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Abstract. Twin support vector machine (TWSVM) exhibits fast training speed with better classification
abilities compared with standard SVM. However, it suffers the following drawbacks: (i) the objective
functions of TWSVM are comprised of empirical risk and thus may suffer from overfitting and suboptimal
solution in some cases. (ii) a convex quadratic programming problems (QPPs) need to be solve, which is
relatively complex to implement. To address these problems, we proposed two smoothing approaches for
an implicit Lagrangian TWSVM classifiers by formulating a pair of unconstrained minimization problems
in dual variables whose solutions will be obtained by solving two systems of linear equations rather
than solving two QPPs in TWSVM. Our proposed formulation introduces regularization terms to each
objective function with the idea of maximizing the margin. In addition, our proposed formulation becomes
well-posed model due to this term, which introduces invertibility in the dual formulation. Moreover, the
structural risk minimization principle is implemented in our formulation which embodies the essence of
statistical learning theory. The experimental results on several benchmark datasets show better performance
of the proposed approach over existing approaches in terms of estimation accuracy with less training time.

1. Introduction

The foundation of support vector machines (SVMs) have been developed by Vapnik and coworkers
[4, 8, 40], and are gaining popularity due to many attractive features, and promising empirical performance.
This learning strategy introduced by Vapnik and co-workers [3] is a principled and very powerful method
in machine learning algorithms. SVM has played an important role in solving problems emerged in
pattern recognition and machine learning community over the past decades because of its novel state of
art technique. Its applications include a wide spectrum of research areas, ranging from pattern recognition
[26], text categorization [14], biomedicine [5] etc. The main idea of SVMs is to find the optimal hyperplane
between positive and negative samples such that the margin can be maximized. SVMs have a solid
theoretical foundation, rooted in statistical learning theory (SLT) and structural risk minimization (SRM)
principle. One of the main challenges for SVM is the large computational complexity of QPP. To address
this drawback, many algorithms in the recent past have been reported in [1, 6, 8, 15, 17, 18, 29, 37].
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In the last few years, the research on non-parallel SVMs have been an important and interesting approach
where two non-parallel hyperplanes are constructed instead of constructing two parallel hyperplanes in
traditional SVMs. Mangasarian and Wild [23] proposed a generalized eigenvalue proximal support vector
machine (GEPSVM) which needs to solve generalized eigenvalue problems. Subsequently, Jayadeva et al.
[13] proposed the twin support vector machine (TWSVM) in the light of GEPSVM. Different from GEPSVM,
TWSVM solves two small SVM-type problems to obtain the hyperplanes. Experimental results show the
strong generalization ability of TWSVM over SVM and GEPSVM [13]. Recently, many variants of TWSVM
are proposed to reduce the time complexity and keep the effectiveness of TWSVM, see [2, 16, 28, 30–
36, 38, 39]. Specifically, Kumar and Gopal [16] enhanced TWSVM using smoothing techniques proposed in
[18], to Smooth TWSVM (STWSVM). The main objective of STWSVM is to improve the computational speed
of TWSVM such that it can be used for large datasets. Further, Shao et al. [31] proposed twin bounded
support vector machines (TBSVM) based on TWSVM. It also constructs two nonparallel hyperplanes
by solving two smaller QPPs. But the difference is that the structural risk minimization principle is
implemented by adding the regularization term into the primal problems of TBSVM. Two extra parameters
introduced in the objective functions are the weights between the regularization term and empirical risk.
In order to shorten the training time, SOR technique is applied to TBSVM. Computational results show
that TBSVM is not only faster but also shows better generalization. To improve the robustness and
sparseness, recently, Tanveer [33–35] proposed novel linear programming formulation of 1-norm twin
support vector machine for classification and regression problems, whose solution is obtained, by solving a
pair of exterior penalty problems in the dual space as unconstrained optimization problems using Newton-
Armijo algorithm.

Motivated by the works of [11, 18, 21, 27, 31, 33, 34], we proposed in this paper two smoothing approaches
for an implicit Lagrangian twin support vector machine (TWSVM) classifiers by formulating a pair of
unconstrained minimization problems (UMPs) in dual variables whose solutions will be obtained using
finite Newton method. Our formulation possesses the following attractive advantages:

• Unlike TWSVM and STWSVM, our proposed formulation introduces regularization terms to each
objective function with the idea of maximizing the margin. In addition, our proposed formulation
becomes well-posed model due to adding extra regularization term which introduces invertibility in
the dual formulation.

• Note that the 2-norm of the slack variables is minimized in our formulation instead of 1-norm as in
TWSVM and TBSVM, to make the objective functions strongly convex. It implies the existence of
global optimal solution.

• Unlike TWSVM and STWSVM, the structural risk minimization principle is implemented in our
formulation which embodies the essence of statistical learning theory.

• Two smoothing techniques are proposed whose solution is obtained by solving two systems of linear
equations rather than solving two QPPs in TWSVM.

• The experimental results on several benchmark datasets exhibit excellent performance of our formu-
lation over existing approaches in terms of estimation accuracy with less training time.

The paper is organized as follows: we briefly review the TWSVM formulation in Section 2. Section 3
describe the details of our proposed method. Numerical experiments have been performed on a number of
interesting synthetic and real-world benchmark datasets and their results are compared with other SVMs
in Section 4, finally we conclude our work in Section 5.

2. Brief Review of Twin Support Vector Machines

The main idea of TWSVM [13] is to generate two nonparallel hyperplanes instead of a single hyperplane
in the standard SVM to classify samples. The two nonparallel hyperplanes are obtained by solving two



M. Tanveer, K. Shubham / Filomat 31:8 (2017), 2195–2210 2197

smaller sized QPPs compared with a single large QPP solved by the standard SVM. This makes TWSVM
faster than standard SVM.

Suppose that all the data samples in class +1 are denoted by a matrix A ∈ Rm1×n and the matrix
B ∈ Rm2×n represent the data samples of class -1. For the linear case, the TWSVM seeks a pair of non-parallel
hyperplanes

f1(x) = wt
1x + b1 and f2(x) = wt

2x + b2, (1)

such that each hyperplane is proximal to the data points of one class and far from the data points of other
class, where w1 ∈ Rn,w2 ∈ Rn, b1 ∈ R and b2 ∈ R. The formulation of TWSVM can be written as follows:

min
(w1,b1)∈Rn+1

1
2
‖Aw1 + e2b1‖

2 + C1 ‖ξ1‖

s.t. − (Bw1 + e1b1) + ξ1 ≥ e1, ξ1 ≥ 0, (2)

min
(w2,b2)∈Rn+1

1
2
‖Bw2 + e1b2‖

2 + C2 ‖ξ2‖

s.t. (Aw2 + e2b2) + ξ2 ≥ e2, ξ2 ≥ 0, (3)

where C1,C2 are positive parameters, ξ1, ξ2 are slack variables and e1, e2 are vectors of one of appropriate
dimensions. It is evident that the idea in TWSVM is to solve two QPPs (2) and (3), each of the QPPs in the
TWSVM pair is a typical SVM formulation, except that not all data points appear in the constraints of either
problem [13].

By introducing the Lagrangian vectors α and γ, the Wolfe duals of (2) and (3) are

min
α∈Rm2

1
2
αtH

(
GtG

)−1
Htα − et

1α

s.t. 0 ≤ α ≤ C1, (4)

and

min
γ∈Rm1

1
2
γtG

(
HtH

)−1
Gtγ − et

2γ

s.t. 0 ≤ γ ≤ C2, (5)

where G = [A e2] and H = [B e1] are augmented matrices of sizes m1 × (n + 1) and m2 × (n + 1) respectively.
In order to deal with the case when GtG or HtH are singular and avoid the possible ill conditioning, the

inverse matrices (GtG)−1 and (HtH)−1 are approximately replaced by (GtG + δI)−1 and (HtH + δI)−1, where δ
is a very small positive scalar and I is an identity matrix of appropriate dimensions. Thus the nonparallel
proximal hyperplanes are obtained from the solution α ∈ Rm2 and γ ∈ Rm1 of (4) and (5) by

[
w1
b1

]
= −

(
GtG + δI

)−1
Htα and

[
w2
b2

]
=

(
HtH + δI

)−1
Gtγ. (6)

3. Smooth Twin Support Vector Machines via Unconstrained Convex Minimization

In this section, a new variant of the TWSVM in its dual is proposed as a pair of implicit UMPs and their
solutions are computed by applying two popular smoothing approaches to improve the robustness. We
construct two nonparallel proximal hyperplanes

f1(x) = w1
tx + b1 = 0 and f2(x) = w2

tx + b2 = 0, (7)
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by considering the following 2-norm regularized TWSVM formulation of the form:

min
w1∈Rn,b1∈R

1
2
‖Aw1 + e2b1‖

2 +
C1

2
‖ξ1‖

2 +
C3

2

∥∥∥∥∥∥
[

w1
b1

]∥∥∥∥∥∥2

s.t. − (Bw1 + e1b1) + ξ1 ≥ e1, (8)

min
w2∈Rn,b2∈R

1
2
‖Bw2 + e1b2‖

2 +
C2

2
‖ξ2‖

2 +
C4

2

∥∥∥∥∥∥
[

w2
b2

]∥∥∥∥∥∥2

s.t. (Aw2 + e2b2) + ξ2 ≥ e2, (9)

where C1,C2,C3,C4 are all positive trade-off constants.
Let us first discuss the differences between our proposed model, TWSVM, TBSVM and STWSVM.

• Unlike TWSVM and STWSVM, our proposed formulation introduces regularization terms to each
objective function with the idea of maximizing the margin. In addition, our proposed formulation
becomes well-posed model due to adding extra regularization term which introduces invertibility in
the dual formulation.

• Note that the 2-norm of the slack variables is minimized in our formulation instead of 1-norm as in
TWSVM and TBSVM, to make the objective functions strongly convex. It implies the existence of
global optimal solution.

• Unlike TWSVM and STWSVM, the structural risk minimization principle is implemented in our
formulation which embodies the essence of statistical learning theory.

• Two smoothing techniques are proposed whose solution is obtained by solving two systems of linear
equations rather than solving two QPPs in TWSVM and TBSVM.

• The experimental results on several benchmark datasets exhibit excellent performance of our formu-
lation over existing approaches in terms of estimation accuracy with less training time.

By considering the Lagrangian functions corresponding to (8) and (9), and using the conditions that
their partial derivatives with respect to the primal variables will be zero at optimality, the dual QPPs of (8)
and (9) can be obtained by dropping the terms which are independent of the dual variables as a pair of
minimization problems of the following form:

min
0≤u1∈Rm2

1
2

u1
t
( I

C1
+ H(GtG + C3I)−1Ht

)
u1 − e1

tu1, (10)

min
0≤u2∈Rm1

1
2

u2
t
( I

C2
+ G(HtH + C4I)−1Gt

)
u2 − e2

tu2, (11)

where u1 ∈ Rm2 ,u2 ∈ Rm1 are Lagrange multipliers; G = [A e2] and H = [B e1] are augmented matrices of
sizes m1 × (n + 1) and m2 × (n + 1) respectively.
Define the matrices

M1 = H(GtG + C3I)−1Ht and M2 = G(HtH + C4I)−1Gt. (12)

The dual QPPs (10) and (11) can be rewritten as a pair of minimization problems of the form:

min
0≤u1∈Rm2

1
2

u1
tQ1u1 − e1

tu1, (13)
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min
0≤u2∈Rm1

1
2

u2
tQ2u2 − e2

tu2, (14)

where

Q1 =
I

C1
+ M1 and Q2 =

I
C2

+ M2. (15)

The nonparallel proximal hyper planes are obtained from the solution u1 and u2 of (13) and (14) by[
w1
b1

]
= −(GtG + C3I)−1Htu1 and

[
w2
b2

]
= (HtH + C4I)−1Gtu2. (16)

Remark 3.1. One can immediately notice that our proposed approach does not need to care about matrix singularity
for finding the solution. It is worthwhile to note that the regularization parameter δ used in TWSVM formulation
is just a fixed small scalar while penalty parameters C3,C4 used in our formulation are weighting factors which
determine the trade-off between the regularization term and the empirical risk. Therefore, selecting appropriate
parameters C3,C4 reflects the structural risk minimization principle. The experimental results in Section 4 shows the
improve classification accuracy on adjusting the values of C3,C4.

We cannot always handle classification problems using linear kernel. Therefore, we extend our results
to nonlinear classifiers by considering the following kernel based surfaces instead of hyperplanes:

K(xt,Ct)w1 + b1 = 0 and K(xt,Ct)w2 + b2 = 0, (17)

where Ct = [A B]t and K is appropriately chosen kernel.
The optimization problem for our robust 2-norm regularized TWSVM in the kernel feature space can be

reformulated as:

min
w1∈Rm,b1∈R

1
2

∥∥∥K(A,Ct)w1 + e2b1

∥∥∥2
+ C1

2 ‖ξ1‖
2 + C3

2

∥∥∥∥∥∥
[

w1
b1

]∥∥∥∥∥∥2

s.t. −
(
K(B,Ct)w1 + e1b1

)
+ ξ1 ≥ e1,

(18)

min
w2∈Rm,b2∈R

1
2

∥∥∥K(B,Ct)w2 + e1b2

∥∥∥2
+ C2

2 ‖ξ2‖
2 + C4

2

∥∥∥∥∥∥
[

w2
b2

]∥∥∥∥∥∥2

s.t.
(
K(A,Ct)w2 + e2b2

)
+ ξ2 ≥ e2,

(19)

where K(A,Ct) and K(B,Ct) are kernel matrices of sizes m1 ×m and m2 ×m respectively, where m = m1 + m2.
By defining the augmented matrix S = [K(A,Ct) e2], R = [K(B,Ct) e1] and proceeding entirely similar
process to the linear case, the pair of minimization problems (18) and (19) can be converted into nonlinear
2-norm regularized TWSVM problems again of the same form (13) and (14). Thus the nonparallel proximal
hyper planes are obtained from the solution u1 and u2 of (13) and (14) by[

w1
b1

]
= −(StS + C3I)−1Rtu1 and

[
w2
b2

]
= (RtR + C4I)−1Stu2. (20)

3.1. Method of solution
Applying the Karush-Kuhn-Tucker (KKT) necessary and sufficient optimal conditions for the dual

2-norm robust TWSVM will lead to the following pair of classical complementarity problems [19]:

0 ≤ u1 ⊥ (Q1u1 − e1) ≥ 0 and 0 ≤ u2 ⊥ (Q2u2 − e2) ≥ 0. (21)

However, using the well-known identity between two vectors u, v :
0 ≤ u ⊥ v ≥ 0 if and only if u = (u − αv)+ for any α ≥ 0. The solutions of the following equivalent pair of
problems will be considered [21]: for any α1, α2 > 0,

(Q1u1 − e1) = (Q1u1 − α1u1 − e1)+ and (Q2u2 − e2) = (Q2u2 − α2u2 − e2)+. (22)
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It turns out that (22) become necessary and sufficient conditions to be satisfied by the unconstrained
minimum of the following pair of implicit Lagrangian’s [22] associated to the pair of dual problems (13)
and (14): for any α1, α2 > 0,

min
u1∈Rm2

L1(u1) =
1
2

u1
tQ1u1 − e1

tu1 +
1

2α1

(
||(Q1u1 − α1u1 − e1)+||

2
− ||Q1u1 − e1||

2
)
, (23)

and

min
u2∈Rm1

L2(u2) =
1
2

u2
tQ2u2 − e2

tu2 +
1

2α2

(
||(Q2u2 − α2u2 − e2)+||

2
− ||Q2u2 − e2||

2
)
. (24)

One can obtain the gradient of (23) and (24) as:

∇Lk(uk) =
(
αkI −Qk

αk

) [
(Qkuk − ek) − (Qkuk − αkuk − ek)+

]
, k = 1, 2. (25)

Since the gradient ∇Lk(uk) is not differentiable and therefore the Hessian matrix of second order partial
derivatives of Lk(uk) is not defined in the usual sense. It is proposed to introduce two smoothing approaches,
studied in [16, 18, 27, 33].

3.1.1. Smooth Approach I (SNTSVM-1)
Smoothing techniques are enormously used for solving many optimization problems, such as SSVM

[18], RSVM [17], STWSVM [16], SLPTSVM [33], STSVR [7], PTSVR [27] and others.
First, we consider the following smooth approximation function, denoted by p1

(
x, η

)
for x+ with param-

eter η > 0, defined as [17, 18, 33]: for any real value x,

p1
(
x, η

)
= x +

1
η

log
(
1 + exp

(
−ηx

))
. (26)

Infact, for the vectors p1(u, η) = (p1(u1, η), ..., p1(um, η))t, the pair of dual UMPs (23) and (24) will get modified
into

min
u1∈Rm2

L1(u1) =
1
2

u1
tQ1u1 − e1

tu1 +
1

2α1

(
||p1

(
(Q1u1 − α1u1 − e1) , η1

)
||

2
− ||Q1u1 − e1||

2
)
, (27)

and

min
u2∈Rm1

L2(u2) =
1
2

u2
tQ2u2 − e2

tu2 +
1

2α2

(
||p1

(
(Q2u2 − α2u2 − e2) , η2

)
||

2
− ||Q2u2 − e2||

2
)
, (28)

respectively, where η1, η2 > 0, u1 and u2 are the solutions of the minimization problems (27) and (28)
respectively.

Since the modified minimization problems (27) and (28) are smooth, one can obtain the Hessian matrix
of Lk(., .) as:
∇

2Lk(uk) =
(
αkI−Qk
αk

)
[(I −Dk) Qk + αkDk] ,

where Dk = 1/
(
1 + e−αk(Qkuk−αkuk−ek)

)
.

Now we summarize the Newton algorithm for solving UMPs (27) and (28) for an arbitrary positive
definite matrix Qk, k = 1, 2.

Algorithm 1 (SNTSVM-1). For solving pair of UMPs (27) and (28) with k = 1, 2 :
Input

• Set the parameters C > 0, ε > 0 and αk = 1.9.

• tol=error tolerance for learning accuracy, itmax=maximum number of iterations.
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• Q = I
C + M.

• i = 0,u = u0 (initial guess)

Step 1.

• compute Dk = 1/
(
1 + e−αk(Qkuk−αkuk−ek)

)
Step 2.

• ||ui+1
k − ui

k|| < tol or i < itmax

• calculate ∇2Lkui
k , ∇Lkui

k

• compute ui+1
k = ui

k - (∇2Lkui
k)−1
∇Lkui

k

• i = i + 1.

3.1.2. Smooth Approach II (SNTSVM-2)
For solving the pair of dual UMPs (23) and (24), we use the following another smooth approximation

function p2 (x, x0) for x+, defined [27, 33] as: for any real value x,

p2 (x, x0) =
1
4

x2

|x0|
+

1
2

x +
1
4
|x0|, (29)

where x0 is a non-zero real number. Notice that p2 (x, x0) is a quadratic function and twice differentiable.
Also, the value of p2 (x, x0) is closer to x+ when the value of |x0| is closer to |x|. Specifically, p2 (x, x0) = x+

when |x0| = |x| , 0.
By replacing u+ by p2 (u,u0) , the pair of dual UMPs (23) and (24) will get modified into

min
u1∈Rm2

L1(u1) =
1
2

u1
tQ1u1 − e1

tu1 +
1

2α1

(
||p2 ((Q1u1 − α1u1 − e1) ,u0) ||2 − ||Q1u1 − e1||

2
)

(30)

and

min
u2∈Rm1

L2(u2) =
1
2

u2
tQ2u2 − e2

tu2 +
1

2α2

(
||p2 ((Q2u2 − α2u2 − e2) ,u0) ||2 − ||Q2u2 − e2||

2
)
, (31)

respectively, where the components of u0 ∈ Rn are non-zero, u1 and u2 are the solutions of the minimization
problems (30) and (31) respectively.

Since the modified minimization problems (30) and (31) are smooth, one can obtain the Hessian matrix
of Lk(., .) as:
∇

2Lk(uk) =
(
αkI−Qk
αk

)
[(I −Dk) Qk + αkDk] ,

where Dk = 1
2

[
Qkuk−αkuk−ek

|u0 |
+ 1

]
.

Remark 3.2. Notice that the Hessian matrix of Lk, k = 1, 2 is positive definite. Therefore, the pair of UMPs (30) and
(31) will have a unique, global solution at its extreme point [27, 33].

Now we summarize the Newton algorithm for solving UMPs (30) and (31) for an arbitrary positive
definite matrix Qk, k = 1, 2.

Algorithm 2 (SNTSVM-2). For solving pair of UMPs (30) and (31) with k = 1, 2 :
Input

• Set the parameters C > 0, ε > 0, σ = 10−6 and αk = 1.9.
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• tol=error tolerance for learning accuracy, itmax=maximum number of iterations.

• Q = I
C + M.

• i = 0,u = u0 (initial guess)

Step 1.

• compute Dk = 1
2

[
diag(‖ui

0‖)
−1(Qkui

k − αkui
k − ek) + 1

]
Step 2.

• if ||ui+1
k − ui

k|| < tol or i < itmax

• compute u0
i = (Qkui

k − αkui
k − ek) + σe where + is defined as a+b=a if a,0; otherwise b.

• calculate ∇2Lkui
k , ∇Lkui

k

• compute ui+1
k = ui

k - (∇2Lkui
k)−1
∇Lkui

k

• i = i + 1.

For k = 1, 2, the basic Newton’s step of iterative algorithm is in determining the unknown ui+1 at the
(i + 1)th iteration using the current ith iterate ui using

∇Lk(ui
k) + ∇2Lk

(
ui+1

k − ui
k

)
= 0, where i = 0, 1, 2, .... (32)

The convergence of the above algorithm and its finite termination are derived in [20].

Remark 3.3. Our SNTSVM-1 and SNTSVM-2 solve two systems of linear equations rather than solving two
quadratic programming problems in TWSVM, which makes the learning speed extremely fast than TWSVM.

4. Experimental Results

In this section, we performed numerical experiments to demonstrate the effectiveness of our proposed
SNTSVM-1 and SNTSVM-2 in comparison to GEPSVM and TWSVM on ‘Cross-Planes’ dataset as an example
of synthetic dataset and several well-known, publicly available, benchmark datasets [25]. All the classifiers
are implemented in MATLAB R2008b environment on a PC with 3.30 GHz Intel(R) Core(TM) i3 processor
having 4 GB RAM. The pair of QPP involved in GEPSVM and TWSVM are solved using optimization
toolbox of MATLAB. In order to construct nonlinear classifier, Gaussian kernel function with parameter
µ > 0, defined by: for x1, x2 ∈ Rm, K(x1, x2) = exp(−µ||x1 − x2||

2) is used. The classification accuracy of each
algorithm was computed using the well-known ten-fold cross-validation methodology [10]. The optimal
values of the parameters were chosen by the grid search method [12], which is the commonly used method
in this field. Furthermore, to degrade the computational cost of parameter selection, in our experiments, we
set C1 = C2 for TWSVM, C1 = C2,C3 = C4 for SNTSVM-1 and SNTSVM-2, and the kernel parameter value
µ were allowed to vary from the sets {10−5, 10−4, ..., 105

} and {2−10, 2−9, ..., 210
} respectively. For GEPSVM,

the range of δ for linear and Gaussian kernel were allowed to vary from the sets {10−10, 10−4, ..., 1010
} and

{2−7, 2−6, ..., 27
} respectively. The value of the smooth parameter η = 5 was set in SNTSVM-1 due to its

successful results in [18, 33]. For SNTSVM-2, the regularized parameter σ should be very small having the
property that the diagonal matrix in Step 1 of Algorithm 2 should be invertible for all the datasets, its value
is taken to be 1e − 6. Finally, choosing these optimal values, the classification accuracy and computational
efficiency are adopted to measure the performances of these algorithms, and the best classification accuracy
is shown by bold figures.
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4.1. Toy Example

We consider a simple two dimensional “Cross Planes” dataset as an example of synthetic dataset which
was also tested in [23, 31, 33]. It was generated by perturbing points lying on two intersecting lines and
the intersection point is not in the center. Fig. 1(a-c) shows the dataset and the linear classifiers obtained
by TWSVM and our proposed SNTSVM-1 and SNTSVM-2. One can easily observe that the result of our
proposed SNTSVM-1 and SNTSVM-2 are better than TWSVM. This clearly indicate that our proposed
method can handle the “Cross Planes” dataset much better than TWSVM. The average results of GEPSVM,
TWSVM, SNTSVM-1 and SNTSVM-2 for linear and nonlinear classifiers are reported in Table 1 and Table
2. The results demonstrate the superior performance of SNTSVM-1 and SNTSVM-2.
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Figure 1: Classification results of (a) TWSVM (b) SNTSVM-1 (c) SNTSVM-2 for Cross Planes dataset.

4.2. Real-world benchmark datasets

In this sub-section, we performed numerical experiments linear and non-linearly to demonstrate the
performance of the proposed SNTSVM-1 and SNTSVM-2 in comparison to GEPSVM and TWSVM on 11
UCI datasets [25], some of which are used in [13, 31, 33]. In all the real-world examples considered, each
attribute of the original data is normalized as follows:

x̄i j =
xi j − xmin

j

xmax
j − xmin

j

,

where xi j is the (i,j)-th element of the input matrix A, x̄i j is its corresponding normalized value and xmin
j =

minm
i=1(xi j) and xmax

j = maxm
i=1(xi j) denote the minimum and maximum values, respectively, of the j-th

column of A. Each dataset is randomly split into testing and training. The specific number of training
and testing samples, the number of attributes, training time and accuracies of each algorithm for linear
and nonlinear classifiers are summarized in Table 1 and Table 4 respectively. According to Table 1, it can
be found that our SNTSVM-1 and SNTSVM-2 show better generalization performance and computational
speed. For Heart dataset, the experimental result (accuracy 81.43%) by our SNTSVM-1 and SNTSVM-2
outperform other two algorithms i.e., TWSVM (accuracy 55.71%) and GEPSVM (accuracy 68.57%). We
obtain the similar conclusions for Ionosphere, Votes, Wpbc, Monks-3, Cleve, Australian, Haberman, Splice
and Tic-Tac-Toe datasets. For WDBC dataset, the classification accuracy obtained by our SNTSVM-1 and
SNTSVM-2 (76.81%) are lower than TWSVM (94.20%) and GEPSVM (92.75%) but computationaly faster than
TWSVM. One can observe from Table 1 that SNTSVM-1 and SNTSVM-2 show exactly the same accuracy
on all the datasets considered. This clearly indicates that both the approaches are equally preferred.
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Table 1: Performance comparisons of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 on twelve datasets using linear kernel

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2
(Train size, Test size) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s)

Cross Planes 84.42 91.42 100.00 100.00
(81 × 2, 40 × 2) 0.0468 0.5821 0.0081 0.0170
Heart-Statlog 68.57 55.71 81.43 81.43
(200 × 3, 106 × 3) 0.1560 0.2218 0.0034 0.0136
WDBC 92.75 94.20 76.81 76.81
(500 × 30, 69 × 30) 0.0312 0.4401 0.1926 0.1384
Ionosphere 70.48 79.05 84.76 84.76
(246 × 34, 105 × 34) 0.2964 1.1114 0.0420 0.0300
Votes 90.70 95.35 96.12 96.12
(306 × 16, 129 × 16) 0.0312 0.2197 0.0123 0.0200
WPBC 77.19 57.89 77.19 77.19
(137 × 33, 57 × 33) 0.0468 0.1800 0.0092 0.0143
Cleve 55.83 75.83 82.50 82.50
(177 × 13, 120 × 13) 0.0624 0.2469 0.0024 0.0507
Monks-3 63.65 75.69 81.94 81.94
(432 × 7, 122 × 7) 0.0468 0.2093 0.0064 0.0121
Australian 68.66 46.67 90.66 90.66
(540 × 14, 150 × 14) 0.0468 1.7045 0.0964 0.1643
Haberman 76.42 74.52 76.42 76.42
(200 × 3, 106 × 3) 0.0780 0.1094 0.0034 0.01098
Splice 80.60 80.00 83.29 83.29
(500 × 60, 2675 × 60) 0.1716 0.5702 0.2325 0.1193
Tic-Tac-Toe 56.09 94.43 94.43 94.43
(671 × 9, 287 × 9) 0.1248 1.0732 0.0878 0.2284

Table 2: Optimal parameters of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 for linear kernel

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2
δ C1 = C2 C1 = C2 C3 = C4 C1 = C2 C3 = C4

Cross Planes 104 10−5 10−5 10−5 10−5 10−5

Heart-Statlog 101 10−5 10−5 10−5 10−5 10−5

WDBC 10−5 10−5 10−1 10−1 10−1 10−1

Ionosphere 105 10−5 10−2 10−2 10−2 10−2

Votes 102 10−5 10−5 100 10−5 100

WPBC 10−2 10−5 101 10−1 101 10−1

Cleve 101 10−5 10−5 100 10−5 100

Monks-3 100 101 104 101 103 101

Australian 101 10−5 100 10−1 100 10−1

Haberman 10−5 103 10−5 101 10−5 101

Splice 103 10−5 101 103 101 103

Tic-Tac-Toe 10−5 10−5 10−5 10−5 10−5 10−5
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Table 3: Average ranks of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 with linear kernel

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2

Cross Planes 4 3 1.5 1.5
Heart-Statlog 3 4 1.5 1.5
WDBC 2 1 3.5 3.5
Ionosphere 4 3 1.5 1.5
Votes 4 3 1.5 1.5
WPBC 2 4 2 2
Cleve 4 3 1.5 1.5
Monks-3 4 3 1.5 1.5
Australian 3 4 1.5 1.5
Haberman 2 4 2 2
Splice 3 4 1.5 1.5
Tic-Tac-Toe 4 2 2 2

Average Rank 3.250 3.166 1.7916 1.7916

Table 4: Performance comparisons of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 on twelve datasets using Gaussian kernel

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2
(Train size, Test size) Accuracy(%) Accuracy(%) Accuracy(%) Accuracy(%)

Time(s) Time(s) Time(s) Time(s)

Cross Planes 90.00 97.50 100.00 100.00
(81 × 2, 40 × 2) 0.1782 0.8575 0.0333 0.0435
Heart-Statlog 75.71 81.43 82.86 84.29
(200 × 13, 70 × 13) 0.8125 0.4404 0.00234 0.0216
WDBC 84.06 78.26 76.81 73.92
(500 × 30, 69 × 30) 4.9375 0.6929 0.3363 0.1980
Ionosphere 73.33 94.29 95.24 96.19
(246 × 34, 105 × 34) 1.4843 0.3374 0.0272 0.04303
Votes 93.02 96.90 96.90 96.90
(306 × 16, 129 × 16) 1.7320 0.3638 0.0460 0.1298
WPBC 64.91 75.44 78.95 75.44
(137 × 33, 57 × 33) 0.3750 0.2142 0.0014 0.0408
Cleve 71.67 72.50 84.17 84.17
(177 × 13, 120 × 13) 0.5625 0.2655 0.0139 0.0408
Monks-3 81.48 90.74 93.29 93.52
(432 × 7, 122 × 7) 0.6875 0.1773 0.0083 0.0452
Australian 89.33 76.00 88.66 88.66
(540 × 14, 150 × 14) 5.7812 1.6721 0.0229 0.0724
Haberman 66.98 76.41 77.36 77.36
(200 × 3, 106 × 3) 1.078 1.2963 0.04983 0.0216
Splice 67.03 88.33 88.64 88.68
(500 × 60, 2675 × 60) 673.359 0.6190 0.1116 0.08402
Tic-Tac-Toe 94.43 94.43 94.43 94.43
(671 × 9, 287 × 9) 1.7892 2.6819 0.1895 0.2451
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Table 5: Optimal parameters of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 for Gaussian kernel

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2
µ δ µ C1 = C2 µ C1 = C2 C3 = C4 µ C1 = C2 C3 = C4

Cross Planes 29 2−5 29 10−5 2−10 10−5 10−5 2−10 10−5 10−5

Heart-Statlog 25 22 2−5 10−5 2−10 10−5 10−4 2−1 101 101

WDBC 24 26 2−1 10−5 2−1 100 10−2 2−3 100 10−4

Ionosphere 23 2−7 21 10−3 2−2 10−1 10−1 2−1 10−1 10−1

Votes 2−4 2−1 2−7 10−5 2−7 102 10−4 2−7 102 10−4

WPBC 23 26 20 10−5 21 10−5 10−5 20 10−3 10−5

Cleve 26 22 2−5 10−5 2−7 101 10−1 2−7 101 10−1

Monks-3 26 2−3 2−3 10−5 2−3 10−1 10−5 2−3 10−1 10−5

Australian 20 2−7 2−4 10−5 2−5 10−5 10−4 2−5 10−5 10−4

Haberman 26 22 21 10−5 2−9 10−2 10−5 2−9 10−2 10−5

Splice 2−8 22 2−6 10−5 2−3 10−1 10−1 2−3 10−1 10−1

Tic-Tac-Toe 23 22 2−6 10−5 2−10 100 10−5 2−10 100 10−5

Table 6: Average ranks of GEPSVM, TWSVM, SNTSVM-1 and SNTSVM-2 with Gaussian kernel.

Datasets GEPSVM TWSVM SNTSVM-1 SNTSVM-2

Cross Planes 4 3 1.5 1.5
Heart-Statlog 4 3 2 1
WDBC 1 2 3 4
Ionosphere 4 3 2 1
Votes 4 2 2 2
WPBC 4 2.5 1 2.5
Cleve 4 3 1.5 1.5
Monks-3 4 3 2 1
Australian 1 4 2.5 2.5
Haberman 4 3 1.5 1.5
Splice 4 3 2 1
Tic-Tac-Toe 2.5 2.5 2.5 2.5

Average Rank 3.375 2.833 1.958 1.833

In addition, we also compare our results non-linearly. One can observe from Table 4 that, in comparison
to GEPSVM and TWSVM, our methods show better generalization performance. In details, for Heart-
Statlog dataset, the experimental results by SNTSVM-1 (82.86%) and SNTSVM-2 (84.29%) are higher than
other two algorithms, i.e., TWSVM (81.43%) and GEPSVM (75.71%). We obtained the similar conclusions
for Ionosphere, Votes, WPBC, Cleve, Monks-3, Haberman, Splice and Tic-Tac-Toe datasets. For Australian
dataset, the classification accuracies obtained by our algorithms (88.66%) are slightly lower than GEPSVM
(89.33%), it is higher than TWSVM (76.00%). The empirical results further reveal that our proposed
algorithms SNTSVM-1 and SNTSVM-2, whose solutions are obtained by solving system of linear equations,
are faster than TWSVM on most of the datasets. One can observe from Table 4 that SNTSVM-1 and SNTSVM-
2 show exactly the same accuracy on six of twelve datasets. This clearly indicates that both the approaches
are equally preferred. From the perspective of training speed, our proposed SNTSVM-1 and SNTSVM-2
outperform GEPSVM and TWSVM on most of the datasets considered which clearly indicates its superiority.
It is worthwhile notice that choosing the values of the parameters C3 and C4 affect the results significantly
and these values are varying in our SNTSVM-1 and SNTSVM-2 rather than small fixed positive scalar in
TWSVM. The details of optimal parameters for linear and Gaussian kernel are listed in Table 2 and Table 5
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respectively. It clearly indicates that adding the regularization terms in our formulation are useful.
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Figure 2: 2-D projections of (a) TWSVM (b) SNTSVM-1 (c) SNTSVM-2 from WDBC dataset. +: scatter plot of the positive points. O:
scatter plot of the negative points.
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Figure 3: 2-D projections of (a) TWSVM (b) SNTSVM-1 (c) SNTSVM-2 from Heart-Statlog dataset. +: scatter plot of the positive points.
O: scatter plot of the negative points.
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Figure 4: The performance of SNTSVM-1 on number of iterations with 10-fold cross validation accuracy on UCI datasets.
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Figure 5: The performance of SNTSVM-2 on number of iterations with 10-fold cross validation accuracy on UCI datasets.

To further compare our SNTSVM-1 and SNTSVM-2 with TWSVM, we also compare it with the two-
dimensional scatter plots that were obtained from the part test points for the WDBC and Heart Statlog
datasets. The plots were obtained by plotting points with coordinates: perpendicular distance of a test
point x from positive hyperplane 1 and the distance from negative hyperplane 2. In the figures, positive
points are plotted as “+” and negative points are plotted as “o”. One can see from Fig. 2(a-c) and Fig.
3(a-c) that, our proposed SNTSVM-1 and SNTSVM-2 obtained large distances from the test samples to
the opposite hyperplanes. In contrast, the TWSVM obtained small distances from the test points to the
hyperplane pair. It means that our SNTSVM-1 and SNTSVM-2 are much more robust when compared
with the TWSVM. In addition, Fig. 4 and 5 show the relationship between the accuracy and the number
of iterations for SNTSVM-1 and SNTSVM-2 respectively. One can observe from figures that the accuracy
tends to a stable value quickly after twenty iterations on most of the datasets.

4.3. NDC datasets

We further experimented with four NDC datasets as examples of large synthetic datasets. David
Musicant NDC Data generator [24] is used to explore the computing time for these algorithms scale with
respect to number of data points. In all the examples considered, the original data is normalized with
mean zero and standard deviation equals to 1. For experiments with all NDC datasets, we fixed penalty
parameters of all algorithms to be as (i.e. C1 = C2 = C3 = C4, µ = 2−4). One can observe from Fig. 6 that our
proposed SNTSVM-1 and SNTSVM-2 obtained less training time in comparison with TWSVM.
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Figure 6: Comparison of training time on NDC datasets among TWSVM, SNTSVM-1 and SNTSVM-2.

4.4. Friedman Test

Friedman test is used in this paper to verify the statistical significance of our proposed SNTSVM-1 and
SNTSVM-2 in comparison to GEPSVM and TWSVM. Friedman test with the corresponding post hoc tests
is pointed out to be a simple, safe, and robust non parametric test for comparison of more classifiers over
multiple datasets [9], we use it to compare the performance of four algorithms. The average ranks of all the
algorithms on accuracies for linear kernel were computed and listed in Table 3. We employ the Friedman
test to check whether the measured average ranks are significantly different from the mean rank R j = 2.5
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expected under the null hypothesis:

χ2
F =

12N
k (k + 1)

 4∑
j=1

R2
j −

k (k + 1)2

4


is distributed according to χ2

F with k − 1 degree of freedom. where k is the number of methods and N is the
number of datasets.

χ2
F =

12 × 12
4 (4 + 1)

[
3.252 + 3.1662 + 1.79162 + 1.79162

−
4 (5)2

4

]
= 14.4403.

FF =
(N − 1)χ2

F

N (k − 1) − χ2
F

=
(12 − 1) × 14.4403

12 (4 − 1) − 14.4403
= 7.3676.

With four algorithms and twelve datasets, FF is distributed according to the F−distribution with (k − 1)
and (k − 1) (N − 1) = (3, 33) degrees of freedom. The critical value of F (3, 33) forα = 0.05 is 2.892. So, we reject
the null hypothesis (FF > F(3, 33)) . We use the Nemenyi test for further pairwise comparison. According

to [9], at p = 0.10, critical difference (CD) = qα
√

k(k+1)
6N = 1.2959. Since the difference between TWSVM

and our proposed SNTSVM-I and SNTSVM-2 is larger than the critical difference 1.2959(3.166 − 1.7916 =
1.3744 > 1.2959),we can identify that the performance of SNTSVM-I and SNTSVM-2 are significantly better
than TWSVM. In the same way, we see that the performance of SNTSVM-I and SNTSVM-2 are better than
GEPSVM.

For the nonlinear case, we also compare the performance of four algorithms statistically. The average
ranks of all the algorithms on accuracies were computed and listed in Table 6. We can calculate that the FF
value on accuracies is 5.2251, which is larger than the critical value 2.892, so we reject the null hypothesis.
Since the difference between SNTSVM-1, SNTSVM-2 and TWSVM is smaller than the critical difference,
we can conclude that there is no significant difference among the algorithms. Further, the performance of
SNTSVM-1 is significantly better than GEPSVM (3.375 − 1.958 = 1.4170 > 1.2959). In the same way, we can
conclude that the performance of SNTSVM-2 is significantly better than GEPSVM and TWSVM.

5. Conclusions and Future Works

In this paper, we proposed two smoothing approaches for an implicit Lagrangian twin support vector
machine classifiers by formulating a pair of unconstrained minimization problems in dual variables whose
solutions will be obtained by solving two systems of linear equations rather than solving two QPPs in
TWSVM. Our proposed formulation introduces regularization term to each objective function with the idea
of maximizing the margin. In addition, our proposed formulation becomes well-posed model due to this
term, which introduces invertibility in the dual formulation. Moreover, the structural risk minimization
principle is implemented in our formulation which embodies the essence of statistical learning theory. The
experimental results on several benchmark datasets show that our SNTSVM-1 and SNTSVM-2 are feasible
and effective on both generalization ability and training speed. Parameter selection of our formulation is a
practical problem and should be addressed in the future studies. Furthermore, we feel that extending our
formulation to multi-class classification and semi-supervised learning are also interesting and under our
consideration.
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