
Smooth View-Dependent Level-of-Detail Control
and its Application to Terrain Rendering

Hugues Hoppe

Microsoft Research

ABSTRACT

The key to real-time rendering of large-scale surfaces is to locally
adapt surface geometric complexity to changing view parameters.
Several schemes have been developed to address this problem of
view-dependent level-of-detail control. Among these, the view-
dependent progressive mesh (VDPM) framework represents an arbi-
trary triangle mesh as a hierarchy of geometrically optimized refine-
ment transformations, from which accurate approximating meshes
can be efficiently retrieved. In this paper we extend the general
VDPM framework to provide temporal coherence through the run-
time creation of geomorphs. These geomorphs eliminate “popping”
artifacts by smoothly interpolating geometry. Their implementation
requires new output-sensitive data structures, which have the added
benefit of reducing memory use.

We specialize the VDPM framework to the important case of ter-
rain rendering. To handle huge terrain grids, we introduce a block-
based simplification scheme that constructs a progressive mesh as
a hierarchy of block refinements. We demonstrate the need for an
accurate approximation metric during simplification. Our contribu-
tions are highlighted in a real-time flyover of a large, rugged terrain.
Notably, the use of geomorphs results in visually smooth rendering
even at 72 frames/sec on a graphics workstation.

1 INTRODUCTION

Real-time visualization of large-scale surfaces is a challenging prob-
lem. As an example, Figure 1 shows a grid mesh of 4,097 � 2,049
vertices containing both color and elevation data. The most common
approach for rendering such surfaces is to exploit the traditional 3D
graphics pipeline, which is optimized to transform and texture-map
triangles. The graphics pipeline has two main stages: geometry
processing and rasterization.

Typically, the rasterization effort is relatively steady because the
rendered surface has low depth complexity. In the worst case, the
model covers the viewport, and the number of filled pixels is only
slightly more than that in the frame buffer. Current graphics work-
stations (and soon, personal computers) have sufficient fill rate to
texture-map the entire frame buffer at 30–72 Hz, even with advanced
features like trilinear mip-map filtering and detail textures.

Instead, geometry processing proves to be the bottleneck. Even
high-end platforms can process in real-time only a tiny fraction of
the nearly 17 million triangles shown in Figure 1. Of course, there is
little point in rendering more triangles than there are pixels. In fact,
the surface usually exhibits significant spatial coherence, so that its
perspective projection can be approximated to an accuracy of a few

Email: hhoppe@microsoft.com

Web: http://research.microsoft.com/�hoppe/

pixels by a much simpler mesh (e.g. 2,000-20,000 triangle faces) as
demonstrated in Figure 11. Finding such a mesh, and updating it
as the viewing parameters change, is referred to as view-dependent
level-of-detail (LOD) control. The challenge is to locally adjust
the complexity of the approximating mesh to satisfy a screen-space
pixel tolerance while maintaining a rendered surface that is both
spatially and temporally continuous. To be spatially continuous,
the mesh should be free of cracks and T-junctions. To be temporally
continuous, the rendered mesh should not visibly “pop” from one
frame to the next.

Several schemes have been developed to address view-dependent
LOD control, as summarized in Section 2. Among these, the view-
dependent progressive mesh (VDPM) framework [16] represents an
arbitrary triangle mesh as a hierarchy of geometrically optimized
refinement transformations. Consequently, it is able to satisfy a
given screen-space approximation tolerance with a simpler mesh —
a key advantage in reducing the geometry bottleneck.

In this paper we first extend the general VDPM framework in the
following two areas.

Memory requirements : We redesign the data structures to be
output-sensitive, thereby reducing memory requirements (Sec-
tion 4.1).

Runtime geomorphs : We introduce a scheme for efficient run-
time creation of geomorphs, which smoothly transition surface
geometry over several frames to eliminate popping (Section 4.2).
To our knowledge this is the first runtime scheme for temporally
smooth, view-dependent LOD control on arbitrary meshes.

Many types of graphics scenes have complex geometric descrip-
tions. It should be emphasized, however, that scenes often contain
many distinct small-scale objects, for which LOD can be adjusted
independently [10] using traditional view-independent simplifica-
tion techniques (e.g. [1, 3, 12, 15, 21]). In our opinion, the overhead
of view-dependent LOD is only justified when necessary — for
large-scale continuous surfaces. In outdoor scenes, the primary in-
stance is the terrain surface. In other domains, examples include the
virtual flythroughs of organic structures and of CAD surfaces like
ship hulls [19, 23]. In this paper we place the emphasis on terrain
rendering because of its importance in the growing entertainment
market.

In the second half of the paper, we specialize the VDPM frame-
work to the special case of terrains (i.e. height fields). In particular,
we add the following two enhancements:

Approximation error : We demonstrate that the common ap-
proach of measuring approximation error on height fields solely
at grid points is inadequate for view-dependent LOD using ir-
regular meshes (Section 5.1). Fortunately, exact approximation
error can be computed efficiently during a preprocessing step.

Scalability : To handle huge terrain models, we present a block-
based recursive simplification process (Section 5.2). The result
of this process is a hierarchical progressive mesh representation
that permits runtime memory management.

Figure 1: A terrain grid of 4,097 � 2,049 vertices containing both color and elevation data.

2 RELATED WORK

Height fields. Although there exist numerous multiresolution
representations for height fields (see surveys in [7, 14]), only a
subset support view-dependent LOD, and it is only recently that
efficient on-line algorithms have been introduced that incrementally
adapt LOD as the view parameters change.

Taylor and Barrett [22] extract mesh approximations from rect-
angular quadtree hierarchies. Both Lindstrom et al. [18] and
Duchaineau et al. [8] define bintree hierarchies, based on binary
subdivision of right isosceles triangles, and demonstrate real-time
view-dependent LOD. Because these representations are based on
regular subdivision, they offer concise storage. Duchaineau et al.
are able to create optimal approximating meshes through incremen-
tal changes at each frame. However, the meshes are only optimal
within a restricted space of meshes, since the regular subdivision
structure constrains both vertex locations and face connectivities.
As a result, the approximations may be far from optimal when one
considers the space of all possible triangulations of the domain.

Several methods use Delaunay triangulation to develop mul-
tiresolution hierarchies [2, 5]. In particular, Cohen-Or and Lev-
anoni [5] support on-line view-dependent LOD with temporal co-
herence, but must resort to “two-stage” geomorphs. Compared to
quadtrees and bintrees, these methods allow more general distribu-
tion of vertices over the domain. However, the mesh connectivities
are again constrained, in this case by the Delaunay triangulation
criterion.

Arbitrary meshes. Xia and Varshney [23] and Hoppe [16] show
that multiresolution hierarchies for arbitrary meshes can be defined
using a general refinement transformation called a vertex split (Fig-
ure 2). Whereas Xia and Varshney construct the hierarchy using an
edge length heuristic, Hoppe constructs it from the geometrically op-
timized sequence in a progressive mesh representation (Section 3).
De Floriani et al. [6] introduce another related refinement hierarchy.

When applied to the special case of height fields, these frame-
works are able to satisfy a given approximation error using fewer
faces due to the absence of connectivity constraints. Lilleskog [17]
reports that the VDPM scheme uses 50-75% of the number of ac-
tive triangles required by bintree schemes for the same screen-space
error.

3 REVIEW OF VIEW-DEPENDENT
PROGRESSIVE MESH FRAMEWORK

As introduced in [15], a progressive mesh (PM) representation
describes an arbitrary triangle mesh Mn as a coarse base mesh
M0 together with a sequence of n refinement transformations
fvsplit0� � � � � vsplitn�1g called vertex splits (Figure 2) that progres-
sively recover detail. A PM representation for Mn is obtained by

fn1 fn3

fn2fn0

vt

vu

fl fr
fn1 fn3

fn2fn0

vs

vsplit

ecol

Figure 2: The vertex split refinement operation, and its inverse, the
edge collapse coarsening operation.

vv22vv11 vv33

vv1010 vv1111 vv44 vv55 vv88 vv99

vv66 vv77vv1212 vv1313

vv1414 vv1515

M0

Mn

Figure 3: The vsplit refinement transformations uniquely define a
vertex hierarchy.

carefully simplifying it using n successive edge collapse transfor-
mations (Figure 2), and recording their inverses.

As shown in the VDPM framework [16], this same sequence of
vsplit refinement transformations uniquely defines a vertex hierar-
chy (Figure 3), in which the root nodes correspond to the vertices
of the base mesh M0, and the leaf nodes correspond to the fully
detailed mesh Mn. This hierarchy permits the creation of selec-
tively refined meshes, that is, meshes not necessarily in the original
sequence M0 � � �Mn. A selectively refined mesh M corresponds to
a “vertex front” through the vertex hierarchy (e.g. M0 and Mn in
Figure 3), and is obtained by incrementally applying ecol and vsplit
transformations subject to a set of legality conditions. The selec-
tively refined mesh M, also called the active mesh, is usually much
simpler than the fully detailed mesh Mn.

To achieve view-dependent LOD, the active vertex front is tra-
versed prior to rendering each frame, and each vertex may be either
coarsened or refined based on view-dependent refinement criteria.
In [16], a vsplit refinement is performed if its neighborhood satis-
fies 3 criteria: (1) it intersects the view frustum, (2) its Gauss map
is not strictly oriented away, and (3) its screen-projected deviation
from Mn exceeds a user-specified pixel tolerance � . For efficient
and conservative runtime evaluation of these criteria, each vertex
in the hierarchy stores the following: a bounding-sphere radius rv,
a normal vector �nv, a cone-of-normals angle �v, and a deviation
space encoded by a uniform component �v and a directional com-
ponent �v [16]. Geomorphs are demonstrated to be feasible within
the VDPM framework, but their runtime creation is left as future
work.

In the remainder of the paper, we assume that the size of the base
mesh M0 is insignificant compared to that of the fully refined Mn,
and therefore assume that Mn has approximately n vertices and 2n
faces. We let m denote the number of vertices in the active mesh M,
so that M has approximately 2m faces. Typically, m � n.

4 EFFICIENT, TEMPORALLY SMOOTH VDPM

4.1 Output-sensitive data structures

One limitation of the original VDPM scheme [16] is that all its data
structures scale proportionally with the size n of the fully refined
mesh Mn. In particular, static storage is allocated to represent
the mesh connectivity for all faces in Mn even though only a small
fraction are usually active at any one time. To allow the introduction
of geomorphs without prohibitive memory use, we have redesigned
the data structures to be output-sensitive. As shown in Figure 4, the
structures are separated into two parts: a static part encoding the
vertex hierarchy and refinement dependencies (size 88n bytes), and
a dynamic part encoding the connectivity of just the active mesh M
(size 112m bytes).

Let us examine the data structures more closely. Each Vertex

contains a pointer to its parent, and an index i of the vspliti that
creates its children (or -1 if it is a leaf). Since vertices are numbered
consecutively, the index i is sufficient to compute the indices of
the two child vertices vt and vu, and of the one/two child faces fl
and fr. We make several optimizations to further reduce memory.
Geometry storage is reduced in half by modifying the vsplit/ecol
transformation to force vertices vs and vt to have the same geometry,
as illustrated in Figure 2. Experiments reveal that this vs = vt

constraint results in an average increase of about 15% in active
faces. Instead of storing the texture identifiers for the new faces
fl and fr in Vsplit, we infer them during a vsplit from the adjacent
active faces fn1 and fn3 respectively.

For concreteness, here is pseudocode for the vertex split transfor-
mation; procedure ecol(vs) is defined analogously.

procedure vsplit(vs)

vt � �vertices[jV0j + vs�i � 2]
vu � vt + 1

fl � �faces[jF0j + vs�i � 2]
fr � fl + 1
fn0��3 � vsplits[vs�i]�fn[0��3]
vt�avertex � vs�avertex; vt�avertex�vertex � vt

vs�avertex � 0
vu�avertex � new AVertex; vu�avertex�vertex � vu

vu�avertex�listnode.add to list(active vertices)
vu�avertex�vgeom � vsplits[vs�i]�vu vgeom
fl�aface � new AFace; fl�aface�listnode.add to(active faces)
[Fill in entries of fl�aface]
fr�aface � new AFace; fr�aface�listnode.add to(active faces)
[Fill in entries of fr�aface]
[Update fn0��3�neighbors[��] to point to fl� fr]
[For each face f around vu: update f �vertices[��] : vs � vu]

To enable the geomorphs described in Section 4.2, each active
vertex has a field vmorph, which points to a dynamically allocated
VertexMorph record when the vertex is morphing. In practice, the
number g of morphing vertices is only a fraction of the number m
of active vertices, which is itself only a small fraction of the total
number n of vertices.

Overall, the new data structures need 88n + 112m + 52g bytes,
compared to 224n bytes in [16].

Because in practice the number of active faces is 2m � 12,000
� 65,536, the AVertex* and AFace* pointers in the static structure
can be replaced by 16-bit indices. Additionally, in Vsplit we can
quantize the coordinates to 16 bits and use 256-entry lookup tables

// Statically allocated structures. (space O(n))

struct VGeom // Vertex geometry
Point point // position v

y Vector normal // normal �nv

struct Vertex // Static vertex [2n]
AVertex* avertex // active vertex, 0 if inactive
Vertex* parent // parent vertex, 0 if root
int i // index of vspliti, -1 if leaf

struct Face // Static face [2n]
AFace* aface // active face, 0 if inactive

struct Vsplit // Vertex split [n]
VGeom vu vgeom // geometry for child vertex vu

Face* fn[4] // required neighbors fn0� fn1� fn2� fn3

float radius // max extent rv of affected region

y float sin2alpha // cone-of-normals angle (sin2 �v)
y float uni error // uniform error �v

float dir error // directional error �v

struct ListNode // Node on a doubly linked list
ListNode* next
ListNode* prev

struct SRMesh // Selectively refinable mesh
Array<Vertex> vertices // all vertices in hierarchy [2n]
Array<Face> faces // all faces [2n]
Array<Vsplit> vsplits // vertex splits vspliti [n]
ListNode active vertices // head of active vertex list
ListNode active faces // head of active face list

// Dynamically allocated structures. (space O(m))

struct AVertex // Active vertex (on heap) [m]
ListNode listnode // list stringing active vertices
Vertex* vertex // pointer back to static vertex
VGeom vgeom // vertex coordinates (x,y,z)
VertexMorph* vmorph // �= 0 if geomorphing (Section 4.2)

struct AFace // Active face (on heap) [2m]
ListNode listnode // list stringing active faces
AVertex* vertices[3] // ordered counter-clockwise
AFace* neighbors[3] // neighbors[j] across from vertices[j]
int texture id // texture tile identifier

struct VertexMorph // (on heap, see Section 4.2) [g]
bool coarsening // true if coarsening, false if refining
short gtime // # of geomorph frames remaining
VGeom vg refined // refined geometry (back-up copy)
VGeom vginc // increment per frame during morph

Figure 4: Principal C++ data structures. Fields denoted by ‘y’ are
omitted for terrain rendering (Section 5).

for frv� �v� �v� sin2 �vg. Static storage is then reduced from 88n to
56n bytes. By way of comparison, a standard representation for a
pre-simplified, quantized, irregular mesh uses 42n bytes of memory
((n)(12) bytes for positions and normals, and (2n)(3)(4) bytes for
connectivity). Thus the VDPM framework only requires a 33%
increase in memory over a static, non-LOD representation.

4.2 Runtime generation of geomorphs

Two factors are crucial to a good visual flythrough simulation: a
(high) steady frame rate, and the absence of popping artifacts. At
first, these two goals seem contradictory. Popping is avoided if the
screen-space error tolerance is kept near a value of 1 pixel, but with a
constant error tolerance, the number of active faces can vary greatly
depending on the model complexity near the viewpoint, leading to
non-uniform frame rate.

model viewed

from above
viewer motion path

new view frustum

geomorph
refinement

instantaneous
coarsening

old view frustum

instantaneous
refinement

(advancing)

Figure 5: Changes to active mesh during forward motion of viewer.

Our solution is to aim primarily for a constant frame rate by ad-
justing the screen-space error tolerance, and to eliminate popping by
smoothly morphing the geometry. Although the model may at times
have a projected geometric error of a few pixels, results indicate that
geomorphs make this error nearly imperceptible. The remainder of
this section describes a scheme for generating geomorphs at runtime
within the VDPM framework. The geomorph scheme is effective
enough that we can increase the pixel error tolerance to improve
frame rate (up to 72 frames/sec) with few noticeable artifacts.

The main idea is as follows. When the refinement criteria indicate
the need for an ecol or vsplit, instead of performing the transfor-
mation instantaneously, we perform it as a geomorph by gradually
changing the vertex geometry over several frames. Specifically, a
transformation is performed as a geomorph if and only if the re-
gion of the affected surface is visible (i.e. the region overlaps with
the view frustum and is not oriented away from the viewer). In-
deed, it is undesirable to initiate a geomorph on a region known
to be invisible, because according to the refinement criteria, such
a region may have unbounded screen-space error. If such a region
were to become visible prior to the end of the geomorph, it could
lead to an arbitrarily large screen-space displacement. For example,
as the viewpoint pans left, the nearby off-screen region should not
be morphing from its coarse state as it enters the left edge of the
viewport.

Besides position, other vertex attributes interpolated during a
geomorph may include normal, color, and texture coordinates. Most
attributes are linearly interpolated. Normals are interpolated over
the unit sphere. In our examples, texture coordinates are generated
implicitly during rendering using a linear map on vertex positions.
Because the map is linear, these texture coordinates are identical to
those that would result if texture coordinates were tracked explicitly
at vertices.

Figure 5 illustrates the types of changes applied to the active mesh
as a user moves forward and to the left through a model. Regions of
the model entering the view frustum (on the left) are instantaneously
refined. Regions leaving the view frustum (on the right and near the
viewer) are instantaneously coarsened. Finally, regions within the
view frustum are geomorph refined. Note that in this common case
of forward viewer motion, geomorph coarsening does not occur.

Geomorph refinement. We first present geomorph refine-
ments, as it is the more common case in practice. Only minor
changes are made to the vsplit procedure described in Section 4.1.
The mesh connectivity is still modified immediately, but we initially
assign the new vertex vu the same geometry as its sibling vt, and
only gradually modify the geometry of vu to its refined state over
the next gtime frames. The parameter gtime is user-specified; in
our prototype we have set it equal to the frame rate (30–72), so that

vv22vv11 vv33

vv1010 vv1111 vv44 vv55 vv88 vv99

vv66 vv77vv1212 vv1313

vv1414 vv1515

vv22vv11 vv33

vv1010 vv1111 vv44 vv55 vv88 vv99

vv66 vv77vv1212 vv1313

vv1414 vv1515

Figure 6: Illustration of geomorph refinement. The active mesh on
the right is obtained by applying 3 vertex splits to the active mesh
on the left. To obtain a smooth transition, the geometry for vertices
fv13� v11� v7g are gradually interpolated from those of their ancestors
as indicated by the arrows. (By construction, positions v12 = v1

and v6 = v5, so no interpolation is necessary for them.)

geomorphs have a lifetime of one second. Note that the geomorphs
do not require the introduction of additional faces, as the mesh con-
nectivity is exactly that of the desired refined mesh. Here is the
modified pseudocode:

function is invisible(vs)
return outside view frustum(vs) or

oriented away(vs) // see [16] for their definitions

procedure vsplit(vs)
� � � // code from Section 4.1
if not is invisible(vs)

vu�avertex�vgeom � vt�avertex�vgeom
vm � vu�avertex�vmorph � new VertexMorph

vm�coarsening � false
vm�gtime � gtime
vm�vg refined � vsplits[vs�i]�vu vgeom
vm�vginc � (vm�vg refined � vu�avertex�vgeom)�gtime

It should be emphasized that this modified vsplit may be applied
to a vertex vs already morphing. In other words, geomorph refine-
ments can be composed arbitrarily, even with overlapping lifetimes.
Procedure vsplit simply advances the vertex front down the vertex
hierarchy (possibly several “layers”), modifying the mesh connec-
tivity instantaneously while deferring geometric changes. Figure 6
shows an example in which 3 vertex splits are performed.

As shown in the pseudocode below, at each frame we traverse the
set of active vertices, and for each morphing vertex, we advance its
geometry and decrement its gtime field. When gtime reaches 0, the
vertex has reached its goal geometry and the VertexMorph record is
deleted.

procedure update vmorphs()
for each v � active vertices

if v�vmorph
v�vgeom � v�vgeom + v�vmorph�vginc
v�vmorph�gtime � v�vmorph�gtime � 1
if v�morph�gtime = 0 delete v�vmorph

Geomorph coarsening. Geomorph coarsening is more chal-
lenging within the VDPM framework. Unlike in geomorph refine-
ment, the geometry interpolation must take place first, and only then
can the mesh connectivity be coarsened. Because the mesh must
remain refined during the geomorph’s lifetime, evaluating the legal-
ity of further coarsening steps is non-trivial. Moreover, even if this
legality could be determined, further coarsening would in general
require modifying several ongoing geomorphs. These difficulties
are not inherent to the VDPM framework but should arise even in
multiresolution hierarchies based on uniform subdivision.

As a consequence, we only allow geomorph coarsening “one
layer at a time”. That is, out of the set of desired geomorph coars-
enings, we simultaneously perform all the currently legal ones, and
make their dependents wait for these initial geomorphs to complete.
To help mitigate this delay, we reduce the gtime parameter for geo-
morph coarsening to half that for geomorph refinement. Fortunately,

geomorph coarsening is required only when the viewer is moving
backwards — a more infrequent situation.

Implementation of geomorph coarsening primarily involves
changes to the function that adjusts the active vertex front:

procedure adapt refinement() // compare with definition in [16]
for each v � active vertices

vs � v�vertex
if vs�i 	 0 and not is invisible(vs) and screen error(vs) � �

force vsplit(vs)
else if vs�parent and ecol legal(vs�parent)

vmc � (v�vmorph and v�vmorph�coarsening)
if is invisible(vs�parent)

if vmc finish geomorph coarsening(v)
ecol(vs�parent)

else if screen error(vs�parent) � �
if vmc abort geomorph coarsening(v)

else if vmc

if v�vmorph�gtime = 1
finish geomorph coarsening(v)
ecol(vs�parent)

else
start geomorph coarsening(vs)

Modified screen-space error metric. Recall that a geomorph
refinement is initiated when the screen-projected deviation of its
mesh neighborhood exceeds a pixel tolerance � . If the viewer
is moving forward, the mesh neighborhood is likely closer to the
viewer by the time the geomorph completes, thus invalidating the
error estimate. Our solution is to anticipate the viewer location
gtime frames into the future when evaluating the screen-space error
metric. We estimate this future location by extrapolation based
on the current per-frame viewer velocity �e. A more rigorous
solution to account for changes in velocity would require altering
the lifetimes of ongoing geomorphs, which seems expensive.

The original refinement criterion from [16, 18] is:

�v

kv � ek

s
1 �

�
(v� e)
 �nv

kv� ek

�2

� 	 �

where e is the viewpoint, v the mesh vertex, �nv its normal, �v

its neighborhood’s residual error, and 	 = 2� tan
�

2
accounts for

field-of-view angle
 and pixel tolerance � . The square-root factor
allows greater simplification when the surface is viewed along the
direction of its normal. For our terrain flyover, with fixed � , this
factor reduces the average number of active faces by only 3%, so
we decided to omit it. The denominator kv � ek is an estimate of
the z coordinate of the vertex v in screen space. We replace this
denominator with the linear functional L

e��e(v) = (v� e)
�ewhich

computes this z coordinate directly (�e is the viewing direction).

Our new screen-space error criterion is �v � 	 L
e���e(v), in which

the point e� is either the current viewpoint e or the anticipated future
viewpoint e+ gtime�e depending on whether�e
�e is negative or
positive respectively (i.e. viewer moving backwards or forwards).

Discussion. Selectively refined meshes within the VDPM
framework, and in particular those resulting from geomorphs, may
have thin (near-degenerate) triangles. Several papers warn against
using such meshes for LOD rendering. In our opinion this is un-
justified. Thin triangles can produce unsightly artifacts when they
result from inaccurate computation of approximation error; how-
ever, such artifacts are avoided when computing exact error as in
Section 5.1. Some authors have expressed concern that thin triangles
may misbehave during rendering. However, we have not observed
any rasterization artifacts on the graphics platforms we have tested
(SGI Maximum Impact and Infinite Reality), as demonstrated on
the accompanying video.

edge
collapse

2-2

2

0

0

0
0

1!

2!

2-2

2

0

0

0
(0)

elevation
data

Figure 7: For this edge collapse, evaluating the maximum height
deviation solely at grid points gives an error of zero.

edge
collapse

grid line interior to an edge

grid point interior to a face

center vertex (no error)

vsvt

vu

Figure 8: For correct approximation error, it is crucial to consider
all vertices in the union partition of the two triangulations.

5 SPECIALIZATION OF VDPM TO TERRAINS

In this section we discuss how the VDPM framework can be spe-
cialized to address the rendering of height fields.

Experiments reveal that backface simplification presents little
benefit. For instance, in Figure 11 it does not result in any coarsening
of the mesh. We therefore omit it as a view-dependent refinement
criterion by simplifying the function is invisible as follows:

function is invisible(vs)
return outside view frustum(vs)

Since the texture image is mapped onto the terrain using a verti-
cal projection, we measure surface deviation parametrically using
strictly a vertical distance �v as done in [18]. If in addition, tex-
ture mapping is performed without Gouraud shading, the storage of
vertex normals becomes unnecessary.

As a consequence, we omit storing the fields �nv, �v, and �v (as
highlighted by the ‘y’ symbol in Figure 4), thereby reducing static
storage to 48n bytes using 16-bit indices, quantization, and lookup
tables as described in Section 4.1.

5.1 Exact approximation error

For height fields, it is common in the literature to measure the
approximation error of a simplified mesh by its maximum vertical
deviation at the original grid points (e.g. [2, 7, 11]). For view-
dependent LOD, however, measuring deviation solely at grid points
is generally insufficient, which is surprising at first since the only
input is the discrete set of grid points, i.e., there is no knowledge of
the surface between the points.

For the edge collapse transformation illustrated in Figure 7, both
meshes (before and after the transformation) interpolate the grid
points, yet they have different geometric shapes. Even if it is argued
that both interpolants are equally valid, clearly the two rendered
meshes look different, and the mesh transformation may lead to

partition
mesh

pre-simplify
blocks

simplify blocks
& save ecol’s

stitch blocks into
larger blocks

simplify
top-level block

ecolA

ecolB

ecolS

apply bottom-up recursion

Figure 9: Steps in the hierarchical block-based simplification done as a preprocess.

an arbitrarily large pop. This point is more than academic; an
initial implementation using the naive approximation error did in
fact result in unexpectedly large pops, as demonstrated qualitatively
on the video. Even though geomorphs hide such pops, it is still
useful to have an accurate estimate of screen-space error.

The solution is to measure maximum (L�) approximation error
with respect to a reference surface.1 A natural choice for this refer-
ence surface is the regular triangulation of the grid points. We there-
fore want to compute the maximum height deviation between this
triangulated grid and the open neighborhood of each edge collapse
transformation. (Similar derivations are described in [1, 3, 9].) The
maximum height deviation between two triangle meshes is known
to lie at a vertex of their union partition in the plane (e.g. the vertices
labeled in Figure 8). An efficient way to enumerate the vertices of
the union partition is to consider: (1) the grid points internal to the
faces adjacent to vs, and (2) the grid line crossings internal to the
edges adjacent to vs. Note that the computed error is not just an
upper-bound, it is exact, and it is always computed with respect to
the original fully detailed mesh. This error, computed during the
preprocessing discussed in the next section, is stored in the Vsplit

field �v for use in the runtime criterion of Section 4.2.

It should be pointed out that for regular subdivision schemes
based on quadtrees and bintrees, all grid line crossings happen to
fall exactly on grid points, so the naive approach is in fact sufficient.

5.2 Hierarchical PM construction

We develop a hierarchical scheme for constructing PM represen-
tations of large terrains. The scheme, applied as a preprocess,
partitions surface geometry into blocks and uses bottom-up recur-
sion to simplify and merge the block geometries. Our approach is
motivated by three considerations:

� Because simplification methods start from a detailed mesh
and successively remove vertices, they are inherently memory-
intensive. Although the mesh of Figure 1 does have an acceptable
approximation that fits in main memory, attempting to form this
approximation by simplifying the mesh as a whole would be
impractical. For height fields, an alternative approach requiring
less memory is to start from a coarse approximation and progres-
sively insert vertices [2, 11]. However, such greedy refinement
methods generally yield inferior approximations (e.g. compare
Figures 25-26 in [11] with Figure 8b in [15]). Our hierarchi-
cal strategy allows us to tackle the problem piecemeal with an
accurate simplification-based method.

� For even larger models, a pre-simplified mesh may still be too
large to fit in main memory. If one resorts to the operating
system’s virtual memory manager, the resulting paging causes

1The use of an L2 norm to integrate squared error over the domain is
inadequate, as reported in [11].

vsplitsM0

final

PM:

base mesh pre-simplified terrain

vsplitS vsplitA vsplitB

M0

vsplitS

vsplitA vsplitB

block refinements

Figure 10: Result of the hierarchical construction process.

the process to pause intermittently, disturbing frame rate. By
partitioning the refinement database into a block hierarchy, we
can exploit domain knowledge to explicitly pre-fetch refinement
data before it is needed.

� Just as the geometry data may be too large for memory, so may
its associated texture image. Clip-maps [20] offer an elegant
solution to this problem, but require hardware assistance cur-
rently available only on high-end systems. A more traditional
approach is to partition the texture image into tiles that can be
mip-mapped and paged independently. In our scheme, a texture
tile may be associated with each block, as the PM construc-
tion can optionally guarantee that mesh faces never cross block
boundaries.

After partitioning the model into blocks, the recursive scheme
proceeds as illustrated in Figure 9. Starting at the lowest level,
it simplifies each block by iteratively applying a sequence of ecol
transformations. This sequence is chosen by selecting at each iter-
ation the ecol giving rise to the lowest approximation error, using
the metric of Section 5.1. The simplification process terminates
when the approximation error of the next best ecol exceeds a user-
specified threshold for the current level. In order to avoid refinement
dependencies between adjacent blocks, we constrain ecol’s to leave
boundary vertices untouched. Above the first level, if texture tiles
are desired, we also constrain ecol’s to prevent displacement of tile
boundaries within the block, as shown by the checkerboard pattern
in Color Plate 1d-e. The simplification sequences (e.g. ecolA, ecolB)
are saved to disk. Then, the resulting simplified meshes are stitched
together 2 � 2 at a time, and the process is repeated at the next
higher level using these larger blocks.

Special treatment is given to the first and last levels of simplifi-
cation. In the first level, we discard for each block all initial ecol’s

(a) Texture mapped (b) Underlying triangle mesh

Figure 11: One frame from the 30 frame/sec flyover of the terrain shown in Figure 1. The screen-space error tolerance � is 2.1 pixels for
a 720x510 window. The active mesh has 12,154 faces and 6,096 vertices. The fraction of vertices undergoing geomorph refinement and
coarsening is 26.8% and 0.2% respectively. Note how the sizes and shapes of the triangles adapt to the complex topography.

Level max. error number of faces

(range 0–255) (2n)

original mesh 0.0 16,777,216

pre-simplified 0.5 1,453,154

level 0 1.0 540,604

level 1 2.0 215,064

level 2 � (106.0) 64

Table 1: PM hierarchy statistics.

until a user-specified error tolerance is exceeded. Effectively this
amounts to truncating the final hierarchy but it avoids the interme-
diate storage costs. In the last level, in which there is only a single
block, we permit simplification of the mesh boundary, since inter-
block dependencies are no longer a concern. Thus the final base
mesh M0 consists of only 2 triangles, or 2 triangles per tile if texture
tiles are desired (Color Plate 1e).

To form a hierarchical PM, we invert each recorded ecol se-
quence to form a vsplit sequence called a block refinement (e.g.
vsplitS, vsplitA, and vsplitB in Figure 10). We concatenate these
block refinements and store them along with the base mesh. As
in the construction of an ordinary PM, this final assembly involves
renumbering the vertex and face parameters in all vsplit records.
However, the renumbering only requires depth-first access to the
block refinements within the hierarchy, so that memory usage is
moderate.

Although the hierarchical construction constrains simplification
along block boundaries at lower levels, inter-block simplification
occurs at higher levels, so that these constraints do not pose a sig-
nificant runtime penalty. For our flyover example in Section 6, and
for a given pixel tolerance, a non-hierarchical PM representation
reduces the average number of active faces by only 0.8%.

As mentioned above, the user specifies a threshold for the max-
imum approximation error at each simplification level. We choose
these thresholds so that block refinements at all levels have roughly
the same number of vsplit refinements. For example, in Color
Plate 1 the thresholds are 0.03%, 0.04%, 0.1%, and�, expressed as
fractions of the terrain width. Since these thresholds form an upper-
bound on the errors of all vsplit’s below that level, they can be used
to determine which block refinements need to be memory-resident
based on the current viewing parameters, and which others should be
prefetched based on the anticipated view changes. Specifically, we
can use the thresholds to compute the maximum screen-projected
error for each active block as in [18]. If this error exceeds the
screen-space tolerance � , its child block refinements are loaded into
memory and further tested.

Since block refinements correspond to contiguous sequences in
the vertices, faces, and vsplits arrays of Figure 4, we can reserve vir-
tual memory for the whole PM (i.e. the entire arrays), and use sparse
memory allocation to commit only a fraction to physical memory.
For instance, the Microsoft Windows operating system supports
such a reserve/commit/decommit protocol using the VirtualAlloc()
and VirtualFree() system calls.

6 RESULTS

Preprocessing. The 4,097 � 2,049 grid of Figure 1 represents
actual elevation data and satellite imagery near the Grand Canyon.
The elevation at each grid vertex is given as an integer in the range
0–255, where one unit represents 10 meters. To make the example
more challenging, we exaggerated the elevation by 40%, assign-
ing 14 meters to each unit. We partitioned the initial mesh into
8 � 4 blocks of 513 � 513 vertices, and applied the hierarchical
construction scheme of Section 5.2. Table 1 shows the maximum
error tolerance for each level of the hierarchy, in the original 0–
255 scale, together with the total number of faces at that level. As
the meshes are too dense to visualize, Color Plate 1 shows a much
simpler example with 4� 4 blocks of 33 � 33 vertices.

We pre-simplify the blocks up to an error of half the original data
resolution (0.5 in the 0–255 range). With a resulting pre-simplified
mesh of n = 732,722 vertices, the static data structures use 49.8
MB. (On low-end platforms where storage is at a premium, the
pre-simplification error threshold can be increased to 1.0 to further
reduce size to 13.1 MB.) In contrast, the dynamic data structures
require only 0.6 MB of memory in a typical situation such as that in
Figure 11 (where the number of active vertices m = 6,000 and the
number of morphing vertices g = 1,500).

Runtime. In the accompanying video, we demonstrate a 2-
minute flyover of the Grand Canyon terrain. In world units, speed
during the flight is approximately Mach 10. The flyover is ren-
dered in real-time on an SGI Octane workstation (single processor
195 MHz R10K with Maximum Impact graphics), in a window of
710x520 pixels. We obtain a constant frame rate of 30 frames/sec
by regulating the screen-space error tolerance � to maintain ap-
proximately 12,000 active faces, and by amortizing the work of
the procedure adapt refinement over 3 frames, as described in [16].
Figure 11 shows one frame from the flyover, in which � equals 2.1
pixels. Over the whole flight, the screen-space tolerance � averages
1.7 pixel, and attains a maximum of 3.3 pixels. (Because of approx-
imations in the computation of screen-space errors [16], the toler-
ance values � are unfortunately not upper bounds on screen-space
error.) The fraction of vertices undergoing geomorph refinement
and coarsening averages 28.3% and 2.2% respectively.

Scheme hardware window frames/ # faces pixel tol. �

config. dimensions sec (2m) avg. max.

ours R10K-MXI 710x520 30 12,000 1.7 3.3

” R10K-MXI 710x520 60 5,000 3.5 8.3

” R10K-MXI 710x520 72 4,000 4.3 10.0

” Onyx-IR 710x520 30 16,000 1.3 2.3

” Onyx-IR 710x520 60 8,000 2.1 4.5

” R10K-MXI 1000x1000 30 11,000 2.9 5.2

[8] R10K-MXI 1000x1000 30 3,000 n/a �6.0

” Onyx-IR 1000x1000 30 6,000 n/a n/a

[18] Onyx-RE2 640x480 20-30 4-9,000 �2.0 �2.0

Table 2: Runtime statistics and comparison with previous work.

By modifying the regulation to instead maintain 5,000 active
faces, we consistently achieve a target frame rate of 60 frames/sec.
Similarly, 4,000 active faces yields a rate of 72 frames/sec. Table 2
lists statistics for these flyovers, as well as similar ones recorded on
an SGI Onyx Infinite Reality system. As we currently only make
use of a single CPU, performance gains on the Onyx are limited.

For comparison, Table 2 also lists statistics for some previous
methods. Unfortunately, the terrains are different in each case, thus
preventing direct comparisons. The quality of our results are due to
the combination of three advantages:

1. The framework is efficient; by performing output-sensitive, in-
cremental work, it is able to adapt and render an active mesh of
12,000 faces at 30 frames/second on a uni-processor workstation.

2. These mesh faces are derived from geometrically optimized re-
finement transformations, thus providing an accurate screen-
space approximation.

3. Through temporal coherence, geomorphs mask the remaining
screen-space approximation error.

7 GENERALIZATION: ARBITRARY MESHES

Both the output-sensitive data structures (Section 4.1) and the run-
time geomorph framework (Section 4.2) apply to VDPM represen-
tations of arbitrary meshes, as demonstrated on the accompanying
video. In this section we briefly discuss how the techniques of
Section 5 can be generalized to work on arbitrary meshes.

Approximation error. Several recent methods are able to track
upper bounds on maximum geometric error during simplification
of arbitrary meshes. Among these, at least two [3, 13] specifically
consider sequences of edge collapse transformations. It would be
easy to include these methods within the general VDPM framework.
Other recent work [4] obtains bounds on parametric approximation
error, which is appropriate in the presence of texture mapping.

Hierarchical construction. A Voronoi construction as in [9]
can be used to recursively partition an arbitrary mesh into a hierarchy
of regions. Although the regions are no longer square blocks, the
bottom-up simplification and stitching scheme should work with
little modification.

ACKNOWLEDGMENTS

I wish to thank Anuj Gosalia of the Microsoft Direct3D group for
helpful feedback, and Cindy Grimm, John Snyder, and Rick Szeliski
for comments on the paper.

REFERENCES

[1] Bajaj� C�� and Schikore� D� Error-bounded reduction of triangle
meshes with multivariate data. SPIE 2656 (1996), 34–45.

[2] Cignoni� P�� Puppo� E�� and Scopigno� R� Representation
and visualization of terrain surfaces at variable resolution. The Visual

Computer 13 (1997), 199–217.

[3] Cohen� J�� Manocha� D�� and Olano� M� Simplifying polyg-
onal models using successive mappings. In Visualization ’97 Proceed-
ings (1997), IEEE, pp. 81–88.

[4] Cohen� J�� Olano� M�� and Manocha� D� Appearance-
preserving simplification. Computer Graphics (SIGGRAPH ’98 Pro-

ceedings) (1998).

[5] Cohen�Or� D�� and Levanoni� Y� Temporal continuity of levels
of detail in Delaunay trianulated terrain. In Visualization ’96 Proceed-

ings (1996), IEEE, pp. 37–42.

[6] De Floriani� L�� Magillo� P�� and Puppo� E� Building
and traversing a surface at variable resolution. In Visualization ’97

Proceedings (1997), IEEE, pp. 103–110.

[7] De Floriani� L�� Marzano� P�� and Puppo� E� Multiresolu-
tion models for topographic surface description. The Visual Computer

12, 7 (1996), 317–345.

[8] Duchaineau� M�� Wolinsky� M�� Sigeti� D�� Miller� M��
Aldrich� C�� and Mineev�Weinstein� M� ROAMing terrain:
real-time optimally adapting meshes. In Visualization ’97 Proceedings

(1997), IEEE, pp. 81–88.

[9] Eck� M�� DeRose� T�� Duchamp� T�� Hoppe� H�� Louns�
bery� M�� and Stuetzle� W� Multiresolution analysis of ar-
bitrary meshes. Computer Graphics (SIGGRAPH ’95 Proceedings)
(1995), 173–182.

[10] Funkhouser� T�� and S�equin� C� Adaptive display algorithm
for interactive frame rates during visualization of complex virtual envi-
ronments. Computer Graphics (SIGGRAPH ’93 Proceedings) (1993),
247–254.

[11] Garland� M�� and Heckbert� P� Fast polygonal approximation
of terrains and height fields. CMU-CS 95-181, CS Dept., Carnegie
Mellon University, 1995.

[12] Garland� M�� and Heckbert� P� Surface simplification using
quadric error metrics. Computer Graphics (SIGGRAPH ’97 Proceed-

ings) (1997), 209–216.

[13] Gu�eziec� A� Surface simplification with variable tolerance. In Pro-

ceedings of the Second International Symposium on Medical Robotics
and Computer Assisted Surgery (November 1995), pp. 132–139.

[14] Heckbert� P�� and Garland� M� Survey of polygonal sur-
face simplification algorithms. In Multiresolution surface modeling
(SIGGRAPH ’97 Course notes #25). ACM SIGGRAPH, 1997.

[15] Hoppe� H� Progressive meshes. Computer Graphics (SIGGRAPH

’96 Proceedings) (1996), 99–108.

[16] Hoppe� H� View-dependent refinement of progressive meshes. Com-

puter Graphics (SIGGRAPH ’97 Proceedings) (1997), 189–198.

[17] Lilleskog� T� Continuous level of detail. Master’s thesis, De-
partment of Computer Science, Norwegian University of Science and
Technology, February 1998.

[18] Lindstrom� P�� Koller� D�� Ribarsky� W�� Hodges� L��
Faust� N�� and Turner� G� Real-time, continuous level of de-
tail rendering of height fields. Computer Graphics (SIGGRAPH ’96

Proceedings) (1996), 109–118.

[19] Luebke� D�� and Erikson� C� View-dependent simplification of
arbitrary polygonal environments. Computer Graphics (SIGGRAPH

’97 Proceedings) (1997), 199–208.

[20] Montrym� J�� Baum� D�� Dignam� D�� and Migdal� C� In-
finiteReality: a real-time graphics system. Computer Graphics (SIG-

GRAPH ’97 Proceedings) (1997), 293–302.

[21] Rossignac� J�� and Borrel� P� Multi-resolution 3D approx-
imations for rendering complex scenes. In Modeling in Computer

Graphics, B. Falcidieno and T. L. Kunii, Eds. Springer-Verlag, 1993,
pp. 455–465.

[22] Taylor� D� C�� and Barrett� W� A� An algorithm for continu-
ous resolution polygonalizations of a discrete surface. In Proceedings

of Graphics Interface ’94 (1994), pp. 33–42.

[23] Xia� J�� and Varshney� A� Dynamic view-dependent simplifica-
tion for polygonal models. In Visualization ’96 Proceedings (1996),
IEEE, pp. 327–334.

(a) Original mesh (129 � 129 vertices; 32,768 faces; max �=0) (b) Pre-simplified mesh (21,622 faces; max �=0.03%)

(c) Level 0 simplification (11,048 faces; max �=0.04%) (d) Level 1 simplification (3,594 faces; max �=0.1%)

Figure (e)

(d)

(c)

(b)

2.8%

0.1%

0.04%

0.03%

0.0%

maximum error

(a)

block
refinements

(e) Level 2 — base mesh M0 (32 faces; max �=2.8%) (f) PM hierarchy showing block refinements

Color Plate 1: The hierarchical PM construction process partitions the model into blocks and recursively simplifies and combines the blocks.
The result is a base mesh M0 and a hierarchy of block refinements. The value max � indicates the maximum deviation of the meshes at the
given level, as a fraction of the terrain width.

