.965 0.863 1.181
p-value 0.000 0.000 0.000 0.000 0.353 0.326 0.353 0.277
ARCH(4) 23.406 16.160 28.830 37.646 1.319 1.485 1.319 1.870
p-value 0.000 0.003 0.000 0.000 0.858 0.829 0.858 0.760
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the reported benchmark models. Only the SBC-optimized model of the unemploy-
ment series makes a minor exception to this overall picture. Figure 1 visualizes fitted
values (dashed line in panel (a)), a skeleton plot (i.e., a deterministic simulation with
historical start values, solid line of panel (b)) and the estimated transition function of
this model. Judged by the skeleton plot, this specification seems to establish a stable
dynamical system with dominant seasonal pattern which does not differ much from
the reference case (see Figure 8 in the appendix). Yet, the estimated transition func-
tion indicates that a threshold model might also be successfully fitted to this series:
The time series plot of the transition function seems to jump between its extrem val-
ues (panel (d)). Analogously, the scatter plot of the transition function against the
transition variable nearly depicts a two-regime indicator function. Nevertheless, this
model basically seems to mirror the series’ dynamics in a satisfactory manner.

As the corresponding figures of the remaining optimized models do not indicate
any serious departures from their reference cases (see the appendix) we might there-
fore assess that our simulation exercises ended up with stable specifications which
turn out to give close approximations to the dynamical properties of the analyzed
series.

4.6 Comparison of Methods

The comparison of the heuristical optimized models with their benchmarks illus-
trated that TA, SA, and DE are well apt to tackle the STAR model selection and pa-
rameter estimation problem. For given lag structures all of the three heuristics under
investigation identify the benchmark optimal values γ∗ and c∗ when being conceded
the same number of candidate solution that would be needed for a traditional grid
search. In particular DE for the Lynx data set and TA and DE for the UER data set
have in addition a rather low standard deviation in the reported results; repeated runs
therefore are likely to produce (more or less) equally good results.

When in addition the lag structures and, where applicable, the ideal number of
dummies have to be identified, SA and TA tend to find slightly different results in
repeated runs – which illustrates both the weakness and the strength of heuristic ap-
proaches. Like traditional methods, heuristics, too, can get trapped in local optima;
however, unlike traditional methods, they are non-deterministic, and repeated runs
might lead to different results since they include mechanisms that can overcome local
optima and that (theoretically) will let them eventually converge to the global opti-
mum. Hence, they are able to identify solutions that are at least as good as those
found by traditional deterministic approaches (i.e., the benchmark results) or even
better. However, it must be pointed out that these results, too, are not necessarily the
global ones: in the UER data set, e.g., the optimal result found for model (d) could
also have been identified under (c).

With respect to the individual convergence rates of our proposed algorithms, the
population based DE heuristic excels at our experiments. The box plots of Figure 2
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Figure 1: Suggested Model Specification, Objective: SBC
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visualize the distribution of results in our Lynx exercises for the TA as well as for the
DE heuristic.

Figure 2: Distribution of Results: Lynx Series

(a) Threshold Accepting (b) Differential Evolution

The single agent approach obviously suffers from rising standard deviations of
results for rising degrees of complexity whereas the population based DE algorithm
seems to converge with almost constant rate irrespective of the degree of complexity.
See the appendix (Table 8) for a detailed statistical summary of the observed results.
For a total of 3 031 runs, the outcomes of the more complex unemployment exercises
have been summarized by Tables 9.a and 9.b in the appendix. Obviously, the superior
performance of the DE heuristic is confirmed by this study. See Figure 3 for box plots
of the distribution of results.

Figure 3: Distribution of Results: Unemployment Series
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Neither of the heuristic approaches suggested in this contribution requires sub-
stantially more implementation skills than an automated model selection based on
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traditional deterministic approaches. TA and SA, however, require some parameter
tuning which, as demonstrated, can be done by following some simple rules; for DE,
high quality results could be achieved without any parameter tuning and simply using
typical values.

5 Conclusion

This paper aimed at pointing out that optimization heuristics might prove benefi-
cial on the specification stage of the STAR modeling cycle. Regarding our findings,
we think that we did come up with a clear indication of the general capacities of
our proposed heuristics: The results of simulated optimization tasks with different
degrees of complexity indicated a reliable convergence behavior for each of the sug-
gested heuristics. Heuristic methods therefore should be considered a reasonable
approach for the STAR model selection problem, in particular when the number of
models to choose from is rather big.

With regard to computational time, implementations were chosen where the
number of candidate solutions did not exceed the one typically needed for a deter-
ministic approach. With the computationally most expensive part of the algorithms
being the evaluation of candidate solutions, the heuristic methods required roughly
the same CPU time as their deterministic counterparts. Ideally, heuristic methods
should be given repeated runs which linearly increases the run time. At the same
time, CPU time could be more efficiently utilized by not having a fixed number of
iterations but an additional criterion that interrupts and restarts the heuristic when
the current run has seemingly converged (e.g., when no further improvement was
achieved over a certain number of iterations). Deterministic methods, on the other
hand, often do require substantially more computational time when the precision is
to be increased: a finer grid for the grid search, a more investigative lag selection
method and an increase in the number of lags (or dummies) to choose from fre-
quently increase the necessary CPU time exponentially.
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A Appendix

A.1 MC Results: Figures of Lynx Models

Figure 4: Suggested Model Specification: Reference Case
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Figure 5: Suggested Model Specification, Objective: σe
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Figure 6: Suggested Model Specification, Objective: AIC
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Figure 7: Suggested Model Specification, Objective: SBC
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A.2 MC Results: Figures of Unemployment Models

Figure 8: Suggested Model Specification: Reference Case
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Figure 9: Suggested Model Specification, Objective: σe

1970 1975 1980 1985 1990
−1

−0.5

0

0.5

1

1.5

2

2.5

First Differences of Unemployment Series
Actuals and Fitted Values

(a) Fitted Values

1970 1975 1980 1985 1990 1995 2000

3

4

5

6

7

8

9

10

11

U.S. Unemployment Series
Skeleton Plot and Historical Observations

(b) Skeleton

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

(c) Transition Function vs Trans. Variable

1970 1975 1980 1985 1990
0

0.2

0.4

0.6

0.8

1

(d) Transition Function in Time

D. Maringer, M. Meyer, Smooth Transition Autoregressive Models � New Approaches to the Model Selection
Problem



A Appendix 32

Figure 10: Suggested Model Specification, Objective: AIC
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