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SMOOTH TRANSITION EXPONENTIAL SMOOTHING 

Abstract 

Adaptive exponential smoothing methods allow a smoothing parameter to change over time, 

in order to adapt to changes in the characteristics of the time series. However, these methods 

have tended to produce unstable forecasts and have performed poorly in empirical studies. 

This paper presents a new adaptive method, which enables a smoothing parameter to be 

modelled as a logistic function of a user-specified variable. The approach is analogous to that 

used to model the time-varying parameter in smooth transition models. Using simulated data, 

we show that the new approach has the potential to outperform existing adaptive methods and 

constant parameter methods when the estimation and evaluation samples both contain a level 

shift or both contain an outlier. An empirical study, using the monthly time series from the M3-

Competition, gave encouraging results for the new approach. 
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INTRODUCTION 

Exponential smoothing is a simple and pragmatic approach to forecasting, whereby 

the forecast is constructed from an exponentially weighted average of past observations. The 

literature generally recommends that the smoothing parameters should be estimated from the 

data, usually by minimising the sum of ex post 1-step-ahead forecast errors (Gardner, 1985). 

Some researchers have argued that the parameters should be allowed to change over time, in 

order to adapt to the latest characteristics of the time series. For example, if there has been a 

level shift in the series, the exponentially weighted average should adjust so that an even 

greater weight is put on the most recent observation. A variety of adaptive exponential 

smoothing methods have been developed to deal with this problem. However, these methods 

have been criticised for leading to unstable forecasts (e.g. Fildes, 1979), and, indeed, 

empirical studies have shown that they are less successful than the simpler, traditional 

procedure of constant optimised parameters (e.g. Makridakis et al., 1982). 

This paper presents a new adaptive exponential smoothing method, which enables a 

smoothing parameter to be modelled as a logistic function of a user-specified variable. One 

simple choice for this variable is the magnitude of the forecast error in the previous period. 

The new method is analogous to that used to model the time-varying parameter in smooth 

transition models (see Teräsvirta, 1998). Using simulated and real data, we show that the new 

adaptive method challenges the performance of established adaptive approaches and constant 

parameter methods. 

In the next section, we review the literature on adaptive exponential smoothing 

methods. We then introduce our new approach. The fourth section illustrates the potential of 

the approach using two simulated series. In the fifth section, we perform a large-scale 

simulation study in order to compare the forecast accuracy of the new method with that of 

other methods. We then use a large data set of real time series to evaluate the robustness of 

the new method. The final section provides a summary and concluding comments. 
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ESTABLISHED ADAPTIVE EXPONENTIAL SMOOTHING METHODS 

There have been many different proposals for enabling the exponential smoothing 

parameters to adapt over time according to the characteristics of the series. Williams (1987) 

writes that it is widely accepted that in multi-dimensional smoothing, such as the Holt and 

Holt-Winters methods, only the smoothing parameter for the level should be adapted in order 

to avoid instability. It is, therefore, perhaps not surprising that the literature has focused 

largely on adaptive simple exponential smoothing. The forecasts from the adaptive simple 

exponential smoothing method are given by 

ttttt fyf )1(1 αα −+=+      (1) 

where ft+1 is the 1-step-ahead forecast made at period t and αt is the adaptive parameter. 

Although there is no consensus as to the most useful adaptive approach, the best 

known and most widely-used procedure was developed by Trigg and Leach (1967). Their 

method defines the smoothing parameter as the absolute value of the ratio of the smoothed 

forecast error to the smoothed absolute error: 
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where et is the forecast error at period t (et = yt - ft), and φ is set arbitrarily, with 0.2 being a 

common choice. Trigg and Leach explain that this formulation enables αt to vary according 

to the degree to which biased forecasts are obtained. Unfortunately, the approach sometimes 

delivers unstable forecasts. A number of researchers have tried to overcome this problem by 

restricting αt to take one of a set of discrete values when certain control limits have been 

broken. Whybark (1973) defines the control limits in terms of multiples of the forecast error 

standard deviation, σ. An indicator variable, δt, is defined as 
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The value of δt then determines whether αt takes a base value, B, a medium value, M, or a 

high value, H. Whybark suggests B = 0.2, M = 0.4 and H = 0.8, with 
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With Dennis’ (1978) method, αt changes when the number, Nt, of consecutive errors 

with the same sign has broken a control limit, L. Formally, Nt and αt are defined as 
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where B is a base value for αt, and λ is an incremental change. Common choices for the 

parameters are B = 0.2, L = 2 and λ = 0.6. Despite the attempts of Whybark, Dennis and 

others to overcome the problem of unstable forecasts, the experience of many users has been 

that instability remains (Fildes, 1979). 

The Kalman Filter has been used to adapt the parameter in simple exponential 

smoothing (Bunn, 1981; Enns et al., 1982; Snyder, 1988). However, the empirical results 

have not been particularly supportive (e.g. Ekern, 1981, 1982), and there is no single 

established best approach. A related area where the Kalman filter has become established is 

adaptive forecasting using weighted least squares, where the weighting incorporates limited 

memory on the estimation algorithm (see, for example, Young, 2003). The most popular such 

weighting scheme is the exponentially-weighted-past algorithm. The relationship to 

exponential smoothing can be seen by considering discounted least squares which reduces to 

simple exponential smoothing (see, for example, Harvey, 1990, §2.2.3). However, Young 
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(2003) shows that much improved results can be obtained if the parameters are modelled as 

simple stochastic processes (e.g. random walks), with the hyper-parameters (input variances 

or variance ratios), which effectively act as smoothing parameters, optimised by maximum 

likelihood, thus removing some of the subjectivity in the choice of more conventional 

exponential smoothing parameters (see also Young, 1999; Young et al., 1999). 

Mentzer (1988) proposes a simple, albeit ad hoc, adaptive method. He suggests using 

the absolute percentage forecast error from the most recent period as αt. In order to restrict αt 

to the interval [0,1], if the absolute percentage error is greater than 100%, αt is given a value 

of 1. Empirical evaluation gave encouraging results (Mentzer and Gomes, 1994).  

A relatively recent addition to the literature is the method presented by Pantazopoulos 

and Pappis (1996). They argue that, since the ideal value for αt would deliver ft+1 = yt+1, then this 

ideal value can be derived by substituting yt+1 for ft+1 in (1) and solving for αt to give 
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Since yt+1 is unknown at time t, the ideal value of αt for period t-1 is used for period t to give 
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In order to restrict αt to the interval [0,1], Pantazopoulos and Pappis propose that if αt is 

found to be outside the interval [0,1], then it is replaced by the limit value to which it is 

closer. Unfortunately, brief consideration of (2) suggests that the approach is unlikely to be of 

use. Since the 1-step-ahead forecast is also the multi-step ahead forecast for simple 

exponential smoothing, the numerator in (2) is a 2-step-ahead forecast error, while the 

denominator is a 1-step-ahead forecast error. This suggests that the expression in (2) will very 

often deliver values greater than 1. Following the rule of Pantazopoulos and Pappis, αt would 

then take a value of 1. The result is that αt very often takes a value of 1. Perhaps, the 
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explanation for the impressive empirical results reported by the authors is that they applied 

their approach to random walk series; αt = 1 is optimal for such series. 

Although there have been a large number of adaptive methods proposed, empirical 

evidence does not conclusively favour any one method. There is, therefore, scope for further 

comparison, and potential for an improved method that avoids the problems of instability. 

 

A NEW ADAPTIVE EXPONENTIAL SMOOTHING METHOD 

 Our new adaptive exponential smoothing method can be viewed as a type of smooth 

transition model. Granger and Teräsvirta (1993) and Teräsvirta (1998) provide useful reviews of 

these models and describe various applications. The essence of smooth transition models is that 

at least one parameter is modelled as a continuous function of a transition variable, Vt. A simple 

example is the following smooth transition regression model (STR) 

,tttt exbay ++=  

where     ( ) ,
exp1 t

t
V

b
γβ

ω
++

=  

and a, ω, β and γ are constant parameters. If, for example, γ < 0 and ω > 0, then bt is a 

monotonically increasing function of Vt, which varies between 0 and ω. Smooth transition 

autoregressive models (STAR) are of a similar form, except xt is replaced by lagged 

dependent variable terms, such as yt-1. The parameters of smooth transition models can be 

estimated using non-linear least squares (Granger and Teräsvirta, 1993, §7.4).  

In this paper, we propose a smooth transition adaptive exponential smoothing method, 

with smoothing parameter, αt, defined as a logistic function of a user-specified transition 

variable, Vt. Although the approach is applicable to all exponential smoothing methods, for 

simplicity, we focus, in this introductory paper, on the case of simple exponential smoothing. 

Smooth transition exponential smoothing (STES) is then written as 

,)1(1 ttttt fyf αα −+=+  
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where           ( ) .
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If γ < 0, αt is a monotonically increasing function of Vt. Hence, as Vt increases, the 

weight on yt rises, and correspondingly the weight on ft decreases. The logistic function 

restricts αt to lie between 0 and 1. Although a wider range can be justified (Gardner, 1985), 

the restricted range has strong intuitive appeal, and is the convention of most of the popular 

forecasting packages. A feature of the approach is that unlike the existing adaptive methods, 

historical data is used to calibrate the adaptive smoothing parameter, αt, through the 

estimation of β and γ in (3).  

The choice of the transition variable, Vt, is of crucial importance to the success of the 

method. Consideration of the adaptive methods described in the previous section leads to a 

number of different possible transition variables. The value of the smoothing parameter in all 

of the existing adaptive methods depends to varying degrees on the magnitude of the most 

recent period’s forecast error. Obvious candidates for the transition variable are, therefore, 

the square or the absolute value of the forecast error from the most recent period. An 

alternative to focusing solely on the most recent period’s forecast error is to use the mean 

squared error or mean absolute error from several recent periods. One could also use a 

percentage error measure as transition variable. 

 Another possible choice of transition variable is the adaptive parameter from one of 

the existing methods. For example, the popular Trigg and Leach parameter could be used 

directly as the transition variable. The derived values of the STES constant parameters, β and 

γ in (3), will then govern the degree to which the variation in the Trigg and Leach parameter 

influences the STES smoothing parameter. Clearly, if the data dictate that the Trigg and 

Leach smoothing parameter is of no value, then γ will be 0 and the smoothing parameter will 

be constant. The STES method, therefore, enables recalibration of the existing adaptive 

methods. 
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Van Dobben de Bruyn (1964) briefly proposes the use of a logistic function as 

smoothing parameter. He suggests a more general function than that in expression (3) with 

the absolute error as transition variable. He does not present empirical results, but, instead, 

focuses on a procedure for which “computation is simpler”. Obviously, computational 

constraints are now much reduced. 

An important issue for many forecasting applications is the estimation of prediction 

intervals to accompany point forecasts. For example, in inventory control, intervals enable the 

setting of appropriate levels of safety stock. Theoretical forecast error variance formulae are 

often derived for exponential smoothing methods by referring to the equivalent ARIMA model. 

However, there is no equivalent ARIMA model for the new STES method. The lack of 

equivalent ARIMA models for various non-linear exponential smoothing methods has led to 

prediction intervals being based on the equivalent state-space model.  Hyndman et al. (2001) 

derive theoretical forecast error variance formulae from the state-space models and Hyndman et 

al. (2002) generate prediction intervals by applying simulation to the models. In expressions (4)-

(6), we present the state-space formulation for the STES method.  

tttX εµ += −1        (4) 

tttt εαµµ += −1       (5) 

( ) .
exp1
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t

t
Vγβ

α
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where εt is a Gaussian white noise process. An alternative to the theoretical and model-based 

approaches is to use an empirical approach to estimate prediction intervals, such as that of 

Gardner (1988) or Taylor and Bunn (1999). It is also worth noting that the statistical 

framework of expressions (4)-(6) enables standard errors to be estimated for the model 

parameters and, therefore, significance testing of the transition variable, Vt.  
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EMPIRICAL ILLUSTRATION USING TWO SIMULATED TIME SERIES 

The adaptive methods reviewed in the second section of this paper were designed to 

enable the forecast function to adapt to level shifts. This has also been the main motivation in 

our development of the STES method. However, another feature of the method is that it can 

be useful for series with outliers. In this section, we use a simulated time series with level 

shifts and another with outliers to illustrate the potential usefulness of the method. We use the 

controlled environment of simulated data in order to create series with known properties.   

 

Description of the Study 

Simple exponential smoothing with a constant smoothing parameter, α, is optimal for 

an ARIMA(0,1,1) process with parameter θ=1-α. In view of this, it seems reasonable to 

generate the data from an ARIMA(0,1,1) process, interrupted by level shifts and (additive) 

outliers. We generated series of 100 observations. The first 80 were used to estimate method 

parameters and the remaining 20 were used to evaluate 1-step-ahead forecast performance. 

We focussed solely on 1-step-ahead prediction because adaptive exponential smoothing 

methods are designed to improve very short-term forecasting. Observations were generated 

from the following process:  

ttttt

ttt

shifteeuu

outlieruy

++−=
+=

−− 11 θ
     (7) 

where et ~ N(0,1), θ = 0.8 and u0 = 20. The variables outlieri and shifti were set as zero for all 

periods, except those for which we wanted to simulate a level shift or outlier. We modelled 

level shifts and outliers as increases of 25% of the underlying level. We chose 25% because it 

was the median level shift considered by Williams and Miller (1999). An in-sample level 

shift was represented by shift40 = 0.25 u39; an in-sample outlier by outlier40 = 0.25 u39; a post-

sample level shift by shift90 = 0.25 u89; and a post-sample outlier by outlier90 = 0.25 u89. We 

generated a time series from each of the following two processes: 
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Process A – Expression (7) with an in-sample level shift and a post-sample level shift.  

Process B – Expression (7) with an in-sample outlier and a post-sample outlier. 

We implemented the STES method with the squared error from the previous period, 

et
2, used as transition variable, Vt. We also applied constant parameter simple exponential 

smoothing and the Trigg and Leach adaptive parameter method. The constant parameter 

method is an obvious benchmark because of its widespread use. We chose the Trigg and 

Leach method because it is the best known, and probably most widely used, adaptive method.  

For the constant parameter exponential smoothing methods used in this paper, we 

calculated initial values for the smoothed components using the approach of Williams and 

Miller (1999), which is based on averages of the first few observations. To be consistent with 

our analysis of monthly data later in the paper, we calculated averages from the first 24 

periods. Since adaptive methods are used when it is believed that the characteristics of the 

series may vary over time, we simply used the first observation as the initial smoothed level 

for these methods. We derived parameter values for all methods in this paper by the common 

procedure of minimising the sum of squared 1-step-ahead forecast errors, and we employed 

the constrained non-linear optimisation module of the Gauss programming language.  

 

Results for the Series with Level Shifts  

 Figure 1 shows the time series generated from Process A with 1-step-ahead forecasts 

produced by constant parameter simple exponential smoothing. The optimised parameter of 

0.59 is not close to 0.2, which is the optimal value for all periods except the two with level 

shifts. The level shift in the estimation period has caused the parameter to be relatively high 

in order that the forecasts adjust reasonably quickly to the new level of the series.  

----------  FIGURES 1, 2 & 3  ---------- 

 Figure 2 shows the same time series with 1-step-ahead forecasts produced by the 

Trigg and Leach method. The adaptive smoothing parameter, αt, is plotted against the 
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secondary y-axis. The forecast function can be seen to react a little more quickly to the level 

shift than the constant parameter forecast function in Figure 1. The plot of the adaptive 

parameter shows particularly high values around the level shifts in periods 40 and 90; the 

parameter increases in order to lift the forecast function to the new level. However, the high 

volatility in the Trigg and Leach parameter is a worrying feature; the parameter seems to 

overreact to variation in the time series. It is, therefore, not surprising that the Trigg and 

Leach forecasts have been criticised for being unstable. 

Figure 3 shows the same series with forecasts produced by the STES method. As with 

the method of Trigg and Leach, the forecast function swiftly adapts to the level shifts. The 

plot of αt shows clear increases around the level shifts, but noticeably lower volatility than 

the Trigg and Leach parameter. Apart from the two level shift periods, αt takes a value of 

approximately 0.3. This is quite appealing since it is close to the value of 0.2, which is 

optimal for all periods except the two with level shifts. It is important to appreciate that the 

method’s parameters were estimated using only the first 80 observations. The reaction to the 

level shift in period 90 shows that the method is able to adapt in the post-sample period. The 

median absolute percentage error (MedAPE) for the 1-step-ahead forecasts for the 20 post-

sample periods was 1.8% for the STES method and 2.4% for both the constant parameter 

method and the Trigg and Leach method.  

Expression (8) shows the STES adaptive parameter plotted in Figure 3. The negative 

coefficient for the transition variable, et
2, implies that an increase in et

2 will result in an 

increase in αt. This enables the forecast function to adapt swiftly to the level shifts. The 

intuitive appeal of having a negative coefficient for series with level shifts motivates the 

inclusion of a non-positive constraint on the coefficient. We did not impose this constraint in 

this particular case, but we return to this issue later in the paper. 

     ( )2039.057.0exp1

1

t

t
e−+

=α      (8) 
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Maximum likelihood estimation of the state-space formulation of the STES method, 

in expressions (4)-(6), simplifies to the same least squares criterion we used to estimate the 

parameters in expression (8). Using the maximum likelihood module of the Gauss 

programming language, we derived: a standard error of 0.48 for the constant term, 0.57; a 

standard error of 0.019 for the transition variable coefficient, -0.039; and a value of –0.50 for 

the correlation between the estimation error in the two parameters. The standard error on the 

transition variable suggests that the variable is significant and that it is, therefore, worth using 

the STES method, rather than constant parameter simple exponential smoothing. To 

investigate the robustness of the formulation in expression (8) to parameter estimation error, 

we performed a Monte Carlo simulation, based on the parameter standard errors and 

correlation. We investigated how parameter estimation error affects the change in the 

adaptive parameter immediately after period 90, where the post-sample level shift occurred. 

A positive change is suitable for a level shift. The simulation results revealed that the 

probability of the change being negative was less than 2%, which is an encouraging result 

with regard to the robustness of the method.  

 

Results for the Series with Outliers  

 Figure 4 shows the time series generated from Process B with 1-step-ahead forecasts 

produced by simple exponential smoothing with a constant parameter. The relatively low 

value of 0.25 for the optimised parameter enables the method to be reasonably robust to the 

outliers, but there is still a noticeable rise in the forecast function following each outlier. 

----------  FIGURES 4, 5 & 6  ---------- 

 The Trigg and Leach adaptive parameter and 1-step-ahead forecasts are shown in 

Figure 5. The forecast function shows considerable reaction to the two outliers. It rises up as 

it did for the level shifts in Process A, and then returns to the level of the series very slowly. 

As for the series with level shifts, the high volatility in the parameter is a worrying feature. 
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Figure 6 shows the 1-step-ahead forecasts produced by the STES method. Again, the 

squared error from the previous period, et
2, was used as transition variable. The forecast 

function shows little if any reaction to the outliers. The plot of the adaptive parameter shows 

a decrease around the two outliers in order to put a reduced weight on the outlier. It is 

important to appreciate that the reaction to the outlier of period 90 is a post-sample result. 

Although the adaptive parameter has more variation than it did in Figure 3 for Process A, the 

variation is noticeably lower than that shown in Figure 5 for the Trigg and Leach parameter. 

The MedAPE for the 1-step-ahead forecasts for the 20 post-sample periods was 2.7% for the 

STES method, 3.4% for the constant parameter method, and 3.9% for Trigg and Leach.  

Expression (9) shows the adaptive smoothing parameter plotted in Figure 6. The 

positive value for the coefficient of the transition variable, et
2, implies that an increase in et

2 

will result in a decrease in αt. This avoids the forecast function reacting to the outliers. 

     ( )232.029.0exp1

1

t

t
e+−+

=α      (9) 

For this series, we also implemented maximum likelihood estimation of the state-

space formulation in expressions (4)-(6). We derived: a standard error of 0.97 for the constant 

term, -0.29; a standard error of 0.46 for the transition variable coefficient, 0.32; and a value 

of –0.89 for the correlation between the estimation error in the two parameters. The standard 

error for the transition variable suggests that it is not significant and it would, therefore, be 

preferable to use constant parameter simple exponential smoothing, rather than the STES 

method. The finding clearly differs from that for the series with level shifts discussed in the 

previous section. We feel this is reasonably intuitive because a method that is robust to 

outliers will improve accuracy for just the period in which the outlier occurs. By contrast a 

method that is able swiftly to pick up a level shift will be more accurate for more than just the 

period in which the shift took place due to the permanent nature of the shift. This reasoning 
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suggests that the new STES method will be more useful for level shifts than outliers. The 

large-scale simulation study in the next section will address this issue.  

We also performed a Monte Carlo simulation to investigate the robustness of the 

formulation in expression (9) to parameter estimation error. We assessed how the parameter 

estimation error affects the change in the adaptive parameter immediately after period 90, 

where the post-sample outlier occurred. Although a negative change is suitable for an outlier, 

we found that the probability of the change being positive was 24%, which again suggests 

that the method will not perform as well for outliers than for series with level shifts.  

 

LARGE-SCALE SIMULATION STUDY 

 The previous section showed that the STES method has the potential to outperform 

other exponential smoothing methods for series in which the there is a level shift in both the 

estimation and evaluation periods, or an outlier in both. In this section, we extend this 

analysis in three ways. Firstly, we consider two additional data generating processes; one 

contains an in-sample level shift and a post-sample outlier, and the other has an in-sample 

outlier and a post-sample level shift. Secondly, in order to get a better understanding of 

forecasting performance, we evaluate accuracy for 1,000 series generated from each of the 

four processes. Thirdly, we include 16 different methods in the comparison. 

 

Description of the Study 

As in the previous section, we generated series of 100 observations from the process 

in expression (7). The first 80 were used to estimate method parameters and the remaining 20 

were used to evaluate 1-step-ahead forecast performance. In addition to Processes A and B 

described in the previous section, we generated series from the following two processes: 

Process C – Expression (7) with an in-sample level shift and a post-sample outlier.  

Process D – Expression (7) with an in-sample outlier and a post-sample level shift. 
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We again modelled level shifts and outliers as increases of 25% of the underlying 

level. However, we noticed that for some series, the 25% increase was not sufficiently large 

for the observation to be a clear level shift or outlier. In view of this, and the fact that 

Williams and Miller (1999) considered shifts of up to 50% of the level of the series, we 

decided to also consider shifts of 50%. 

For each series, we produced 1-step-ahead forecasts using 16 different methods. We 

implemented three constant parameter exponential smoothing methods: simple, Holt’s and 

damped Holt’s. As a naïve benchmark, we produced random walk forecasts. We 

implemented the adaptive exponential smoothing methods of Pantazopoulos and Pappis, 

Mentzer, Trigg and Leach, Whybark and Dennis, which we presented in the second section of 

the paper. We produced forecasts from the STES method using the following transition 

variables: the absolute value of the error from the previous period, |et|; the squared error from 

the previous period, et
2; the Trigg and Leach adaptive parameter; the Whybark adaptive 

parameter; and the Dennis adaptive parameter. We also considered the STES method with |et| 

or et
2 as transition variable and the coefficient constrained to be less than or equal to zero. As 

we discussed in relation to expression (8), this constraint ensures that the method will be 

sensibly calibrated for level shifts.  

 

Results 

 Tables I and II present the MedAPE results for the four processes, with level shifts 

and outliers simulated as 25% and 50%, respectively, of the underlying level. A percentage 

measure is suitable because we are evaluating across different series. We also calculated a 

variety of other percentage measures but we do not present these here because the relative 

performance of the methods for these measures was very similar to that for the MedAPE. 

Since we have 20 post-sample observations for each of the 1,000 series, each MedAPE value 

summarises 20,000 post-sample 1-step-ahead forecast errors. For each process, we also 
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present, in Tables I and II, the ranking of the MedAPE result for each of the 16 methods. The 

first point to note is that, although it seemed important to consider level shifts and outliers of 

different magnitudes, the relative performance of the methods in Table I is broadly similar to 

that in Table II. Our comments in the remainder of this section are based on both tables. 

----------  TABLES I & II  ---------- 

For Process A, STES with |et| or et
2 as transition variable performed very well. 

Constraining the coefficient of the transition variable to be less than or equal to zero had no 

effect on the results, indicating that the constraint was not needed to ensure a non-positive 

coefficient. Although the Trigg and Leach, Whybark and Dennis methods performed 

reasonably for Process A, none of the established adaptive methods, apart from the Whybark 

method, performed particularly well for the outliers in Process B. These methods are 

designed for level shifts, and so presumably they mistake the post-sample outlier in Process B 

for a level shift. By contrast, the STES method can be calibrated for outliers, as shown in 

expression (9). For Process B, the STES method with |et| or et
2 as transition variable 

performed very well. Including the non-positive constraint on the transition variable 

coefficient led to weaker performance in Table II, because, as we saw in expression (9), a 

positive coefficient is appropriate for series with outliers. The results for the constrained case 

were the same as constant parameter simple exponential smoothing, and this is due to the 

constrained coefficient of the STES transition variable taking a value of zero for series 

generated from Process B. Using the Trigg and Leach, Whybark or Dennis adaptive 

parameter as transition variable in the STES method was an improvement on the 

straightforward use of these established adaptive parameters for Process B. However, this 

was not the case for the other three processes. 

Processes C and D provide useful examinations of the STES method because one 

would assume that the method would perform poorly when evaluated on a post-sample period 

with different characteristics to that of the estimation sample. However, Tables I and II show 
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that the STES method, using |et| or et
2 as transition variable, performs very well for Process 

C. Detailed analysis of several series revealed that this is because the post-sample outlier is 

treated by the STES method as level shifts in successive periods. We found that the STES 

adaptive parameter rose sharply in reaction to the sudden rise in the series, and then 

maintained its high value for a further period because the level in the series falls sharply in 

the period following the outlier.  

The results for Process D show that the STES method, with no constraint on the 

transition variable coefficient, performs relatively poorly when there is an outlier in the 

estimation sample and a level shift in the post-sample period. When the post-sample level 

shift occurs, the unconstrained STES method treats it as an outlier and, consequently, lowers 

the value of the adaptive parameter, which leads to the forecast function being very slow to 

adapt to the new level of the series. However, the results for the STES method were 

considerably improved by constraining the coefficient of the transition variable to be non-

positive. The constraint does not allow the STES method to become calibrated for outliers, 

and should thus lead to a similar performance to that of constant parameter simple 

exponential smoothing. Curiously, the constrained STES method actually outperformed this 

method for Process D. The established adaptive methods performed very well for Process D. 

This is because they rely far less on the behaviour of the series in the estimation sample. This 

is also the reason for the impressive performance of the random walk.  

 In the second section of this paper, we commented that the Pantazopoulos and Pappis 

method is likely to very often produce a smoothing parameter equal to 1. This is supported by 

the fact that the results for this method are very similar to those for the random walk, which is 

equivalent to simple exponential smoothing with parameter equal to 1.  

Although we do not report detailed results here, we also considered simulated series 

with both a level shift and an outlier in-sample, and either a level shift or an outlier post-

sample. Perhaps not surprisingly, for these series, the STES method could not be suitably 
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calibrated for the post-sample level shift or outlier, and as a result it performed similarly to 

constant parameter simple exponential smoothing.  

In summary, the simulation results show that there is strong potential for the new 

STES method when |et| or et
2 is used as the transition variable. However, the method will 

perform poorly if the estimation sample contains an outlier and the post-sample period 

contains a level shift. A solution to this problem is to constrain the transition variable 

coefficient to be non-positive, in order to avoid the adaptive parameter being calibrated 

towards outliers. The downside to this is that the constrained method will clearly not be 

appropriately calibrated if the post-sample period contains an outlier. However, it is 

important to note that, in this case, the performance of the constrained STES method will be 

no worse than that of constant parameter exponential smoothing. 

 

EMPIRICAL COMPARISON USING REAL DATA 

 The main criticism levelled against adaptive exponential smoothing methods has been 

that they deliver unstable forecasts. Researchers have found that the instability can offset any 

response advantage when changes in structure occur (Gardner and Dannenbring, 1980). Indeed, 

empirical evidence is not favourable for adaptive exponential smoothing (e.g. Makridakis et al., 

1982). Presumably as a result of this, no such methods were included in the recent M3-

Competition (see Makridakis and Hibon, 2000). To investigate the stability and usefulness of the 

STES method, in this section, we evaluate forecasting performance using real time series. 

 The data used was the 1,428 monthly time series from the M3-Competition. By 

applying exponential smoothing methods in an automated way to a large number of different 

series, we replicated common practice in inventory and productions management. We did not 

consider the quarterly or yearly series from the M3-Competition because automated 

forecasting procedures are rarely applied to data of such low frequencies. The monthly series 

vary in length from 48 to 126 with a median of 115. For each series, a further 18 observations 
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were available to evaluate post-sample forecasting from 1 to 18 steps-ahead. As 1-step-ahead 

estimation is the focus of this paper, we calculated a 1 step-ahead forecast for each of the 18 

post-sample observations. The results are discussed in the next section. They are not directly 

comparable with those from the M3-Competition because Makridakis and Hibon only used 

the first of the 18 post-sample periods from each series were to evaluate 1 step-ahead 

performance. We briefly consider multi-step-ahead forecasting in the section after next. 

We implemented the 16 methods considered in our large-scale simulation study plus 

multiplicative Holt-Winters, which was omitted from our earlier analysis because it is 

suitable only for seasonal data. We calculated initial values for the smoothed level, trend and 

seasonal components of the Holt-Winters method using the approach of Williams and Miller 

(1999). For all methods, apart from Holt-Winters, we deseasonalised the data prior to 

forecasting. We used the seasonal decomposition method based on ratio-to-moving averages, 

which was used in the M3-Competition.  

 

Results for 1-Step-Ahead Forecasting 

 Table III summarises post-sample performance for the 17 methods. By contrast with 

the simulation study, the relative ranking of the methods for the real data varied according to 

the summary error measure used. In Table II, we report four popular percentage measures: 

MedAPE; mean absolute percentage error (MAPE); mean symmetric absolute percentage 

error (MSymAPE) (as used in the M3-Competition); and the root mean square percentage 

error (RMSPE). Since we have 18 post-sample observations for each of the 1,428 series, each 

MedAPE value summarises 25,704 post-sample 1-step-ahead forecast errors. For each 

process and each error measure, we also present in Table III, the ranking of each of the 17 

methods. The final column in Table III shows the mean of the four ranks for each method. 

----------  TABLE III  ---------- 
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Overall, simple exponential smoothing was the most successful of the constant 

parameter exponential smoothing methods. Of the five established adaptive methods, the 

Whybark and Dennis methods were the best. The RMSPE values for these two methods were 

the lowest of all 17 methods, while the MAPE results were also impressive. The other three 

established adaptive methods were, on the whole, no better than the random walk.  

All seven versions of the STES method outperformed all five of the established 

adaptive methods according to the MedAPE and MSymAPE. Using the parameter from an 

established adaptive method as transition variable in the STES method led to improved 

accuracy according to three of the four error measures. Indeed, the final column in Table III 

shows that using the Whybark adaptive parameter as transition variable in the STES method 

resulted in the best mean rank of all 17 methods. Despite this, there is perhaps stronger 

intuitive appeal in using simpler transition variables, such as |et| or et
2. Of the two, the mean 

ranks suggest that et
2 is better. The superiority of et

2 over |et| is particularly apparent for the 

MAPE and RMSPE measures. Interestingly, the mean ranks for both methods are a little 

better when the non-positive constraint on the transition variable coefficient is used.  

The RMSPE and MAPE are less robust to outliers and level shifts than the 

MSymAPE and MedAPE. This has led to the latter two measures becoming more widely 

quoted than the former two (see, for example, Makridakis and Hibon, 2000). However, in this 

paper, we are particularly interested in performance for level shifts and outliers, and so the 

MAPE and RMSPE are particularly relevant. Although our results show that constant 

parameter simple exponential smoothing is a good default, it is interesting to see that the 

method was outperformed according to MAPE and RMSPE by the Whybark method and by 

the STES method with the Whybark parameter or et
2 used as transition variable. 

The main aim of this real data study was to investigate the stability and robustness of 

the various adaptive methods across a large number of series with different characteristics. It 

would also be interesting to compare the performance of the methods for the particular series, 
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out of the 1,428, that have level shifts and outliers. However, with such a large number of 

series, automated procedures are needed to identify those series. Although Adya et al. (2001) 

describe heuristics for this purpose, they are considerably less convincing than the rigorous 

tests of, amongst others, Tsay (1988) and Balke (1993), but these tests have not yet been 

implemented in an automated procedure. Much more confidence is needed in the efficiency 

of such heuristics, before they can be used as a basis for comparing the usefulness of methods 

for series with level shifts and outliers. The development of automated procedures for 

identifying level shifts and outliers is an interesting area for future research. Indeed, there is 

strong potential for the use of the STES method as part of an automated expert system, which 

selects a method according to the characteristics of each time series. 

 

Results for Multi-Step-Ahead Forecasting 

Although adaptive exponential smoothing methods are designed to improve short-

term forecasting, it is interesting to consider their performance for longer lead times. We used 

the final 18 observations for each of the 1,428 M3-Competition monthly series to evaluate 

forecasts for lead times from 1 to 18 steps-ahead. Using each of the 17 methods considered in 

the previous section, one forecast was produced for each lead time for each series. The same 

lead times were used with the monthly data in the M3-Competition, and so the results in this 

section are comparable with those reported by Makridakis and Hibon (2000). 

Table IV summarises post-sample performance for the 17 methods. For brevity, we 

report only the MedAPE results as the relative rankings of the methods were broadly the 

same using the other error summary measures considered in the previous section. The table 

displays the average MedAPE for forecast horizons 1 to 6, for horizons 7 to 12, for horizons 13 

to 18, and for all 18 horizons. The results show that the various implementations of the STES 

method produced very similar results to constant parameter simple exponential smoothing. 

Table IV confirms the findings of Makridakis and Hibon (2000) that it is very hard to beat the 
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constant parameter damped Holt method for multi-step-ahead prediction. The success of damped 

trend exponential smoothing is also supported by the results of our recent analysis of damped 

multiplicative trend exponential smoothing (Taylor, 2003a).   

----------  TABLE IV  ---------- 

 
 

SUMMARY AND CONCLUDING COMMENTS 

In this paper, we have introduced a new smooth transition adaptive parameter 

exponential smoothing method. A large-scale simulation study showed that there is strong 

potential for the new STES method when |et| or et
2 is used as the transition variable. The 

method performs well when the estimation sample and evaluation sample both contain a level 

shift or both contain an outlier. However, if the estimation sample contains an outlier and the 

post-sample period contains a level shift, the method will perform poorly. A solution to this 

problem is to constrain the transition variable coefficient to be non-positive, in order to avoid 

the adaptive parameter being calibrated towards outliers. 

Adaptive methods have been criticised for producing unstable forecasts and for 

performing poorly in empirical studies. Using 1,428 real time series, we found that the new 

STES method, with et
2 as transition variable, was able to outperform constant parameter 

exponential smoothing in terms of 1-step-ahead prediction according to RMSPE and MAPE. 

The new approach also performed particularly well when the Whybark adaptive parameter 

was used as transition variable. The use of an adaptive parameter, produced by another 

adaptive method, as transition variable demonstrates how the new approach enables 

recalibration of the existing adaptive methods.  

A potential extension of the method is to incorporate judgemental information into the 

approach, as in the work of Williams and Miller (1999). They reformulate the exponential 

smoothing forecast function to allow for judgemental estimates of the timing and magnitude 

of a future level shift. These estimates could be used as transition variables in the smooth 
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transition exponential smoothing method to ensure that the model adapts swiftly to the 

changing structure in the series. 

The popularity of exponential smoothing for forecasting the volatility in financial 

returns and the recent introduction of smooth transition GARCH volatility models prompted 

us to investigate the use of the STES method for predicting stock index volatility (Taylor, 

2003b). We found that the new method gave encouraging results when compared to fixed 

parameter exponential smoothing and a variety of GARCH models. 
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Figure 1. Simple exponential smoothing with constant parameter

of 0.59. First 80 observations used to estimate parameter.

Simulated series has level shifts of 25% of underlying level. 
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Figure 2. Trigg and Leach adaptive exponential smoothing.

Alpha plotted on secondary y-axis. Simulated series

has level shifts of 25% of underlying level. 
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Figure 3. STES using squared error as transition variable. Alpha plotted on 

secondary y-axis. First 80 observations used to estimate parameters. 

Simulated series has level shifts of 25% of underlying level.  
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Figure 4. Simple exponential smoothing with constant parameter

of 0.25. First 80 observations used to estimate parameter. 

Simulated series has outliers of 25% of underlying level. 
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Figure 5. Trigg and Leach adaptive exponential smoothing.

Alpha plotted on secondary y-axis. Simulated series

has outliers of 25% of underlying level. 

10

15

20

25

30

35

0 20 40 60 80 100

time

y

0

0.5

1

1.5

2

2.5
alpha

y Forecasts Adaptive alpha



 30

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. STES using squared error as transition variable. Alpha plotted on 

secondary y-axis. First 80 bservations used to estimate parameters. 

Simulated series has outliers of 25% of underlying level. 
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Table I. MedAPE for evaluation of 20 post-sample 1-step-ahead forecasts for 1,000 simulated 
series from each of 4 processes. Level shifts and outliers simulated as 25% increases from the 
underlying level of each series. Holt-Winters not included because series are not seasonal. 
 
 

Process A  B  C  D 

In-sample level shift  outlier  level shift  outlier 

Post-sample level shift  outlier  outlier  level shift

        

Method % rank  % rank  % rank  % rank

Simple 3.1 10  3.8 1  3.4 2  6.3 11 

Holt 3.1 10  3.9 7  3.4 2  6.2 10 

Damped Holt 3.1 10  4.0 10  3.4 2  7.2 14 

Random walk 3.3 13  4.9 15  3.9 14  4.1 4 

Pantazopoulos and Pappis 3.3 13  5.3 16  4.3 16  4.1 4 

Mentzer 6.1 16  4.1 12  3.5 11  6.4 12 

Trigg and Leach 2.9 6  4.7 14  4.0 15  3.6 2 

Whybark 2.7 1  4.0 10  3.2 1  3.4 1 

Dennis 3.0 7  4.4 13  3.6 12  3.8 3 

STES using Trigg and Leach 3.0 7  3.9 7  3.7 13  5.9 9 

STES using Whybark 3.0 7  3.8 1  3.4 2  6.4 12 

STES using Dennis 3.3 13  3.9 7  3.4 2  5.8 8 

STES using |et| 2.8 2  3.8 1  3.4 2  7.7 15 

STES using |et| with �≤ 0 2.8 2  3.8 1  3.4 2  5.6 6 

STES using et
2 

2.8 2  3.8 1  3.4 2  7.9 16 

STES using et
2
 with � ≤ 0 2.8 2  3.8 1  3.4 2  5.6 6 
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Table II. MedAPE for evaluation of 20 post-sample 1-step-ahead forecasts for 1,000 
simulated series from each of 4 processes. Level shifts and outliers simulated as 50% 
increases from the underlying level of each series. Holt-Winters not included because series 
are not seasonal. 
 
 

Process A  B  C  D 

In-sample level shift  outlier  level shift  outlier 

Post-sample level shift  outlier  outlier  level shift

        

Method % rank  % rank  % rank  % rank

Simple 2.4 8  4.2 5  3.1 6  10.2 12 

Holt 2.4 8  4.3 9  3.2 8  9.2 10 

Damped Holt 2.4 8  4.4 11  3.2 8  11.7 13 

Random walk 2.5 12  4.9 13  3.3 12  3.7 4 

Pantazopoulos and Pappis 2.5 12  5.4 15  3.6 14  3.7 4 

Mentzer 6.7 16  5.9 16  5.5 16  7.2 6 

Trigg and Leach 2.2 5  5.3 14  3.7 15  3.3 2 

Whybark 2.2 5  4.2 5  2.9 5  3.2 1 

Dennis 2.4 8  4.6 12  3.2 8  3.5 3 

STES using Trigg and Leach 2.3 7  4.1 4  3.5 13  10.1 11 

STES using Whybark 2.6 14  3.7 1  3.2 8  21.2 16 

STES using Dennis 2.7 15  4.3 9  3.1 6  7.7 7 

STES using |et| 2.1 1  3.8 2  2.8 3  17.5 15 

STES using |et| with � ≤ 0 2.1 1  4.2 5  2.8 3  9.0 9 

STES using et
2 

2.1 1  3.8 2  2.7 1  15.9 14 

STES using et
2
 with �≤ 0 2.1 1  4.2 5  2.7 1  8.8 8 
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Table III.  Evaluation of 18 post-sample 1-step-ahead forecasts for each of the 1,428 monthly 
series from the M3-Competition. All methods, except Holt-Winters, were applied to 
deseasonalised data. 

 
 

 MedAPE  MAPE  MSymAPE  RMSPE  mean

Method % rank  % rank  % rank  % rank  rank 

Simple 3.7 1  15.6 6  10.8 1  253.6 10  4.5 

Holt 3.7 1  15.6 6  11.1 7  284.0 14  7.0 

Damped Holt 3.7 1  15.5 5  11.1 7  266.5 13  6.5 

Holt-Winters 3.8 7  16.4 11  11.5 11  298.6 17  11.5 

Random walk 4.2 13  17.2 16  13.2 15  169.3 6  12.5 

Pantazopoulos and Pappis 4.3 15  18.4 17  13.4 16  196.1 7  13.8 

Mentzer 6.8 17  16.6 14  13.6 17  151.8 4  13.0 

Trigg and Leach 4.2 13  17.1 15  11.9 13  251.6 9  12.5 

Whybark 4.4 16  15.2 3  11.5 11  129.1 2  8.0 

Dennis 4.1 12  15.6 6  12.1 14  111.1 1  8.3 

STES using Trigg and Leach 3.7 1  15.6 6  10.9 2  263.8 12  5.3 

STES using Whybark 3.7 1  15.0 2  11.0 4  198.5 8  3.8 

STES using Dennis 3.8 7  15.6 6  10.9 2  254.0 11  6.5 

STES using |et| 3.8 7  16.4 11  11.2 9  291.3 15  10.5 

STES using |et| with γ ≤ 0 3.7 1  16.4 11  11.0 4  291.4 16  8.0 

STES using et
2 

3.9 11  14.5 1  11.2 9  148.2 3  6.0 

STES using et
2
 with γ ≤ 0 3.8 7  15.3 4  11.0 4  167.5 5  5.0 
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Table IV.  MedAPE for evaluation of forecasts for lead times from 1 to 18 steps-ahead for 
each of the 1,428 monthly series from the M3-Competition. All methods, except Holt-
Winters, were applied to deseasonalised data. 
 
 

 Forecasting Horizon 

 1-6  7-12  13-18  1-18 

Method % rank  % rank  % rank  % rank

Simple 5.3 4  7.5 4  9.8 6  7.5 4 

Holt 5.1 2  6.9 2  9.5 2  7.2 2 

Damped Holt 5.0 1  6.8 1  8.9 1  6.9 1 

Holt-Winters 5.2 3  7.0 3  9.5 2  7.2 2 

Random walk 6.0 15  8.3 15  10.6 15  8.3 15 

Pantazopoulos and Pappis 6.1 16  8.4 16  10.8 16  8.4 16 

Mentzer 7.4 17  9.2 17  11.3 17  9.3 17 

Trigg and Leach 5.7 12  7.5 4  10.0 12  7.7 12 

Whybark 5.8 13  7.8 13  10.1 13  7.9 13 

Dennis 5.9 14  7.9 14  10.4 14  8.1 14 

STES using Trigg and Leach 5.3 4  7.6 11  9.7 4  7.5 4 

STES using Whybark 5.3 4  7.5 4  9.8 6  7.6 7 

STES using Dennis 5.3 4  7.5 4  9.7 4  7.5 4 

STES using |et| 5.4 10  7.5 4  9.9 9  7.6 7 

STES using |et| with γ ≤ 0 5.3 4  7.5 4  9.9 9  7.6 7 

STES using et
2 

5.4 10  7.5 4  9.9 9  7.6 7 

STES using et
2
 with γ ≤ 0 5.3 4  7.6 11  9.8 6  7.6 7 

 

 
 
 
 

 




