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Abstract

We classify del Pezzo surfaces with quotient singularities and Picard rank 1 which admit
a Q-Gorenstein smoothing. These surfaces arise as singular fibres of del Pezzo fibrations
in the 3-fold minimal model program and also in moduli problems.

1. Introduction

We give a complete classification of del Pezzo surfaces with quotient singularities and Picard rank
1 which admit a Q-Gorenstein smoothing. This solves a problem posed by Kollár, cf. [Kol08, §4].

One of the possible end products of the 3-fold minimal model program is a del Pezzo fibration.
A del Pezzo fibration is a morphism f : Y → S with connected fibres such that Y is a 3-fold with
terminal singularities, S is a smooth curve, −KY is relatively ample, and the relative Picard number
ρ(Y/S) equals 1. In particular, a general fibre of f is a smooth del Pezzo surface. Typically, a singular
fibre X = Ys of a del Pezzo fibration Y/S is a normal del Pezzo surface with quotient singularities.
Moreover, if we work locally analytically at s ∈ S, we can run a relative minimal model program
over S to reduce to the case ρ(X) = 1. This is a key motivation for our work.

Let X be a normal surface with quotient singularities. We say X admits a Q-Gorenstein smooth-
ing if there exists a deformation X/(0 ∈ T ) of X over a smooth curve germ such that the general
fibre is smooth and KX is Q-Cartier. (The requirement that KX be Q-Cartier is natural from the
point of view of the minimal model program and is important in moduli problems, cf. [KS88, 5.4].
It is automatically satisfied if X is Gorenstein.)

Theorem 1.1. Let X be a projective surface with quotient singularities such that −KX is ample,
ρ(X) = 1, and X admits a Q-Gorenstein smoothing. Then X is one of the following:

(1) A toric surface as in Thm. 4.1.

(2) A deformation of a toric surface from (1), determined by specifying the subset of singularities
to be partially smoothed as in Cor. 2.7.

(3) A sporadic surface as in Ex. 8.3.

There are 14 infinite families of toric examples, see Thm. 4.1. The surfaces in each family
correspond to solutions of a Markov-type equation. The solutions of the (original) Markov equation

a2 + b2 + c2 = 3abc

correspond to the vertices of an infinite tree such that each vertex has degree 3. Here two vertices
are joined by an edge if they are related by a so called mutation of the form

(a, b, c) 7→ (a, b, 3ab− c).

2000 Mathematics Subject Classification 14J10, 14E30
Keywords: del Pezzo surface, moduli, Mori fiber space

The first author was partially supported by NSF grant DMS-0650052. The second author was partially supported
by grants RFBR no. 08-01-00395-a, 06-01-72017-MHTI-a and CRDF-RUM, no. 1-2692-MO-05.



Paul Hacking and Yuri Prokhorov

The solutions of the other equations are described similarly.
Given one of the toric surfaces Y , the Q-Gorenstein deformations of Y which preserve the

Picard number are as follows. First, there are no locally trivial deformations and no local-to-global
obstructions to deformations. Second, for each singularity Q ∈ Y , the deformation is either locally
trivial or a deformation of a singularity of index > 1 to a Du Val singularity of type A, see Cor. 2.7.
Moreover, in the second case, the deformation is essentially unique (it is obtained from a fixed one
parameter deformation by base change).

There are 20 isolated sporadic surfaces and one family of sporadic surfaces parametrised by A1,
see Ex. 8.3. Every sporadic surface has index 6 2. In particular, they occur in the list of Alexeev
and Nikulin [AN06].

Our methods produce many examples of smoothable del Pezzo surfaces X with quotient singu-
larities of Picard rank ρ(X) > 1. Indeed, let Z be one of the toric surfaces enumerated in Thm. 4.1
and let X be any partial Q-Gorenstein smoothing of Z. Then the Picard number ρ(X) can be
computed by the formula in Prop. 2.6.

In the case K2
X = 9 we obtain the following stronger result. This completely solves the problem

studied by Manetti in [Man91].

Corollary 1.2. LetX be a projective surface with quotient singularities which admits a smoothing
to the plane. Then X is a Q-Gorenstein deformation of a weighted projective plane P(a2, b2, c2),
where (a, b, c) is a solution of the Markov equation.

Proof. If X is a surface with quotient singularities which admits a smoothing to the plane, then
ρ(X) = 1, −KX is ample, and the smoothing is Q-Gorenstein by [Man91, §1].

We note that a partial classification of the surfaces with K2
X > 5 was obtained by Manetti

[Man91],[Man93].
As a consequence of our techniques we verify a particular case of Reid’s general elephant con-

jecture (see, e.g., [Ale94]).

Theorem 1.3. Let f : V → (0 ∈ T ) be a del Pezzo fibration over the germ of a smooth curve.
That is, V is a 3-fold with terminal singularities, f has connected fibres, −KV is ample over T , and
ρ(V/T ) = 1. Assume in addition that the special fibre is reduced and normal, and has only quotient
singularities. Then a general member S ∈ | −KV | is a normal surface with Du Val singularities.

Notation. Throughout this paper, we work over the field k = C of complex numbers. The symbol
µn denotes the group of nth roots of unity.
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2. T -singularities

T -singularities are by definition the quotient singularities of dimension 2 which admit a Q-Gorenstein
smoothing. We recall the classification of T -singularities from [KS88, Sec. 3] and establish some basic
results.

2.1 Q-Gorenstein deformations
Let X be a normal surface such that KX is Q-Cartier. A deformation X/(0 ∈ S) of X over a germ
(0 ∈ S) is Q-Gorenstein if locally analytically at each singular point P ∈ X it is induced by an
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equivariant deformation of the canonical covering of P ∈ X. This definition was originally proposed
by Kollár [Kol91] and the general theory is worked out in [Hac04, Sec. 3]. We only use the explicit
version in Sec. 2.2. We note that, if X has quotient singularities and S is a smooth curve, then a
deformation X/(0 ∈ S) is Q-Gorenstein iff KX is Q-Cartier.

2.2 Definition and classification of T -singularities
Definition 2.1. [KS88, Def. 3.7] Let P ∈ X be a quotient singularity of dimension 2. We say
P ∈ X is a T -singularity if it admits a Q-Gorenstein smoothing. That is, there exists a Q-Gorenstein
deformation of P ∈ X over a smooth curve germ such that the general fibre is smooth.

For n, a ∈ N with (a, n) = 1, let 1
n(1, a) denote the cyclic quotient singularity (0 ∈ A2

u,v/µn)
given by

µn 3 ζ : (u, v) 7→ (ζu, ζav).

The following result is due to J. Wahl [Wah81, 5.9.1], [LW86, Props. 5.7,5.9]. It was proved by
a different method in [KS88, Prop. 3.10].

Proposition 2.2. A T -singularity is either a Du Val singularity or a cyclic quotient singularity of
the form 1

dn2 (1, dna− 1) for some d, n, a ∈ N with (a, n) = 1.

The singularity 1
dn2 (1, dna− 1) has index n and canonical covering 1

dn(1,−1), the Du Val singu-
larity of type Adn−1. We have an identification

1
dn

(1,−1) = (xy = zdn) ⊂ A3
x,y,z,

where x = udn, y = vdn, and z = uv. Taking the quotient by µn we obtain

1
dn2

(1, dna− 1) = (xy = zdn) ⊂ 1
n

(1,−1, a).

Hence a Q-Gorenstein smoothing is given by

(xy = zdn + t) ⊂ 1
n

(1,−1, a)× A1
t .

More generally, a versal Q-Gorenstein deformation of 1
dn2 (1, dna− 1) is given by

(xy = zdn + td−1z
(d−1)n + · · ·+ t0) ⊂

1
n

(1,−1, a)× A1
t0,...,td−1

. (1)

We call a T -singularity of the form 1
dn2 (1, dna− 1) a Td-singularity.

Proposition 2.3. Let (P ∈ X )/(0 ∈ S) be a Q-Gorenstein deformation of 1
dn2 (1, dna−1). Then the

possible singularities of a fibre of X/S are as follows: either Ae1−1, . . . , Aes−1 or 1
e1n2 (1, e1na− 1),

Ae2−1, . . . , Aes−1, where e1, . . . , es is a partition of d.

Proof. The family X/S is pulled back from the versal Q-Gorenstein deformation (1). Hence each
fibre of X/S has the form

(xy = zdn + ad−1z
(d−1)n + · · ·+ a0) ⊂

1
n

(1,−1, a)

for some a0, . . . , ad−1 ∈ k. Write

zdn + ad−1z
(d−1)n + · · ·+ a0 =

∏
(zn − γi)ei

where the γi are distinct. Then the fibre has singularities as described in the statement (the second
case occurs if γi = 0 for some i).
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2.3 Noether’s formula
For P ∈ X a T -singularity, let M be the Milnor fibre of a Q-Gorenstein smoothing. Thus (M,∂M) is
a smooth 4-manifold with boundary, and is uniquely determined by P ∈ X since the Q-Gorenstein
deformation space of P ∈ X is smooth. Let µP = b2(M), the Milnor number.

Lemma 2.4. [Man91, Sec. 3] If P ∈ X is a Du Val singularity of type Ar, Dr, or Er, then µP = r.
If P ∈ X is of type 1

dn2 (1, dna− 1) then µP = d− 1.

Remark 2.5. If M is the Milnor fibre of a smoothing of a normal surface singularity P ∈ X then
M has the homotopy type of a CW complex of real dimension 2 by Morse theory and b1(M) = 0
[GS83]. In particular the Euler number e(M) = 1 + µP .

Proposition 2.6. Let X be a projective surface with T -singularities. Then

K2
X + e(X) +

∑
P∈SingX

µP = 12χ(OX)

and

χ(OX(mKX)) = χ(OX) +
1
2
m(m− 1)K2

X

for m ∈ Z.

In particular, if X is rational then

K2
X + ρ(X) +

∑
P∈SingX

µP = 10

and if −KX is big and nef then

h0(OX(−nKX)) = 1 +
1
2
n(n+ 1)K2

X

for n ∈ Z>0.

Proof. For X a projective normal surface with quotient singularities there is a singular Noether
formula

K2
X + e(X) +

∑
P

cP = 12χ(OX)

where the sum is over the singular points P ∈ X, and the correction term cP depends only on
the local analytic isomorphism type of the singularity P ∈ X. (Indeed, let π : X̃ → X be the
minimal resolution of X and E1, . . . , En the exceptional curves. Noether’s formula on X̃ gives
K2
X̃

+ e(X̃) = 12χ(OX̃). Write KX̃ = π∗KX +
∑
aiEi = π∗KX + A. Then K2

X̃
= K2

X + A2,
e(X̃) = e(X) + n (by the Mayer–Vietoris sequence), and χ(OX̃) = χ(OX) (because X has rational
singularities). Hence K2

X + e(X) + (A2 + n) = 12χ(OX).) Similarly, if D is a Weil divisor on X we
have a singular Riemann–Roch formula

χ(OX(D)) = χ(OX) +
1
2
D(D −KX) +

∑
cP (D),

where the sum is over points P ∈ X where the divisor D is not Cartier and the correction term
cP (D) depends only on the local analytic isomorphism type of the singularity P ∈ X and the local
analytic divisor class of D at P ∈ X [Bla95, 1.2].

For each T -singularity P ∈ X, there exists a projective surface Y with a unique singularity
isomorphic to P ∈ X and a Q-Gorenstein smoothing Y/(0 ∈ T ) by Looijenga’s globalisation theorem
[Loo85, App.]. We use Y/T to compute the correction terms cP and cP (mKX). Let Y ′ denote
the general fibre. We have K2

Y ′ = K2
Y , χ(OY ′) = χ(OY ), and e(Y ′) = e(Y ) + µP (because the

Milnor fibre of the smoothing has Euler number 1 + µP ). Hence K2
Y + e(Y ) + µP = 12χ(OY ), so
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cP = µP . The Riemann–Roch formula for the line bundle OY ′(mKY ′) on Y ′ gives χ(OY ′(mKY ′)) =
χ(OY ′)+ 1

2m(m−1)K2
Y ′ . We have χ(OY ′(mKY ′)) = χ(OY (mKY )) (because ω[m]

Y/T is flat over T and
commutes with base change since Y/T is Q-Gorenstein). So χ(OY (mKY )) = χ(OY )+ 1

2m(m−1)K2
Y

and cP (mKX) = 0.

Finally, if −KX is nef and big then H i(OX(−nKX)) = 0 for i > 0 and n > 0 by Kawamata–
Viehweg vanishing, so h0(OX(−nKX)) = 1 + 1

2n(n+ 1)K2
X , as required.

Corollary 2.7. Let X be a projective surface with T -singularities and X ′ a fibre of a Q-Gorenstein
deformation X/(0 ∈ T ) of X over a smooth curve germ. Then e(X) = e(X ′) iff at each singular
point P ∈ X, the deformation is either locally trivial or a deformation of a Td-singularity to an
Ad−1 singularity.

Proof. This follows immediately from Props. 2.3 and 2.6.

2.4 Minimal resolutions of T -singularities

Given a cyclic quotient singularity 1
n(1, a), let [b1, . . . , br] be the expansion of n/a as a Hirzebruch–

Jung continued fraction [Ful93, p. 46]. Then the exceptional locus of the minimal resolution of
1
n(1, a) is a chain of smooth rational curves with self-intersection numbers −b1, . . . ,−br. The strict
transforms of the coordinate lines (u = 0) and (v = 0) intersect the right and left end components
of the chain respectively.

Remark 2.8. Note that [br, . . . , b1] corresponds to the same singularity as [b1, . . . , br] with the roles
of the coordinates u and v interchanged. Thus, if [b1, . . . , br] = n/a then [br, . . . , b1] = n/a′ where
a′ is the inverse of a modulo n.

We recall the description of the minimal resolution of the cyclic quotient singularities of class T
due to J. Wahl. Let a Td-string be a string [b1, . . . , br] which corresponds to a Td-singularity.

Proposition 2.9. [KS88, Prop. 3.11], [Man91, Thm. 17]

(1) [4] is a T1-string and, for d > 2, [3, 2, . . . , 2, 3] (where there are (d− 2) 2’s) is a Td-string.

(2) If [b1, . . . , br] is a Td-string, then so are [b1 + 1, b2, . . . , br, 2] and [2, b1, . . . , br + 1].

(3) For each d, all Td-strings are obtained from the example in (1) by iterating the steps in (2).

3. Unobstructedness of deformations

Proposition 3.1. Let X be a projective surface with log canonical singularities such that −KX

is big. Then there are no local-to-global obstructions to deformations of X. In particular, if X has
T -singularities then X admits a Q-Gorenstein smoothing.

Proof. The local-to-global obstructions to deformations ofX lie inH2(TX), where TX = Hom(ΩX ,OX)
is the tangent sheaf of X. This follows from either a direct cocycle computation (cf. [Wah81,
Prop. 6.4]) or the theory of the cotangent complex [Ill71, 2.1.2.3]. SinceH2(TX) = Hom(TX ,OX(KX))∗

by Serre duality, it suffices to show Hom(TX ,OX(KX)) = 0, or, equivalently, Hom(OX(−KX),Ω∨∨
X ) =

0. If L ⊂ Ω∨∨
X is a rank one reflexive subsheaf, then the Kodaira–Iitaka dimension κ(X,L) 6 1 by

Bogomolov–Sommese vanishing for log canonical varieties [GGK08, Thm. 1.4]. So −KX big implies
that Hom(OX(−KX),Ω∨∨

X ) = 0 as required.
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4. Toric surfaces

Theorem 4.1. The projective toric surfaces with T -singularities and Picard rank 1 are as follows.
There are 14 infinite families (1), . . . , (8.4) which we list in the tables below. In cases (1), . . . , (4), the
surface X is a weighted projective plane P(w0, w1, w2), and the weights w0, w1, w2 are determined
by a solution (a, b, c) of a Markov-type equation. In the remaining cases, the surface X is a quotient
of one of the above weighted projective planes Y by µe acting freely in codimension 1. The action
is diagonal with weights (m0,m1,m2), i.e.,

µe 3 ζ : (X0, X1, X2) 7→ (ζm0X0, ζ
m1X1, ζ

m2X2)

where X0, X1, X2 are homogeneous coordinates on Y . We also record K2
X and the values of d = µ+1

for the singularities of X.

X w0, w1, w2 Markov-type equation K2
X d

(1) a2, b2, c2 a2 + b2 + c2 = 3abc 9 1, 1, 1

(2) a2, b2, 2c2 a2 + b2 + 2c2 = 4abc 8 1, 1, 2

(3) a2, 2b2, 3c2 a2 + 2b2 + 3c2 = 6abc 6 1, 2, 3

(4) a2, b2, 5c2 a2 + b2 + 5c2 = 5abc 5 1, 1, 5

X Y e m0,m1,m2 K2
X d

(5) (2) 2 0, 1,−1 4 2, 2, 4

(6.1) (1) 3 0, 1,−1 3 3, 3, 3

(6.2) (3) 2 0, 1,−1 3 1, 2, 6

(7.1) (2) 4 0, 1, 1 2 1, 1, 8

(7.2) (2) 4 0, 1,−1 2 2, 4, 4

(7.3) (3) 3 0, 1,−1 2 1, 3, 6

(8.1) (1) 9 0, 1,−1 1 1, 1, 9

(8.2) (2) 8 0, 1,−1 1 1, 2, 8

(8.3) (3) 6 0, 1,−1 1 2, 3, 6

(8.4) (4) 5 0, 1,−1 1 1, 5, 5

Remark 4.2. With notation as above, let X0 ⊂ X be the smooth locus and p0 : Y 0 → X0 the
restriction of the cover Y → X. Then p0 is the universal cover of X0. In particular π1(X0) is cyclic
of order e.

The solutions of the Markov-type equations in Thm. 4.1 may be described as follows [KN98,
3.7]. We say a solution (a, b, c) is minimal if a + b + c is minimal. The equations (1),(2),(3) have
a unique minimal solution (1, 1, 1), and (4) has minimal solutions (1, 2, 1) and (2, 1, 1). Given one
solution, we obtain another by regarding the equation as a quadratic in one of the variables, c (say),
and replacing c by the other root. Explicitly, if the equation is αa2 + βb2 + γc2 = λabc, then

(a, b, c) 7→ (a, b,
λ

γ
ab− c). (2)
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This process is called a mutation. Every solution is obtained from a minimal solution by a sequence
of mutations.

For each equation, we define an infinite graph Γ such that the vertices are labelled by the
solutions and two vertices are joined by an edge if they are related by a mutation. For equation (1),
Γ is an infinite tree such that each vertex has degree 3, and there is an action of S3 on Γ given by
permuting the variables a, b, c. The other cases are similar, see [KN98, 3.8] for details.

Proof of Theorem 4.1. Let X be a projective toric surface such that X has only T -singularites and
ρ(X) = 1. The surface X is given by a complete fan Σ in NR ' R2, where N ' Z2 is the group of
1-parameter subgroups of the torus. The fan Σ has 3 rays because ρ(X) = 1. Let v0, v1, v2 ∈ N be
the minimal generators of the rays. There is a unique relation

w0v0 + w1v1 + w2v2 = 0

where w0, w1, w2 ∈ N are pairwise coprime. Let NY ⊆ N denote the subgroup generated by v0, v1, v2.
Let p : Y → X be the finite toric morphism corresponding to the inclusion NY ⊆ N . Then Y is
isomorphic to the weighted projective plane P(w0, w1, w2) and p is a cyclic cover of degree e =
|N/NY | which is étale over the smooth locus X0 ⊂ X. The surface Y has only T -singularities
because a cover of a T -singularity which is étale in codimension 1 is again a T -singularity (this
follows easily from the classification of T -singularities).

The surface X has 3 cyclic quotient singularities of class T . Let the singularities of X be
1

din2
i
(1, diniai − 1) for i = 0, 1, 2. Then

d0 + d1 + d2 +K2
X = 12 (3)

by Prop. 2.6. The singularities of X are quotients of the singularities 1
w0

(w1, w2), 1
w1

(w0, w2),
1
w2

(w0, w1) of Y by µe. Hence din
2
i = ewi. Also K2

Y = eK2
X because p : Y → X has degree

e and is étale in codimension 1. Let H be the ample generator of the class group of Y . Then
KY ∼ −(w0 + w1 + w2)H, and H2 = 1

w0w1w2
. We deduce that

d0n
2
0 + d1n

2
1 + d2n

2
2 =

√
K2
Xd0d1d2 · n0n1n2. (4)

In particular √
K2
Xd0d1d2 =

√
(12−

∑
di)d0d1d2 ∈ Z

We compute all triples d = (d0, d1, d2) satisfying this condition. They are as listed in the last column
of the tables above.

We first treat the cases d = (1, 1, 1), (1, 1, 2), (1, 2, 3), and (1, 1, 5). These are the cases for which
K2
X > 5. Since K2

Y = eK2
X 6 9 by Prop. 2.6 we deduce that e = 1. Thus X is isomorphic to a

weighted projective plane. The weights din2
i are determined by the solution (n0, n1, n2) of (4), which

is the Markov-type equation given in the statement. Conversely, we check that for any solution of (4)
the weighted projective plane X = P(d0n

2
0, d1n

2
1, d2n

2
2) has T -singularities and the expected value

of d. We use the description of the solutions of (4) given above. We write λ =
√
K2
Xd0d1d2, and

note that d0d1d2 divides λ in each case. By induction using (2) we find that n0, n1, n2 are pairwise
coprime and gcd(ni, λdi

) = 1 for each i. In particular, the din2
i are pairwise coprime. Now consider

the singularity 1
d0n2

0
(d1n

2
1, d2n

2
2). We have

d1n
2
1 + d2n

2
2 = λn0n1n2 mod d0n

2
0

by (4), and so gcd(d1n
2
1 + d2n

2
2, d0n

2
0) = d0n0 because gcd( λd0n1n2, n0) = 1. Thus this singularity is

of type Td0 .
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For the remaining values of d, we determine the degree e of the cover p : Y → X as follows. We
have e = gcd(d0n

2
0, d1n

2
1, d2n

2
2). By inspecting the equation (4) we find a factor of e, and, together

with the inequality eK2
X = K2

Y 6 9, this is sufficient to determine e in each case. For example, let
d = (1, 2, 8). Then we find that n0 is divisible by 4 and n1 is even, so e is divisible by 8, hence equal
to 8. In each case we have K2

Y > 5, so Y is one of the surfaces classified above.
We now classify the possible actions of µe on the covering surface Y . We have Y = P(d0n

2
0, d1n

2
1, d2n

2
2)

where d = dY = (1, 1, 1), (1, 1, 2), (1, 2, 3), or (1, 1, 5), and (n0, n1, n2) is a solution of (4). The action
is given by

µe 3 ζ : (X0, X1, X2) 7→ (ζm0X0, ζ
m1X1, ζ

m2X2)
where X0, X1, X2 are the homogeneous coordinates on the weighted projective plane Y . In each
case d0n

2
0 = n2

0 is coprime to e. So we may assume that m0 = 0. We may also assume that m1 = 1
(because the action is free in codimension 1). Consider the singularity P0 ∈ X below (1 : 0 : 0) ∈ Y .
This singularity admits a covering by 1

e (1,m2) (which is étale in codimension 1). Hence 1
e (1,m2) is

a T -singularity. If e is square-free, it follows that m2 = −1. If e = 4, then m2 = ±1. If e = 8 then
dY = (1, 1, 2) and dX = (1, 2, 8), so we may assume that P0 ∈ X is a T8-singularity (note that a
µ8-quotient of a T2-singularity cannot be a T8-singularity). Thus P0 ∈ X is covered by 1

8(1,−1) and
so m2 = −1. Similarly if e = 9 then dY = (1, 1, 1) and dX = (1, 1, 9), so we may assume that P0 ∈ X
is a T9-singularity, and m2 = −1. This gives the list of group actions above. Finally, it remains to
check that for each such quotient X = Y/µe, the surface X has T -singularities with the expected
values of d. This is a straightforward toric calculation, so we omit it.

5. Surfaces with a D or E singularity

A log del Pezzo surface is a normal projective surface X such that X has only quotient singularities
and −KX is ample.

Theorem 5.1. Let X be a log del Pezzo surface such that ρ(X) = 1, and assume that dim |−KX | >
1.

(1) If X has a Du Val singularity of type E then KX is Cartier.

(2) If X has a Du Val singularity of type D then either KX is Cartier or there is a unique non
Du Val singularity of type 1

m(1, 1) for some m > 3.

Moreover, in both cases, a general member of | −KX | is irreducible and does not pass through the
Du Val singularities.

Proof. Assume that X has a D or E singularity P ∈ X and KX is not Cartier. Let ν : X̂ → X be
the minimal resolution of the non Du Val singularities of X and write P̂ = ν−1(P ). So X̂ has only
Du Val singularities and P̂ ∈ X̂ is a D or E singularity. Let {Ei} be the exceptional curves of ν
and write E =

∑
Ei.

Write |−KX̂ | = |M |+F where F is the fixed part and M is general in |M |. We have an equality

KX̂ = ν∗KX +
∑

aiEi

where ai < 0 for all i because ν is minimal and we only resolve the non Du Val singularities [KM98,
Lem. 3.41]. Hence dim | −KX̂ | = dim | −KX | and F > E.

We run the minimal model program on X̂. We obtain a birational morphism φ : X̂ → X such
that X has Du Val singularities and exactly one of the following holds.

(1) KX is nef.
(2) ρ(X) = 2 and there is a fibration ψ : X → P1 with KX · f < 0 for f a fibre.

8
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(3) ρ(X) = 1 and −KX is ample.

Clearly KX is not nef because dim | −KX | > dim | −KX̂ | > 1.
In the minimal model program for surfaces with Du Val singularities, the birational extremal

contractions are weighted blowups f : X → Y of a smooth point P ∈ Y with weights (1, n) for some
n ∈ N. In particular the exceptional divisor E ⊂ X is a smooth rational curve and passes through
a unique singularity of X which is of type 1

n(1,−1) = An−1. See [KM99, Lem. 3.3].

Therefore, the birational morphism φ is an isomorphism near the D or E singularity P̂ ∈ X̂ and
E := φ∗E is contained in the smooth locus of X. Note also that E 6= 0 because ρ(X) = 1 and X
has a non Du Val singularity.

Suppose first we are in case (3). We have −KX ∼ M + F where M := φ∗M is mobile and
F := φ∗F > E. In particular, Pic(X) is not generated by −KX because M + F > E and E is
Cartier. Hence X is isomorphic to P2 or P(1, 1, 2) by the classification of Gorenstein log del Pezzo
surfaces [Dem80]. (Indeed, if Y is a Gorenstein del Pezzo surface, let f : Ỹ → Y be the minimal
resolution. Then either Y is isomorphic to P2 or P(1, 1, 2), or Ỹ is obtained from P2 by a sequence
of blowups. In the last case, let C ⊂ Ỹ be a (−1)-curve. Then

KY · f∗C = f∗KY · C = KỸ · C = −1.

It follows that −KY is a generator of PicY if ρ(Y ) = 1.) So X does not have a D or E singularity,
a contradiction.

So we are in case (2). Write p = ψ ◦ φ : X̂ → P1. The divisor E has a p-horizontal component,
say E1 (because ρ(X) = 1 so there does not exist a morphism X → P1). If f is a general fibre of p
then

2 = −KX̂ · f > E1 · f > 1.

If E1 · f = 1 then all fibres of ψ are reduced (because E1 is contained in the smooth locus of X), so
X is smooth [KM99, Lem. 11.5.2], a contradiction. So E1 · f = 2. Then (M + (F −E1)) · f = 0, so
M and F −E1 are p-vertical. In particular M is basepoint free and E1 has coefficient 1 in F . Since

2 > 2− 2pa(E1) = −(KX̂ + E1) · E1 = (M + (F − E1)) · E1 > M · E1 > 2,

we find M · E1 = 2 and (F − E1) · E1 = 0. Thus M is a fibre of ψ and the divisors M + E1 and
F − E1 have disjoint support. But M + F ∼ −KX̂ is connected because

H1(OX̂(−M − F )) = H1(KX̂) = H1(OX̂)∗ = 0.

Hence F = E = E1. In particular, X has a unique non Du Val singularity of type 1
m(1, 1) (where

E2
1 = −m). Also, a general member of | −KX | is irreducible and does not pass through any Du Val

singularities. Finally X does not have a singularity of type E by the classification of fibres of P1

fibrations with Du Val singularities [KM99, Lem. 11.5.12]. So X does not have an E singularity.
If KX is Cartier then a general member of | −KX | is smooth and misses the singular points by

[Dem80].

6. Surfaces of index 6 2

Alexeev and Nikulin classified log del Pezzo surfaces X of index 6 2 [AN06]. They prove that
X is a Z/2Z quotient of a K3 surface and use the Torelli theorem for K3 surfaces to obtain the
classification. In this section, we deduce the index 6 2 case of our main theorem from their result.

We note that the quotient singularities of index 6 2 are the Du Val singularities and the cyclic
quotient singularities of type 1

4d(1, 2d− 1), see [AN06]. In particular, they are T -singularities.

9
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Proposition 6.1. Let X be a log del Pezzo surface of index 6 2 such that ρ(X) = 1. Then exactly
one of the following holds.

(1) X is a Q-Gorenstein deformation of a toric surface.

(2) X has either a D singularity, an E singularity, or > 4 Du Val singularities.

Proof. We first observe that the two conditions cannot both hold. IfX is a Q-Gorenstein deformation
of a toric surface Y , then necessarily ρ(Y ) = 1 and Y has only T -singularities. In particular, Y has
at most 3 singularities. Moreover, since the deformation preserves the Picard number, the only
possible non-trivial deformation of a singularity of Y is a deformation of a Td singularity to a Ad−1

singularity by Cor. 2.7. Finally, note that Y does not have a D or E singularity because Y is toric.
Hence X has at most 3 singularities and does not have a D or E singularity.

We now use the classification of log del Pezzo surfaces of index 6 2 and Picard rank 1 [AN06,
Thms. 4.2,4.3]. We check that each such surface X which does not satisfy condition (2) is a defor-
mation of a toric surface Y . By [AN06], X is determined up to isomorphism by its singularities. So
it suffices to exhibit a toric surface Y such that ρ(Y ) = 1 and the singularities of X are obtained
from the singularities of Y by a Q-Gorenstein deformation which preserves the Picard number. We
list the surfaces Y in the tables below.

In the following tables, for each log del Pezzo surface X of Picard rank 1 and index 6 2 such
that X does not satisfy condition (2) of Prop. 6.1, we exhibit a toric surface Y such that X is a
Q-Gorenstein deformation of Y . We give the number of the surface X in the list of Alexeev and
Nikulin [AN06, p. 93–100]. We use the description of the toric surfaces Y given in Thm. 4.1. We give
the number of the infinite family to which Y belongs and the solution (a, b, c) of the Markov-type
equation corresponding to Y . We record the value of d = µ + 1 for each singularity in the last
column of the table.

X SingX Y Sing Y d

1 (1), (1, 1, 1) 1, 1, 1

2 A1 (2), (1, 1, 1) A1 1, 1, 2

5 A1, A2 (3), (1, 1, 1) A1, A2 1, 2, 3

6 A4 (4), (1, 2, 1) 1
4(1, 1), A4 1, 1, 5

7b 2A1, A3 (5), (1, 1, 1) 2A1, A3 2, 2, 4

8b A1, A5 (6.2), (1, 1, 1) 1
4(1, 1), A1, A5 1, 2, 6

8c 3A2 (6.1), (1, 1, 1) 3A2 3, 3, 3

9b A7 (7.1), (1, 1, 1) 21
4(1, 1), A7 1, 1, 8

9c A2, A5 (7.3), (1, 1, 1) 1
9(1, 2), A2, A5 1, 3, 6

9d A1, 2A3 (7.2), (1, 1, 1) 1
8(1, 3), 2A3 2, 4, 4

10b A8 (8.1), (1, 1, 1) 21
9(1, 2), A8 1, 1, 9

10c A1, A7 (8.2), (1, 1, 1) 1
16(1, 3), 1

8(1, 3), A7 1, 2, 8

10d A1, A2, A5 (8.3), (1, 1, 1) 1
18(1, 5), 1

12(1, 5), A5 2, 3, 6

10e A4, A4 (8.4), (1, 2, 1) 1
25(1, 9), 1

20(1, 9), A4 1, 5, 5

11 1
4(1, 1) 1, (1, 1, 2) 1

4(1, 1) 1, 1, 1

15 1
4(1, 1), A4 4, (1, 2, 1) 1

4(1, 1), A4 1, 1, 5
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X SingX Y Sing Y d

18 1
4(1, 1), A1, A5 6.2, (1, 1, 1) 1

4(1, 1), A1, A5 1, 2, 6

19 1
4(1, 1), A7 7.1, (1, 1, 1) 21

4(1, 1), A7 1, 1, 8

21 1
8(1, 3), A2 3, (1, 2, 1) 1

8(1, 3), A2 1, 2, 3

25 21
4(1, 1), A7 7.1, (1, 1, 1) 21

4(1, 1), A7 1, 1, 8

26 1
8(1, 3), 2A3, 7.2, (1, 1, 1) 1

8(1, 3), 2A3 2, 4, 4

27 1
8(1, 3), A7 8.2, (1, 1, 1) 1

16(1, 3), 1
8(1, 3), A7 1, 2, 8

30 1
12(1, 5), 2A2 6.1, (1, 1, 2) 1

12(1, 5), 2A2 3, 3, 3

33 A1, 1
12(1, 5), A5 8.3, (1, 1, 1) 1

18(1, 5), 1
12(1, 5), A5 2, 3, 6

40 1
20(1, 9) 4, (1, 3, 2) 1

9(1, 2), 1
20(1, 9) 1, 1, 5

44 1
20(1, 9), A4 8.4, (1, 2, 1) 1

25(1, 9), 1
20(1, 9), A4 1, 5, 5

46 A2, 1
24(1, 11) 7.3, (1, 2, 1) 1

9(1, 2), A2, 1
24(1, 11), 1, 3, 6

50 1
36(1, 17) 8.1, (2, 1, 1) 21

9(1, 2), 1
36(1, 17) 1, 1, 9

7. Existence of special fibrations

Let X be a log del Pezzo surface such that ρ(X) = 1 and let π : X̃ → X be its minimal resolution.
We show that, under certain hypotheses, X̃ admits a morphism p : X̃ → P1 with general fibre a
smooth rational curve such that the exceptional locus of π has a particularly simple form with
respect to the ruling p. When X has only T -singularities (and satisfies the hypotheses), we use this
structure to construct a toric surface Y such that X is a Q-Gorenstein deformation of Y , see Sec. 8.

We first establish the existence of a so called 1-complement of KX . We recall the definition
and basic properties. For more details and motivation, see [Kol92, Sec. 19], [Pro01]. Let X be a
projective surface with quotient singularities. A 1-complement of KX is a divisor D ∈ | − KX |
such that the pair (X,D) is log canonical. In particular, by the classification of log canonical
singularities of pairs [KM98, Thm. 4.15], D is a nodal curve, and, at each singularity P ∈ X,
either D = 0 and P ∈ X is a Du Val singularity, or the pair (P ∈ X,D) is locally analytically
isomorphic to the pair ( 1

n(1, a), (uv = 0)) for some n and a. Moreover D has arithmetic genus 1
because 2pa(D)− 2 = (KX +D) ·D = 0 (note that the adjunction formula holds because KX +D
is Cartier [Kol92, 16.4.3]). Thus D is either a smooth elliptic curve or a cycle of smooth rational
curves.

Theorem 7.1. Let X be a log del Pezzo surface such that ρ(X) = 1. Assume that dim | −KX | > 1
and every singularity of X is either a cyclic quotient singularity or a Du Val singularity. Then there
exists a 1-complement of KX , i.e., a divisor D ∈ |−KX | such that the pair (X,D) is log canonical.

Proof. Write −KX ∼ M + F where M is an irreducible divisor such that dim |M | > 0 and F is
effective (we do not assume that F is the fixed part of | −KX |). Let M be general in |M |.

Suppose first that (X,M) is purely log terminal (plt). Then M is a smooth curve. We may
assume that F 6= 0 (otherwise M is a 1-complement). Then −(KX + M) ∼ F is ample (because
ρ(X) = 1). Recall that for X a normal variety and S ⊂ X an irreducible divisor the different
DiffS(0) is the effective Q-divisor on S defined by the equation

(KX + S)|S = KS + DiffS(0).

That is, DiffS(0) is the correction to the adjunction formula for S ⊂ X due to the singularities of
X at S. See [Kol92, Sec. 16]. If S is a normal variety and B is an effective Q-divisor on S with

11



Paul Hacking and Yuri Prokhorov

coefficients less than 1, a 1-complement of KS +B is a divisor D ∈ | −KS | such that (S,D) is log
canonical and D > b2Bc. By [Pro01, Prop. 4.4.1] it’s enough to show that KM + DiffM (0) has a
1-complement.

The curve M is smooth and rational and deg(KM + DiffM (0)) < 0 because

2pa(M)− 2 6 deg(KM + DiffM (0)) = (KX +M) ·M = −F ·M < 0.

Moreover, at each singular point Pi of X on M , the pair (X,M) is of the form ( 1
mi

(1, ai), (x = 0)),
and

DiffM (0) =
∑
i

(
1− 1

mi

)
Pi

by [Kol92, 16.6.3]. So, if KM + DiffM (0) does not have a 1-complement, then, by [Kol92, Cor. 19.5]
or direct calculation, there are exactly 3 singular points of X on M , and (m1,m2,m3) is a Platonic
triple (2, 2,m) (for some m > 2), (2, 3, 3), (2, 3, 4), or (2, 3, 5). The divisor F passes through each
singular point Pi because F ∼ −(KX +M) is not Cartier there. So F ·M >

∑ 1
mi

, and

0 = (KX +M + F ) ·M = deg(KM + DiffM (0)) + F ·M > 1,

a contradiction.
Now suppose that the pair (X,M) is not plt, and let c be its log canonical threshold, i.e.,

c = sup {t ∈ Q>0 | (X, tM) is log canonical }.

Then there exists a projective birational morphism f : Y → X with exceptional locus an irreducible
divisor E such that the discrepancy a(E,X, cM) = −1 and (Y,E) is plt. See [Pro01, Prop. 3.1.4].
So

KY + cM ′ + E = f∗(KX + cM)

where M ′ is the strict transform of M . Now

−(KY + E) = cM ′ − f∗(KX + cM)

is nef (note M ′ is nef because it moves). Moreover −(KY +E) is big unless M ′2 = 0 and KX+cM ∼Q
0, in which case c = 1, F = 0, and M is a 1-complement. So we may assume −(KY +E) is nef and
big. Thus, by [Pro01, Prop. 4.4.1] again, it’s enough to show that KE+DiffE(0) has a 1-complement.
Suppose not. Then E passes through 3 cyclic quotient singularities on Y as above. Let Ỹ → Y be
the minimal resolution of Y , E′ the strict transform of E, and consider the composition g : Ỹ → X.
Let P ∈ X be the point f(E). Then g−1(P ) is the union of E′ and 3 chains of smooth rational
curves (the exceptional loci of the minimal resolutions of the cyclic quotient singularities), and E′

meets each chain in one of the end components. Let −bi be the self-intersection number of the end
component Fi of the ith chain that meets E′. Then bi 6 mi where mi is the order of the cyclic
group for the ith quotient singularity. If we contract the Fi and let E′ denote the image of E′, then

0 > E
′2 = E′2 +

∑ 1
bi

> E′2 +
∑ 1

mi
> E′2 + 1.

Hence E′2 6 −2 and g is the minimal resolution of X. So P ∈ X is a D or E singularity by our
assumption. But P ∈ X is a basepoint of | −KX |, so this contradicts Thm. 5.1.

We describe the types of degenerate fibres which occur in the ruling we construct. We first
introduce some notation.

Definition 7.2. Let a, n ∈ N with a < n and (a, n) = 1. We say the fractions n/a and n/(n − a)
are conjugate.
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Lemma 7.3. If [b1, . . . , br] and [c1, . . . , cs] are conjugate, then so are [b1+1, b2, . . . , br] and [2, c1, . . . , cs].
Conversely, every conjugate pair can be constructed from [2],[2] by a sequence of such steps. Also,
if [b1, . . . , br] and [c1, . . . , cs] are conjugate then so are [br, . . . , b1] and [cs, . . . , c1].

Proof. If [b1, . . . , br] = n/a and [c1, . . . , cs] = n/(n − a) then [b1 + 1, b2, . . . , br] = (n + a)/a and
[2, c1, . . . , cs] = (n+ a)/n. The last statement follows immediately from Rem. 2.8.

Proposition 7.4. Let S be a smooth surface, T a smooth curve, and p : S → T a morphism with
general fibre a smooth rational curve. Let f be a degenerate fibre of p. Suppose that f contains a
unique (−1)-curve and the union of the remaining irreducible components of f is a disjoint union
of chains of smooth rational curves. Then the dual graph of f has one of the following forms.

(I) ar◦ · · · a1◦ • b1◦ · · · bs◦

(II) ar◦ · · · a1◦ t+2◦ b1◦ · · · bs◦

• ◦
2 · · · ◦

2

Here the black vertex denotes the (−1)-curve and a white vertex with label a > 2 denotes a smooth
rational curve with self-intersection number −a. In both types the strings [a1, . . . , ar] and [b1, . . . , bs]
are conjugate. In type (II) there are t (−2)-curves in the branch containing the (−1)-curve.

Conversely, any configuration of curves of this form is a degenerate fibre of a fibration p : S → T
as above.

Proof. The morphism p : S → T is obtained from a P1-bundle F → T by a sequence of blowups.
The statements follow by induction on the number of blowups.

We refer to the fibres above as fibres of types (I) and (II). We also call a fibre of the form

(O) • 2◦ · · · 2◦ •

a fibre of type (O).

Remark 7.5. The curves of multiplicity one in the fibre are the ends of the chain in types (O) and
(I) and the ends of the branches not containing the (−1)-curve in type (II). In particular, a section
of the fibration meets the fibre in one of these curves.

Theorem 7.6. Let X be a log del Pezzo surface such that ρ(X) = 1. Assume that dim | −KX | > 1
and every singularity of X is either a cyclic quotient singularity or a Du Val singularity. Let π : X̃ →
X be the minimal resolution of X. Then one of the following holds.

(1) There exists a morphism p : X̃ → P1 with general fibre a smooth rational curve satisfying one
of the following.

(a) Exactly one component Ẽ1 of the exceptional locus of π is p-horizontal. The curve Ẽ1 is a
section of p. The fibration p has at most two degenerate fibres and each is of type (I) or
(II).

(b) Exactly two components Ẽ1, Ẽ2 of the exceptional locus of π are p-horizontal. The curves
Ẽ1, Ẽ2 are sections of p. Either Ẽ1 and Ẽ2 are disjoint and p has two degenerate fibres of
types (O) and either (I) or (II), or Ẽ1 · Ẽ2 = 1 and p has a single degenerate fibre of type
(O). The sections Ẽ1 and Ẽ2 meet distinct components of the degenerate fibres.
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(2) The surface X has at most 2 non Du Val singularities and each is of the form 1
m(1, 1) for some

m > 3.

Proof. Assume that KX is not Cartier. As in the proof of Thm. 5.1, let ν : X̂ → X be the minimal
resolution of the non Du Val singularities, {Ei} the exceptional divisors, and E =

∑
Ei. Write

| −KX̂ | = |M |+ F where F is the fixed part and M ∈ |M | is general. Then F > E and dim |M | =
dim | −KX | > 1.

We run the MMP on X̂. We obtain a birational morphism φ : X̂ → X such that X has Du Val
singularities and either ρ(X) = 2 and there is a fibration ψ : X → P1 such that −KX is ψ-ample or
ρ(X) = 1 and −KX is ample. Moreover, φ is a composition

X̂ = X1
φ1−→ X2

φ2−→ . . .
φn−→ Xn+1 = X

where φi is a weighted blowup of a smooth point of Xi+1 with weights (1, ni) (by the classification
of birational extremal contractions in the MMP for surfaces with Du Val singularities).

Claim 7.7. Given φ : X̂ → X, we can direct the MMP so that the components of E contracted by
φ are contracted last. That is, for some 1 6 m 6 n, the exceptional divisor of φi is (the image of)
a component of E iff i > m.

Proof. We have KX̂ = ν∗KX +
∑
aiEi where −1 < ai < 0 for each i. Write ∆ =

∑
(−ai)Ei. So

ν∗KX = KX̂+∆ and ∆ is an effective divisor such that b∆c = 0 and Supp ∆ = E. Hence −(KX̂+∆)
is nef and big and (X̂,∆) is Kawamata log terminal (klt). These properties are preserved under the
KX̂ -MMP.

Let R =
∑
Ri be the sum of the φ-exceptional curves that are not contained in E and R′ ⊂ R

a connected component. Then R′ ·E > 0 (otherwise ν is an isomorphism near R′ which contradicts
ρ(X) = 1). Let Ri be a component of R′ such that Ri · E > 0. Then (KX̂ + ∆) · Ri 6 0 and
Ri ·∆ > 0. So KX̂ ·Ri < 0, and we can contract Ri first in the KX̂ -MMP. Repeating this procedure,
we contract all of R, obtaining a birational morphism X̂ → X̂ ′. Finally we run the MMP on X̂ ′

over X to contract the remaining curves.

Claim 7.8. We may assume ρ(X) = 2.

Proof. Suppose ρ(X) = 1. Write M = φ∗M , etc. Then −KX ∼ M + F , F > E > 0, and E is
contained in the smooth locus of X. Thus, as in the proof of Thm. 5.1, −KX is not a generator
of PicX, so X ' P2 or X ' P(1, 1, 2) by the classification of log del Pezzo surfaces with Du Val
singularities. In particular, it follows that E has at most 2 components.

Suppose first that φ does not contract any component of E. Then E has at most 2 components.
So, either we are in case (2), or E = E1 + E2, E1 ∩ E2 6= ∅, X ' P2, and M,E1, E2 ∼ l, where l is
the class of a line. In this case ρ(X̂) = ρ(X)+2 = 3, so φ : X̂ → X is a composition of two weighted
blowups of weights (1, n1), (1, n2). These must have centres two distinct points P1 ∈ E1, P2 ∈ E2,
and in each case the local equation of Ei is a coordinate with weight ni (because Ei is contained in
the smooth locus of X̂). Let l12 be the line through P1 and P2. Then these blowups are toric with
respect to the torus X \ l12 + E1 + E2. We find that the minimal resolution X̃ is a toric surface
with boundary divisor a cycle of smooth rational curves with self-intersection numbers

−2, . . . ,−2,−1,−(n1 − 1),−(n2 − 1),−1,−2, . . . ,−2,−1

where Ẽ1 and Ẽ2 are the curves with self-intersection numbers −(n1 − 1),−(n2 − 1), the first two
(−1)-curves are the strict transforms of the exceptional curves of the blowups of P1 and P2, the last
(−1)-curve is the strict transform of l12, and the chains of (−2)-curves are the exceptional loci of
the resolutions of the singularities of X̂ and have lengths (n1 − 1) and (n2 − 1). In particular, there
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is a fibration p : X̃ → P1 with two degenerate fibres of types −1,−2, . . . ,−2,−1 (where there are
(n2 − 1) (−2)-curves) and −2, . . . ,−2,−1,−(n1 − 1) (where there are (n1 − 2) (−2)-curves), and
two π-exceptional sections with self-intersection numbers −(n2− 1) and −2. So we are in case (1b).

Now suppose φ contracts some component of E. Then φn : Xn → Xn+1 = X is an (ordinary)
blowup of a smooth point Q ∈ X. If X ' P2 then Xn ' F1 and there is a fibration ψ : Xn → P1.
So we may assume ρ(X) = 2. If X ' P(1, 1, 2), the quadric cone, let L be the ruling of the cone
through Q. Then the strict transform L′ of L on Xn satisfies KXn ·L′ < 0 and L′2 < 0. Contracting
L′ we obtain a morphism φ′n : Xn → X

′ ' P2. So, replacing φn by φ′n, we may assume X ' P2.

We now assume ρ(X) = 2. We have a diagram

X̃

p

��

µ

��

π



��
X̂

υ

����
��

��
�� ϕ

��?
??

??
??

X X̄
ψ // P1

where π : X̃ → X is the minimal resolution. Let l be a general fibre of p and Ẽ the strict transform
of E on X̃. Note that, by construction, the components of the exceptional locus of π over Du Val
singularities are contained in fibres of p. Write | −KX̃ | = |M̃ | + F̃ where F̃ is the fixed part and
M̃ ∈ |M̃ | is general. Then F̃ > Ẽ.

There is a 1-complement of KX by Thm. 7.1. This can be lifted to X̃. (Indeed, if D is a 1-
complement of KX , define D̃ by KX̃ + D̃ = π∗(KX +D) and π∗D̃ = D. Note that D̃ is an effective
Z-divisor because KX̃ is π-nef and KX +D is Cartier. Then D̃ is a 1-complement of KX̃ .) Hence
(X̃, M̃ + F̃ ) is log canonical. In particular, F̃ is reduced and M̃ + F̃ is a cycle of smooth rational
curves.

There exists a p-horizontal component Ẽ1 of Ẽ (because ρ(X) = 1). Then

1 6 Ẽ1 · l 6 (F̃ + M̃) · l = −KX̃ · l = 2.

Suppose first that Ẽ1 · l = 2. Then M̃ and F̃ − Ẽ1 are p-vertical. Hence M̃ ∼ l and F̃ = Ẽ1, so
Ẽ = Ẽ1 and we are in case (2).

Suppose now that Ẽ1 · l = 1. Since µ(Ẽ1) is contained in the smooth locus of X, the fibres of ψ
have multiplicity 1, so ψ is smooth by [KM99, Lem. 11.5.2]. Thus X ' Fn for some n > 0.

If Ẽ1 is the only p-horizontal component of Ẽ we are in case (1a). Suppose there is another
p-horizontal component Ẽ2. Then, since −KX̃ · l = 2, we have Ẽ2 · l = 1 and M̃ and F̃ − Ẽ1− Ẽ2 are
contained in fibres of p. If M ∼ 2l then F̃ = Ẽ = Ẽ1 + Ẽ2 and Ẽ1 ∩ Ẽ2 = ∅ so we are in case (1b).
So we may assume M̃ ∼ l. Then the components of F̃ form a chain, with ends Ẽ1 and Ẽ2.

We note that a component Γ of a degenerate fibre of p that is not contracted by π is necessarily
a (−1)-curve, because KX̃ = π∗KX − ∆̃ where ∆̃ is effective and π-exceptional, so

KX̃ · Γ 6 π∗KX · Γ = KX · π∗Γ < 0.

Hence, since ρ(X) = 1, there exists a unique degenerate fibre of p containing exactly two (−1)-
curves, and any other degenerate fibres contain exactly one (−1)-curve. Let G̃ denote the reduction
of the fibre containing two (−1)-curves.

If F̃ = Ẽ1 + Ẽ2 then Ẽ1 · Ẽ2 = 1 and any degenerate fibre of p consists of (−1)-curves and
(−2)-curves. It follows that G̃ is of type (O) and there are no other degenerate fibres, so we are in
case (1b). So assume F̃ > Ẽ1 + Ẽ2. Then Ẽ1 ∩ Ẽ2 = ∅.
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Suppose first that G̃ is the only degenerate fibre. Then F̃ 6 G̃ + Ẽ1 + Ẽ2. Write G̃ = G̃′ + G̃′′

where G̃′ = F̃ − Ẽ1 − Ẽ2. So G̃′ is a chain of smooth rational curves. It follows that each connected
component of G̃′′ is a chain of smooth rational rational curves such that one end component is a
(−1)-curve adjacent to G̃′ and the remaining curves are (−2)-curves. We construct an alternative
ruling p′ : X̃ → P1 with only one horizontal π-exceptional curve by inductively contracting (−1)-
curves as follows. First contract the components of G̃′′. Second, contract (−1)-curves in G̃′ until the
image of Ẽ1 or Ẽ2 is a (−1)-curve. Now contract this curve, and continue contracting (−1)-curves
until we obtain a ruled surface X

′ ' Fm. Then M̃ ∼ l is horizontal for the induced ruling p′.
Moreover, if C is a p′-horizontal π-exceptional curve then C 6⊂ G̃′′ by construction. Hence C ⊂ F̃ .
Thus there exists a unique such C, and C is a section of p′. So we are in case (1a).

Finally, suppose there is another degenerate fibre of p, and let Ṽ denote its reduction. Then Ṽ
contains a unique (−1)-curve C. The surface X has only cyclic quotient singularities by assumption.
Therefore Ṽ − C is a union of chains of smooth rational curves. It follows that Ṽ is a fibre of type
(I) or (II). Now Ẽ1 · C = Ẽ2 · C = 0 because C has multiplicity greater than 1 in the fibre. So Ṽ
contains a component of F̃ (because 1 = −KX̃ ·C = (M̃ + F̃ ) ·C). Hence F̃ − Ẽ1− Ẽ2 6 Ṽ (because
M̃ + F̃ is a cycle of rational curves and M̃ ∼ l). In particular, G̃ consists of two (−1)-curves and
some (−2)-curves. Hence G̃ is of type (O) and we are in case (1b). This completes the proof.

8. Proof of Main Theorem

Theorem 8.1. Let X be a log del Pezzo surface such that ρ(X) = 1 and X has only T -singularities.
Then exactly one of the following holds

(1) X is a Q-Gorenstein deformation of a toric surface Y , or

(2) X is one of the sporadic surfaces listed in Example 8.3.

Remark 8.2. Note that the surface Y in Thm. 8.1(1) necessarily has only T -singularities and ρ(Y ) =
1. Thus Y is one of the surfaces listed in Thm. 4.1.

Example 8.3. We list the log del Pezzo surfacesX such thatX has only T -singularities and ρ(X) = 1,
but X is not a Q-Gorenstein deformation of a toric surface. In each case X has index 6 2. If X is
Gorenstein, the possible configurations of singularities are

D5, E6, E7, A1D6, 3A1D4, E8, D8, A1E7,

A2E6, 2A1D6, A3D5, 2D4, 2A12A3, 4A2.

The configuration determines the surface uniquely with the following exceptions: there are two
surfaces for E8, A1E7, A2E6, and an A1 of surfaces for 2D4. See [AN06, Thm 4.3]. If X has index
2, the possible configurations of singularities are

1
4
(1, 1)D8,

1
4
(1, 1)2A1D6,

1
4
(1, 1)A3D5,

1
4
(1, 1)2D4,

and the configuration determines the surface uniquely. See [AN06, Thm 4.2].

Remark 8.4. Note that the case K2
X = 7 does not occur. This may be explained as follows. If X

is a del Pezzo surface with T -singularities such that ρ(X) = 1, then there exists a Q-Gorenstein
smoothing X/T of X over T := Spec k[[t]] such that the generic fibre XK is a smooth del Pezzo
surface over K = k((t)) with ρ(XK) = 1. (Indeed, if X/T is a smoothing of X over T , the restriction
map Cl(X ) → Cl(XK) = Pic(XK) is an isomorphism because the closed fibre X is irreducible and
the restriction map Pic(X ) → Pic(X) is an isomorphism because H1(OX) = H2(OX) = 0. Thus
ρ(XK) > ρ(X) = 1 with equality iff the total space X of the deformation is Q-factorial. Since there
are no local-to-global obstructions for deformations of X, there exists a Q-Gorenstein smoothing
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X/T such that P ∈ X is smooth for P ∈ X a Du Val singularity and P ∈ X is of type 1
n(1,−1, a)

for P ∈ X a singularity of type 1
dn2 (1, dna− 1) (see Sec. 2.2). In particular, X is Q-factorial.) Note

that K2
XK

= K2
X . If Y is a smooth del Pezzo surface with K2

Y = 7 over a field (not necessarily
algebraically closed) then ρ(Y ) > 1, see, e.g., [Man86]. Hence there is no X with K2

X = 7.

Proof of Thm. 8.1. First assume thatX does not have aD or E singularity. Note that dim |−KX | =
K2
X > 1 by Prop. 2.6, so we may apply Thm. 7.6. We use the notation of that theorem.
Suppose first that we are in case (1a). We construct a toric surface Y and prove that X is a

Q-Gorenstein deformation of Y . We first describe the surface Y . Let Ẽ2
1 = −d. There is a uniquely

determined toric blowup µY : Ỹ → Fd such that µY is an isomorphism over the negative section
B ⊂ Fd, and the degenerate fibres of the ruling pY : Ỹ → P1 are fibres of type (I) associated to
the degenerate fibres of p : X̃ → P1 as follows. Let f be a degenerate fibre of p of type (I) or (II)
as in Prop. 7.4, and assume that Ẽ1 intersects the left end component. If f is of type (I) then the
associated fibre fY of pY has the same form. If f is of type (II) then fY is a fibre of type (I) with
self-intersection numbers

−ar, . . . ,−a1,−t− 2,−b1, . . . ,−bs,−1,−d1, . . . ,−du
Note that the sequence d1, . . . , du is uniquely determined (see Prop. 7.4). In each case the strict
transform B′ of B again intersects the left end component of fY .

Let Y be the toric surface obtained from Ỹ by contracting the strict transform of the nega-
tive section of Fd and the components of the degenerate fibres of the ruling with self-intersection
number at most −2. For each fibre f of p of type (II) as above, the chain of rational curves with
self-intersections −d1, . . . ,−du in the associated fibre fY of pY contracts to a Tt+1 singularity by
Lem. 8.5(1). This singularity replaces the At singularity on X obtained by contracting the chain
of t (−2)-curves in f . In particular, the surface Y has T -singularities. Moreover ρ(Y ) = 1, and
K2
Y = K2

X by Prop. 2.6. A Td-singularity admits a Q-Gorenstein deformation to an Ad−1 singularity
(see Prop. 2.3). Hence the singularities of X are a Q-Gorenstein deformation of the singularities of
Y . There are no local-to-global obstructions for deformations of Y by Prop. 3.1. Hence there is a
Q-Gorenstein deformation X ′ of Y with the same singularities as X. We prove below that X ' X ′.

Let f be a degenerate fibre of p of type (II) as above and fY the associated fibre of pY . Let
P ∈ Y be the T -singularity obtained by contracting the chain of rational curves in fY with self-
intersections −d1, · · · ,−du. Let X ′ be the general fibre of a Q-Gorenstein deformation of Y over
the germ of a curve which deforms P ∈ Y to an At singularity and is locally trivial elsewhere.
Let Ŷ → Y and X̂ ′ → X ′ be the minimal resolutions of the remaining singularities (where the
deformation is locally trivial). Thus Ŷ has a single T -singularity and X̂ ′ a single At singularity. The
ruling pY : Ỹ → P1 descends to a ruling Ŷ → P1; let A be a general fibre of this ruling. Then A
deforms to a 0-curve A′ in X̂ ′ (because H1(NA/Ŷ ) = H1(OA) = 0) which defines a ruling X̂ ′ → P1.

Let X̃ ′ → X̂ ′ be the minimal resolution of X̂ ′ and consider the induced ruling pX′ : X̃ ′ → P1. Note
that the exceptional locus of Ŷ → Y deforms without change by construction. Moreover, the (−1)-
curve in the remaining degenerate fibre (if any) of pY also deforms. There is a unique horizontal
curve in the exceptional locus of πX′ : X̃ ′ → X ′, and ρ(X ′) = 1 by Prop. 2.6. Hence each degenerate
fibre of pX′ contains a unique (−1)-curve, and the remaining components of the fibre are in the
exceptional locus of πX′ . We can now describe the degenerate fibres of pX′ . If pY has a degenerate
fibre besides fY , then pX′ has a degenerate fibre of the same form. We claim that there is exactly
one additional degenerate fibre of pX′ , which is of type (II) and has the same form as the fibre f
of p. Indeed, the union of the remaining degenerate fibres consists of the chain of rational curves
with self-intersections −ar, . . . ,−a1,−t−2, b1, . . . , bs (the deformation of the chain of the same form
in fY ), the chain of (−2)-curves which contracts to the At singularity, and some (−1)-curves. The
claim follows by the description of degenerate fibres in Prop. 7.4. If there is a second degenerate
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fibre of p of type (II) we repeat this process. We obtain a Q-Gorenstein deformation X ′ of Y with
minimal resolution πX′ : X̃ ′ → X ′, and a ruling pX′ : X̃ ′ → P1 such that the exceptional locus of
πX′ has the same form with respect to the ruling pX′ as that of π with respect to p.

We claim that X ' X ′. Indeed, there is a smooth toric surface Z and, for each fibre fi of p
of type (II), an irreducible toric boundary divisor ∆i ⊂ Z and points Pi, P ′

i in the torus orbit
Oi ⊂ ∆i, such that X̃ (respectively X̃ ′) is obtained from Z by successively blowing up the points
Pi (respectively P ′

i ) ti + 1 times, where ti is the length of the chain of (−2)-curves in fi. It remains
to prove that we may assume Pi = P ′

i for each i. Let T be the torus acting on Z and N its lattice
of 1-parameter subgroups. Let Σ ⊂ NR be the fan corresponding to X and vi ∈ N the minimal
generator of the ray in Σ corresponding to ∆i. Then Ti = (N/〈vi〉)⊗Gm is the quotient torus of T
which acts faithfully on ∆i. Thus, there is an element t ∈ T taking Pi to P ′

i for each i except in the
following case: there are two fibres of p of type (II), and v1 + v2 = 0. In this case, there is a toric
ruling q : Z → P1 given by the projection N → N/〈v1〉. The toric boundary of Z decomposes into
two sections (given by ∆1,∆2) and two fibres of q. But one of these fibres (the one containing the
image of Ẽ1 ⊂ X̃) is a chain of rational curves of self-intersections at most −2, a contradiction.

Next assume that we are in case (1b). There is a ruling p : X̃ → P1 with two π-exceptional
sections Ẽ1 and Ẽ2. Suppose first that Ẽ1 ∩ Ẽ2 = ∅. Then there are two degenerate fibres of types
(O) and either (I) or (II). We use the notation of Prop. 7.4. The exceptional locus of π consists of
the components of the degenerate fibres of self-intersection 6 −2 and the two disjoint sections Ẽ1

and Ẽ2 of p which meet the first fibre in the two (−1)-curves and the second fibre in the components
labelled −ar and −bs respectively. If the degenerate fibres are of types (O) and (I) then X is toric.
So we may assume the degenerate fibres are of types (O) and (II). Set Ẽ2

1 = −ar+1 and Ẽ2
2 = −bs+1.

Let m be the number of (−2)-curves in the fibre of type (O). Then X has singularities Am, At, and
the cyclic quotient singularity whose minimal resolution has exceptional locus the chain of rational
curves with self-intersections −ar+1, . . . ,−a1,−(t+ 2),−b1, . . . ,−bs+1.

The ruling p : X̃ → P1 is obtained from a P1-bundle by a sequence of blowups. It follows that
m = ar+1 + bs+1 − 2.

We construct a toric surface Y and prove that X is a Q-Gorenstein deformation of Y . The
minimal resolution of Ỹ is the toric surface which fibres over P1 with two degenerate fibres, one
of type (O) (where there are m (−2)-curves as above) and one of type (I) with self-intersection
numbers

−ar, . . . ,−a1,−(t+ 2),−b1, . . . ,−bs+1,−1,−d1, . . . ,−du,
and two disjoint torus-invariant sections with self-intersection numbers −ar+1 and −bs+1 which
intersect the first fibre in the two (−1)-curves and the second in the end components labelled −ar
and −du respectively. Note that the sequence d1, . . . , du is uniquely determined. Note also that,
as above, the equality m = ar+1 + bs+1 − 2 ensures that this does define a toric surface (it is
obtained as a toric blowup of a P1-bundle). The surface Y has singularities an Am singularity
and the cyclic quotient singularities obtained by contracting the chains of smooth rational curves
with self-intersection numbers −ar+1, . . . ,−a1, −(t + 2),−b1, . . . ,−bs+1 and −d1, . . . ,−du,−bs+1.
This last singularity is of type Tt+1 by Lem. 8.5(2). Hence the singularities of X are Q-Gorenstein
deformations of the singularities of Y — the first two singularities are not deformed, and the Tt+1-
singularity is deformed to an At singularity. Moreover, this deformation does not change the Picard
number. Let X ′ be the general fibre of a 1-parameter deformation of X inducing this deformation
of the singularities. We show that X ′ ' X.

Let Ŷ → Y and X̂ ′ → X ′ be the minimal resolutions of the singularities we do not deform.
Thus Ŷ has a single Tt+1 singularity given by contracting the chain of smooth rational curves with
self-intersection numbers −d1, . . . ,−du,−bs+1 on Ỹ . Let C1 and C2 be the images of the (−1)-curves
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on Ỹ incident to the ends of this chain. Then C1 and C2 are smooth rational curves meeting in
a node at the singular point. We claim that C = C1 + C2 deforms to a smooth (−1)-curve on X̂ ′

(not passing through the singular point). First, by Lem. 8.6 we have C2 = −1. Second, we prove
that C deforms. We work on the canonical covering stack q : Ŷ → Ŷ of Ŷ . (Here, for a normal
Q-Gorenstein surface Z, the canonical covering stack is the Deligne–Mumford stack Z → Z with
coarse moduli space Z defined by the local canonical coverings of Z. That is, if P ∈ Z is a point
of index n, and V → U is a canonical covering of a neighbourhood U of P with group G ' Z/nZ,
then Z|U is isomorphic to [V/G] over U). Note that the deformation of Ŷ lifts to a deformation of
Ŷ (because it is a Q-Gorenstein deformation). Let C → C be the restriction of the covering Ŷ → Ŷ .
The closed substack C ⊂ Ŷ is a Cartier divisor. Hence the obstruction to deforming C ⊂ Ŷ lies in
H1(NC/Ŷ), where NC/Ŷ is the normal bundle OŶ(C)|C . We compute that this obstruction group is
zero. Consider the exact sequence

0 → NC/Ŷ → ⊕NC/Ŷ |Ci → NC/Ŷ ⊗ k(Q) → 0.

where Ci → Ci are the restrictions of q and Q ∈ Ŷ is the point over the singular point P ∈ Ŷ .
Now push forward to the coarse moduli space Ŷ . (Recall that if X is a Deligne–Mumford stack and
q : X → X is the map to its coarse moduli space, then locally over X the map q is of the form
[U/G] → U/G where U is a scheme and G is a finite group acting on U . A sheaf F over [U/G]
corresponds to a G-equivariant sheaf FU over U , and q∗F = (π∗FU )G where π : U → U/G is the
quotient map.) Let n be the index of the singularity P ∈ Y . Then n > 1 and the µn action on
NC/Ŷ⊗k(Q) is non-trivial. So q∗(NC/Ŷ⊗k(Q)) = 0 and q∗NC/Ŷ = ⊕ q∗NC/Ŷ |Ci by the exact sequence

above. The sheaf q∗NC/Ŷ |Ci is a line bundle on Ci ' P1 of degree bC · Cic. Let α : Ỹ → Ŷ denote

the minimal resolution of Ŷ and C ′
i the strict transform of Ci for each i. Then

C · Ci = α∗C · C ′
i > C ′2

i = −1.

Hence H1(q∗NC/Ŷ |Ci) = 0. We deduce that H1(NC/Ŷ) = 0 as required.
We now compute locally that C deforms to a smooth curve that does not pass through the

singular point of X̂ ′. Locally at the singular point of Ŷ , the deformation of Ŷ is of the form

(xy = (zn − w)d) ⊂ 1
n

(1,−1, a)× C1
w

where d = t+1. The deformation of C is given by an equation (z+w ·h = 0), where h ∈ k[[x, y, w]]
has µn-weight a. So, eliminating z, the abstract deformation of C is given by (xy = u · wd) ⊂
1
n(1,−1)× C1

w, where u is a unit. In particular the general fibre is smooth and misses the singular
point of the ambient surface X̂ ′.

We deduce that, on X̂ ′, we have a cycle of smooth rational curves of self-intersections

−ar+1, . . . ,−a1,−(t+ 2),−b1, . . . ,−bs+1,−1,−2, . . . ,−2,−1

(where the chain of (−2)-curves has length m). Indeed the chains −ar+1, . . . ,−bs+1 and −2, . . . ,−2
are the exceptional loci of the minimal resolutions of two of the singular points of X ′, the first
(−1)-curve is the deformation of C described above, and the last (−1)-curve is the deformation
of the (−1)-curve on Ŷ . Moreover X̂ ′ has a unique singular point of type At which does not lie
on this cycle. Let X̃ ′ → X̂ ′ be the minimal resolution. Observe that the chain −1,−2, . . . ,−2,−1
defines a ruling of X̃ ′. If f is another degenerate fibre, then f contains a unique (−1)-curve and its
remaining components are exceptional over X ′ (because ρ(X ′) = 1). We deduce that there is exactly
one additional degenerate fibre, which is the union of the chain −ar, . . . ,−bs, the chain −2, . . . ,−2
of length t (the exceptional locus of the minimal resolution of the At singularity) and a (−1)-curve.
This determines the fibre uniquely. We conclude that X ′ ' X.
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A similar argument works when Ẽ1 · Ẽ2 = 1. In this case the ruling p : X̃ → P1 has a unique
degenerate fibre of type (O) and the two sections Ẽ1 and Ẽ2 meet this fibre in the two (−1)-curves.
Set Ẽ2

1 = −a and Ẽ2
2 = −b and let m be the number of (−2)-curves in degenerate fibre. Then X has

singularities Am and the cyclic quotient singularity whose minimal resolution has exceptional locus
Ẽ1 + Ẽ2. (In particular, (a, b) = (2, 2), (3, 3), or (2, 5) because X has T -singularities, but we give a
uniform treatment of these cases.) We compute that m = a+ b+ 1 by expressing p as a blowup of
a P1-bundle.

We construct a toric surface Y and prove that X is a Q-Gorenstein deformation of Y . The
minimal resolution of Ỹ is the toric surface which fibres over P1 with two degenerate fibres, one
of type (O) (where there are m (−2)-curves as above) and one of type (I) with self-intersection
numbers

−b,−1,−2, . . . ,−2
(where the chain of (−2)-curves has length (b − 1)) and two disjoint torus-invariant sections with
self-intersection numbers −a and −(b + 3) which intersect the first fibre in the two (−1)-curves
and the second in the end components with self-intersection numbers −b and −2 respectively. Note
that the equality m = a + (b + 3) − 2 ensures that this does define a toric surface. The surface Y
has singularities an Am singularity and the cyclic quotient singularities obtained by contracting the
chains of smooth rational curves with self-intersection numbers −a,−b and −2, . . . ,−2,−(b + 3).
This last singularity is of type T1 by Prop. 2.9. Hence the singularities of X are deformations
of the singularities of Y — the first two singularities are not deformed, and the T1-singularity is
smoothed. Moreover, this deformation does not change the Picard number. Let X ′ be the general
fibre of a 1-parameter deformation of X inducing this deformation of the singularities. Let Ŷ → Y
and X̂ ′ → X ′ be the minimal resolutions of the singularities we do not deform. Thus Ŷ has a
single T1 singularity given by contracting the chain of smooth rational curves with self-intersection
numbers −2, . . . ,−2,−(b+ 3) on Ỹ . Let C1 and C2 be the images of the (−1)-curves on Ỹ incident
to the ends of this chain, so C1 and C2 are smooth rational curves meeting in a node at the singular
point. Then, as above, C = C1 + C2 deforms to a smooth (−1)-curve on X̂ ′. We deduce that, on
X̂ ′, we have a cycle of smooth rational curves of self-intersections

−a,−b,−1,−2, . . . ,−2,−1

(where the chain of (−2)-curves has length m). Indeed, the chains −a,−b and −2, . . . ,−2 are the
exceptional loci of the minimal resolutions of the two singular points of X ′, the first (−1)-curve
is the deformation of C, and the last (−1)-curve is the deformation of the (−1)-curve on Ŷ . Let
X̃ ′ → X̂ ′ be the minimal resolution. Observe that the chain −1,−2, . . . ,−2,−1 defines a ruling of
X̃ ′. There are no other degenerate fibres of this ruling because ρ(X ′) = 1. We deduce that X ′ ' X.

If we are in case (2) of Thm. 7.6, then the non Du Val singularities of X are of type 1
4(1, 1).

In particular, 2KX is Cartier. Similarly, if X has a D or E singularity then 2KX is Cartier by
Thm. 5.1. So in these cases we can refer to the classification of log del Pezzo surfaces of Picard rank
1 and index 6 2 given by Alexeev and Nikulin [AN06, Thms. 4.2,4.3]. By Prop. 6.1 the only such
surfaces which are not Q-Gorenstein deformations of toric surfaces are those which have either a
D singularity, an E singularity, or at least 4 Du Val singularities. These are the sporadic surfaces
listed in Ex. 8.3. This completes the proof.

Lemma 8.5. Let [a1, . . . , ar] and [b1, . . . , bs] be conjugate strings.

(1) The conjugate of [ar, . . . , a1, t+ 2, b1, . . . , bs] is a Tt+1-string.

(2) Given bs+1 > 2, let [d1, . . . , du] be the conjugate of [ar, . . . , a1, t + 2, b1, . . . , bs, bs+1]. Then
[d1, . . . , du, bs+1] is a Tt+1-string.

Proof. Let an St-string be a string [ar, . . . , a1, t+2, b1, . . . , bs] as above. Then, by Lem. 7.3, we have
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(a) [2, t+ 2, 2] is an St-string.
(b) If [e1, . . . , ev] is an St-string, then so are [e1 + 1, · · · , ev, 2] and [2, e1, . . . , ev + 1].
(c) Every St-string is obtained from the example in (a) by iterating the steps in (b).

Now (1) follows from Prop. 2.9 and Lem. 7.3. To deduce (2), let [e1, . . . , ev] be the conjugate of
[ar, . . . , a1, t+ 2, b1, . . . , bs]. Then

[d1, . . . , du, bs+1] = [2, . . . , 2, e1 + 1, e2, . . . , ev, bs+1]

(where there are (bs+1 − 2) 2’s) by Lem. 7.3. This string is of type Tt+1 by (1) and Prop. 2.9.

Lemma 8.6. Let (P ∈ S,D) denote the local pair ( 1
dn2 (1, dna − 1), (uv = 0)). Let π : S̃ → S be

the minimal resolution of S and D′ the strict transform of D. Write π∗D = D′ + F where F is
π-exceptional. Then F 2 = −1.

Proof. We may assume S is a projective toric surface, P ∈ S is the unique singular point, and D
is the toric boundary. Then S̃ is toric with boundary D̃ := D′ +

∑
Ei, where E1, . . . , Er are the

exceptional divisors of π. In particular D ∈ |−KS | and D̃ ∈ |−KS̃ |. Since P ∈ S is a Td-singularity,
by Prop. 2.6 we have

K2
S̃

+ ρ(S̃) = K2
S + ρ(S) + (d− 1).

So D̃2 + r = D2 + (d− 1). Now D̃2 = D′2 +
∑
E2
i + 2(r + 1), so

F 2 = D′2 −D2 = d− 3r − 3−
∑

E2
i .

Finally,
∑
E2
i = d − 3r − 2 by the inductive description of resolutions of Td-singularities (see

Prop. 2.9), so F 2 = −1 as claimed.

Proof of Thm. 1.3. Let X denote the special fibre of f : V → T . Thus X is a del Pezzo surface with
quotient singularities which admits a Q-Gorenstein smoothing. Since H1(OX) = H2(OX) = 0 the
restriction map PicV → PicX is an isomorphism. Hence ρ(X) = ρ(V/T ) = 1.

By Thm. 7.1 there exists a (reduced) curve D ∈ | −KX | with only nodal singularities. We have
H1(−KX) = 0 by Kawamata-Viehweg vanishing. So there exists a lift S ∈ | −KV | of D ∈ | −KX |
such that the general fibre of S/T is smooth. The surface S is normal, so the special fibre of S/T
equals D (there are no embedded points). Hence S/T is a smoothing of a nodal curve, and S has
only Du Val singularities of type A.
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KM98 J. Kollár, S. Mori, Birational geometry of algebraic varieties, C.U.P., 1998.
KS88 J. Kollár, N. Shepherd-Barron, Threefolds and deformations of surface singularities, Inv. Math. 91

(1988), 299–338.
Loo85 E. Looijenga, Riemann-Roch and smoothings of singularities, Topology 25 (1985), 292–302.
LW86 E. Looijenga, J. Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986),

no. 3, 261–291.
Man91 M. Manetti, Normal degenerations of the complex plane, J. reine angew. Math. 419 (1991), 89–118.
Man93 M. Manetti, Normal projective surfaces with ρ = 1, P−1 > 5, Rend. Sem. Mat. Univ. Padova 89

(1993), 195–205.
Man86 Y. Manin, Cubic forms – Algebra, geometry, arithmetic, North-Holland Publishing Co., Amsterdam,

1986.
Pro01 Y. Prokhorov, Lectures on complements on log surfaces, MSJ Mem. 10, 2001, and preprint

arXiv:math/9912111v2 [math.AG].
Wah81 J. Wahl, Smoothings of normal surface singularities, Topology 20 (1981), no. 3, 219–246.

Paul Hacking hacking@math.washington.edu
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195

Yuri Prokhorov prokhoro@mech.math.msu.su
Department of Higher Algebra, Faculty of Mathematics and Mechanics, Moscow State Lomonosov
University, Vorobievy Gory, Moscow, 119 899, RUSSIA

22


