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Abstract. This communication shows how the smoothed finite element method (SFEM)
very recently proposed by G.R. Liu [14] can be extended to elasto-plasticity. The SFEM
results are in excellent agreement with the finite element (FEM) and analytical results.
For the examples treated, the method is quite insensitive to mesh distortion and vol-
umetric locking. Moreover, the SFEM yields more compliant load-displacement curves
compared to the standard, displacement based FE method, as expected from the theo-
retical developments recently published in [4], [3] and [6].

1. INTRODUCTION

Recently, G. R. Liu et al. proposed a new finite element method based on strain
smoothing, which they coined the Smoothed Finite Element Method – SFEM [14]. The-
oretical developments, accuracy, convergence and stability investigations are discussed
in [4, 6].

Basically, the strain field is calculated as the spatial average of the compatible
strain field. Different numbers of smoothing cells (nc) per element provide the method
with different properties.

The SFEM was very recently coupled to the MITC [11, 12] formulation to yield
plate [1] and shell [2] elements with particular insensitivity to mesh distortion. The intro-
duction of partition of unity enrichment in the SFEM to create the smoothed extended
finite element method (SmXFEM) or Flexible extended finite element method(FleXFEM)
was proposed in [6] simplifying integration of discontinuous weak forms. Extensions to
polygonal meshes were proposed in [5]. A recent review is given in [6] where these recent
results and general properties of the SFEM are discussed in detail.
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displacement FEM

Element

Types

Equivalent

Variationally Consistent [4]

nc = 1 under integrated standard FEM

OR quasi equilibrium FEM [6]

Variationally Consistent [4]

nc → +∞

Accuracy

σ -

u ++++

Convergence

L2 → 2

H1 → 1

σ ++

u ++

Not Variationally Consistent [4]

But Energetically Consistent [4]

σ ++++

u -

L2 → 2

H1 → 2

Fig. 1. Summary of properties of the SFEM. The ++ signify greater accuracy,
and the −− lesser accuracy. See [6, 4] for details.

We recall here the most salient features of the SFEM. A summary of the properties
outlined below is given in Figure 1 and Figure 2.

• Integration can be performed on the boundary of the smoothing cells;
• No isoparametric mapping is necessary (highly distorted meshes are accept-

able);
• The computational cost is slightly reduced (5% for four subcells to 20% for one

subcells, in our experience);
• The derivatives of the shape functions are not needed for elliptic problems;
• Low numbers of subcells yield higher stress accuracy, high numbers higher

displacement accuracy;
• When the number of subcells tends to infinity, the method becomes equivalent

to the displacement-based FEM;
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• The one subcells version usually suppresses locking, it is equivalent to reduced
integration and to a quasi equilibrium element formulation and suffers from
zero-energy modes due to rank deficiency;

Smoothing Cells

nc = 1

nc → +∞

Displacement error

Zero-energy modes

Total energy
Stiffness

Stress error

Sensitivity to locking

Fig. 2. Scaling of the displacement, stress error, stiffness, stability and total energy
depending on the number of subcells. See [6, 4] for details.

Figure 3 shows a possible state of stress within a smoothed four-noded quadrilateral.
Note that the stresses are discontinuous across the cell walls, but the displacement remains
continuous because the shape function of the underlying finite element are used to define
the displacement field throughout the element. A typical weight function, used in this
paper is shown in Figure 4.
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Fig. 3. Stress field in a smoothed finite element. The stress is constant over each
smoothing cell, but discontinuous across cells. On the contrary, the displacement
field is continuous within the element.
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Fig. 4. The weight function is defined, for each subcell as constant equal to the
inverse of the area of the subcell and zero elsewhere. This permits transforming
the domain integral into a boundary integral over the boundary of the subcell.
If a single subcell is used, integration over the boundary of the finite element is
recovered. This function has been used in all published work on the SFEM, to
date. This figure shows the weight function, Φ used for subcell Ω1. See Eq. (2).
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2. SMOOTHED FINITE ELEMENTS

As described above, the smoothed finite element method (SFEM) was introduced
by G. R. Liu et al. [14] in 2006. The full theory is given elsewhere [6, 4], and we do not
give details here.

Suffice it to say that the strain field used to write the element stiffness matrix is
written as a spatial average of the symmetric gradient of the displacement field, i.e. the
compatible strain field. This smoothed strain field writes, at an arbitrary point xC in an
element Ωh

ε̃h
ij(xC) =

∫
Ωh

εh
ij(x)Φ(x− xC)dΩ (1)

where Φ is a smoothing function that generally satisfies the following properties (cf. [30]
and Figure 4)

Φ ≥ 0 and
∫

Ωh

ΦdΩ = 1 (2)

The strain displacement matrix B̃C is constant over each ΩC and is of the following
form

B̃C =
[

B̃C1 B̃C2 B̃C3 B̃C4

]
(3)

where for all shape functions i ∈ {1, . . . , 4}, the 3 × 2 submatrix B̃Ci represents the
contribution to the strain displacement matrix associated with shape function i and cell
C and writes (see Figure 5)

∀i ∈ {1, 2, . . . , 4},∀C ∈ {1, 2, . . . nc}B̃Ci =
1

AC

∫
SC

nT (x)Ni(x)dS

=
∫

SC

 nx 0
0 ny

ny nx

 (x)Ni(x)dS (4)

or, since Eq. (??) is computed on the boundary of ΩC and one Gauss point is sufficient
for an exact integration:

B̃Ci(xC) =
1

AC

nb∑
b=1

 Ni

(
xG

b

)
nx 0

0 Ni

(
xG

b

)
ny

Ni

(
xG

b

)
ny Ni

(
xG

b

)
nx

lCb (5)

where xG
b and lCb are the center point (Gauss point) and the length of ΓC

b , respectively.
The smoothed element stiffness matrix for element e is computed by the sum of the

contributions of the subcells(Figure 5)1

K̃e =
nc∑

C=1

∫
ΩC

B̃T
CDB̃CdΩ =

nc∑
C=1

B̃T
CDB̃C

∫
ΩC

dΩ =
nc∑

C=1

B̃T
CDB̃CAC (6)

nc is the number of the smoothing cells of the element. Here, the integrands B̃T
CDB̃C are

constant over each ΩC , which permits to take them out of the integral sign.

1The subcells ΩC form a partition of the element Ωh (See Figure 4).
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In the case of a four noded (i = 1, 2, 3, 4) quadrilateral element (Q4), the non-local
strain displacement submatrix B̃Ci associated with node i and cell C reads (see Figure 5)

B̃Ci =
1

AC

∫
ΓC

 Ninx 0
0 Niny

Niny Ninx

dΓ =
1

AC

∫
ΓC

nT Ni(x)dΓ ∀i = 1, 2, 3, 4 (7)

Γ4

n4

n1

n2

n3

Gauß points for line integration

Ωh

B̃4 = 1
A4

∫
Γ4

nT Ni(x)dΓ

K̃e =
4∑

C=1
B̃T

CDB̃CAC

B̃2 = 1
A2

∫
Γ2

nT Ni(x)dΓ
B̃1 = 1

A1

∫
Γ1

nT Ni(x)dΓ

B̃3 = 1
A3

∫
Γ3

nT Ni(x)dΓ

Fig. 5. Schematic representation of the calculation of the smoothed discretised
gradient operator on an element Ωh, split into four subcells ΩC . (Ai)1≤i≤4. In this
case one integration point on each edge of the cells is sufficient for exact boundary
integration.

From the above, we note the following important points (this assumes a constant
smoothing function, Φ and is used – See Figure 4):

• The stiffness matrix is computed by boundary integration in the physical co-
ordinate system and no isoparametric mapping is required;

• The derivatives of the shape functions do not appear in the expression for the
stiffness matrix;

• When a single subcell is employed, the stiffness matrix is calculated by inte-
gration along the boundary of the physical element;

• For linear elements, the smoothed stiffness matrix is identical to the standard
finite element stiffness (e.g. three-noded linear triangles, two-noded one dimen-
sional elements).
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3. STABILIZED SMOOTHED FINITE ELEMENT METHOD

Puso and Solberg [31] proposed a stabilized nodal integration for tetrahedral to
address spurious low-energy modes. The proposed method was shown to be stable and
optimally convergent for the compressible case. The standard weak form of linear elasticity
is given by

a(u,w) = f(w), u,w ∈ (H1(Ω))3 (8)
for the domain Ω ⊂ R. The discrete problem is given by

ah(uh,wh) = f(wh) (9)

where uh,wh are the discrete trial and test functions, respectively, based on linear tetrahe-
dral interpolation and the discrete bilinear operator ah(uh,wh) is based on average nodal
integration. The standard tetrahedral finite element discretization for the equations of
motion and applying the preceding notation, the bilinear form can be written as sum over
element or a sum over nodes as follows:

a(wh,uh) =
Ne∑
e=1

V eδεe : Cεe (10)

The average nodal gradient ∇uI and strain εI at node I are defined as

∇uI
h =

1
V I

∑
e∈SI

V e

4
∇ue

h (11)

where V e = vol(Ωe) and SI is the set of all elements common to node I and the average
nodal volume is given as

V I =
∑
e∈SI

V e

4
(12)

Puso and Solberg [31] proposed the following nodal strain

ah(wh,uh) =
Nn∑
I=1

V IδεI : CεI +
Nn∑
I=1

∑
e∈SI

αe,I V e

4
(δεI − δεe) : C̃(εI − εe) (13)

where αe,I is a stabilization parameter that can potentially depend on element e and node
I and C̃ is the alternate material stiffness. Ideal choice would be C = C̃, but for nearly
incompressible material, the following choice of C̃ can be adopted. A uniform value of the
stabilization parameter is used, αe,I = 0.05 ( [31]). The form of stabilization stiffness C̃
is chosen so as to minimize the effects due to volumetric locking while providing the best
overall stabilization necessary. For elastic materials, following Lamé parameters λ and µ
are used

µ̃ = µ, λ̃ = min(λ, 25λ̃) (14)
And for plastic materials, a shear modulus based on the plastic tangent modulus ET is
used throughout the analysis

µ̃ =
ET

2
, λ̃ = min(λ, 25λ̃) (15)

For linear hardening, the hardening modulus H is constant and ET = H.
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4. STABILIZED SMOOTHED FINITE ELEMENT METHOD

In this work, the idea of stabilized nodal integration proposed by Puso and Sol-
berg [31] is extended to smoothed finite element method. The total stiffness K is given
by

K = Knodal + Kelem (16)
Knodal and Kelem is given by

Knodal =
nc∑

c=1

B̃T (D− αD̃)B̃Ac (17a)

Kelem =
nc∑

c=1

αAcB̃T D̃B̃ (17b)

where D and D̃ are the stiffness and stabilized stiffness respectively and α is the stabi-
lization parameter, which for the current study is 0.05.

5. PLASTICITY IN THE SMOOTHED FINITE ELEMENT METHOD

The treatment of plasticity in the SFEM is identical in spirit as in the FEM. In
this paper only the case of J2 plasticity is examined. The return mapping algorithm used
in this paper is well-known and not recalled here. The interested reader is referred to the
literature for details.

In the SFEM, internal variables are stored in each smoothing cell, which play the
same role as the integration points in the FEM. To solve the non-linear problem, the
Newton-Raphson algorithm is employed. This algorithm requires two ingredients, at each
iteration, n:2

The tangent stiffness: With the notations from Section 2, the tangent stiffness
for element e writes

K̃e,n+1
tangent =

nc∑
C=1

∫
ΩC

B̃T
CDn+1

C,epB̃C dΩ =
nc∑

C=1

B̃T
CDn+1

C,epB̃CAC (18)

The residual vector: The residual vector (out of balance forces) is computed
as the difference between the external and internal forces. The external forces
are known, for each loading step. The internal force vector for element e is
computed as follows

F̃e
int =

nc∑
C=1

∫
ΩC

B̃T
Cσn+1

C dΩ =
nc∑

C=1

B̃T
Cσn+1

C AC (19)

In the above:
• as in Section 2, the integrands are constant over each ΩC which allows to take

them out of the integral sign and replace the integration by a multiplication
by the area AC of the smoothing cell ΩC ;

• the smoothed strain displacement matrix BT
C is defined exactly as in Eq. (7);

2as in the derivation of Section 2, the “tilde” denotes “smoothed” quantities.
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• vsigman+1
C is the state of stress in cell C obtained from the radial return

algorithm;
• Dn+1

C,ep is the elasto-plastic tangent operator in cell ΩC for the current iteration.

The last two quantities in the list above are independent of the discretization scheme,
and calculated exactly as in the standard FEM.

6. NUMERICAL EXAMPLES

6.1. Notation

The smoothed FEM four-noded elements are noted SCkQ4, where k stands for the
number of subcells. For instance, the SC4Q4 is the four-noded finite element with four
smoothing cells. In this paper, the von Mises yield criterion is used. The implementation
uses a radial return algorithm. The interval variables are stored at the smoothing cell level,
which play the same role as the integration points in the FEM.

6.2. General remarks

In the numerical results below, it will be seen that the SFEM behaves better than the
FEM for distorted meshes. For the latter, convergence of the Newton-Raphson algorithm
is not attained for medium to high levels of mesh distortion. Strain smoothing alleviates
this problem.

In general, convergence is attained within a maximum of 7-10 iterations for a preci-
sion of 1e-14 on the Euclidian norm of the residual. The number of iterations to convergence
increases in the vicinity of the failure load.

6.3. The footing problem

6.3.1. Problem and geometry

This first example is concerned with the calculation of the bearing capacity of a
superficial footing. The geometry and material properties are given in Figure 6. The load
q on the footing is increased until failure occurs.

6.3.2. Theoretical failure load

Terzaghi [7] gives the following expression, based on a Mohr-Coulomb yield surface,
for the ultimate load on a strip superficial foundation:

qu = c Nc + γ t Nq +
1
2
γ b Nγ (20)

where c is the cohesion, γ the unit weight of the soil, t the foundation depth, b the
foundation width and Nc, Nq, Nγ are coefficients which are function of the friction angle
of the soil φ.

Using a von Mises criterion under plane strain conditions, an appropriate size ad-
justment must be done in order to achieve the same ultimate load as with a Mohr-Coulomb
criterion [8, 9]:

c =
√

3
2

k ϕ = 0 (21)



302 Stéphane Pierre Alain Bordascorres, Hung Nguyen-Dang, Quyen Phan-Phuong . . .

E = 3000

γ = 0.0

ν = 0.4

k = 1

q

Fig. 6. Geometry of the footing problem. γ is the specific weight of the soil,
k = σy/

√
3, where σy is the yield stress.

Here, t = 0, ϕ = 0, φ = 0 leads to Nc=5.711, which finally yeilds:

qu = c Nc = 5 kN/m (22)

6.3.3. Numerical results

Convergence of the Newton-Raphson algorithm. The Newton-Raphson algorithm con-
verges within 5-7 iterations for a tolerance of 1e-014. The solution fails to converge for an
applied load of 6 kN/m, which is satisfactory for such a crude mesh.
Failure mechanism and plastic zone. Figure 7 illustrates the failure mechanism and shows
the plastic domain when the failure load is attained. These results are qualitatively very
similar to those presented in [9].
Effect of the number of subcells on the load-displacement curve. Figure 8 shows the load
displacement curve (applied load q versus displacement at the center of the footing). From
this figure, it can be inferred that the load displacement curve is practically insensitive
to the number of subcells used in the simulation. More interestingly, it is observed that
the SFEM solution is always more compliant (the slope of the load-displacement curve
is smaller) than the FEM solution, which is in agreement with the theoretical results
presented in [6, 4].

From Figure 8, we note that the vertical displacement at node 125 is approximately
-0.85e-03 m for an applied load q = 6 kN/m for all element types. In [9], the vertical
displacement at the soil/footing interface is found to be -0.9e-03 m for q = 7 kN/m.
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(a) Plastic domain (b) Failure mechanism

Fig. 7. Plastic domain and failure mechanism (p = 6 kN/m)

Convergence of the load-displacement curve with mesh refinement. To further test the
method, load displacement curves3 for a series of mesh densities (4 smoothing cells are
used) are shown in Figure 9, smaller load increments were used in the vicinity of the
failure load. The figure shows the convergence of the load displacement curve with mesh
refinement.
Influence of mesh distortion on the load-displacement curve. The effectiveness of the
method is studied for a series of meshes comprising severely distorted element, includ-
ing quadrilaterals with obtuse angles. Irregular meshes are generated as explained in [4]
and the coordinates have the following general form:

x′ = x + ∆x · rc · αir (23a)
y′ = y + ∆y · rc · αir (23b)

where ∆x and ∆y are initial regular element sizes in the x− and y− directions, respectively;
rc is a computer generated random number between -1.0 and 1.0 and αir is a prescribed
irregularity factor whose value is chosen between 0.0 and 0.5. The bigger the value of
αir, the more irregular the shape of the generated elements. Figure 10 shows two sample
meshes used for the present study. Figure 11 shows the load displacement curves4 for
various irregularity factors αir ranging from 0 (regular mesh) to 0.4 (very irregular). Four
smoothing cells are used and smaller load increments empliyed in the vicinity of the failure
load. The figure shows that the results for the distorted meshes, with irregularity parameter
αir=0.1,0.2 are comparable to that of the regular mesh (αir=0.0) until the applied load
reaches q = 7 kN/m, beyond which some small oscillations are observed, which may be
attributed to the distortion. The amplitude of these oscillations is however not significant.
A smiliar trend is observed for the distorted mesh with an irregularity parameter as high
as αir=0.4. It can be concluded that the results are not highly sensitive to mesh distortion.

3the right-most under the distributed load is used and perfect plasticity is assumed (H = 0)
4the right-most node under the distributed load is used and isotropic hardening is assumed (H =

2E
3

).
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Fig. 8. Load displacement curve (vertical displacement measured at node 125)
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Fig. 9. Load displacement curve (vertical displacement measured at node situated
at the right-most of the distributed load section; 4 smoothing cells are used in each
finite element. )

Using the standard FEM, the Newton-Raphson algorithm is divergent for αir=0.3, while in
the case of the SFEM, convergence is attained up to extremely distorted meshes (αir=0.4).
A comparison of the load displacement curves obtained using the FEM and the SFEM for
several levels of mesh distortion are shown in Figure 13.

6.4. Hollow cylinder under internal pressure

In this example, a thick cylinder under pressure is considered. The analytical solution
is due to Hill can be found in [10]. The setup for this problem is given in Figure 14.

The internal and external radius of the cylinder are b = 0.1 and a = 0.2m. The radius
of the plastic zone is denoted by c. Young’s modulus E = 21000 kN/m2 and Poisson’s ratio
ν = 0.3 and plane strain conditions are assumed. The von Mises criterion is used with a
yield stress σy = 24 kN/m2 which corresponds to k = σy

3 = 13.8564 kN/m2. The internal



Smoothed finite element method for two-dimensional elasto-plasticity 305

0 0.2 0.4 0.6 0.8 1
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

(a) Distorted mesh αir = 0.2
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(b) Distorted mesh αir = 0.4

Fig. 10. Domain discretization with irregular elements. Note that some elements
have obtuse angles.

0 0.2 0.4 0.6 0.8 1 1.2

x 10
−3

0

1

2

3

4

5

6

7

8

9

10

11

Vertical displacement

A
p

p
lie

d
 l
o

a
d

 [
k
N

/m
]

α
ir
=0.0

α
ir
=0.1

α
ir
=0.2

α
ir
=0.4

Fig. 11. Load displacement curve for different levels of mesh distortion (vertical
displacement measured at the node situated at the right-most of the distributed
load section; 4 smoothing cells are used in each finite element. Isotropic hardening
is assumed.)

pressure p is varied between 8 kN/m2 and 18 kN/m2, this value corresponding to the total
plastification of the cylinder and its failure. Only one-quarter of the cylinder is modeled
because of symmetry.

First, the stresses σr and σθ are calculated, for six cases: a) p= 8 kN/m2, b) p =
14kN/m2, c) 18 kN/m2 both for perfectly plastic material (H = 0) and for a hardening
material, where H = 2E

3 = 14000 kN/m2. The results are shown in Figure 15. The plastic
zones are depicted in Figure 16.
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Fig. 12. Comparison with FEM. Load displacement curve for different levels of
mesh distortion (vertical displacement measured at the node situated at the right-
most of the distributed load section; 4 smoothing cells are used in each finite
element. Isotropic hardening is assumed.)
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Fig. 13. Comparison with FEM. Load displacement curve for different levels of
mesh distortion (vertical displacement measured at the node situated at the right-
most of the distributed load section; 4 smoothing cells are used in each finite
element. Isotropic hardening is assumed.)

The evolution of the radius of the plastic zone, c, is presented in Figure 16 for both
the perfectly plastic case and the hardening case. As expected, hardening requires a larger
load to produce the same plastic zone size as in the perfectly plastic case. The results
obtained are in good agreement with the theoretical solutions given in [10].

Comparing the SFEM stress solution to that of FEM, Figure 17 shows that for
moderately distorted meshes, the FEM solution is already oscillatory, while the SFEM
retains high accuracy.
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E = 21000kN/m2

ν = 0.3

a

c

b

σy = 24kN/m2

Fig. 14. Geometry for the thick cylinder problem.

(a) The radial stress for p = 8 kN/m2 with
ν=0.3, H = 0

(b) The radial stress for p =14 kN/m2 with
ν=0.3, H = 0

(c) The radial stress for p =14 kN/m2 with
ν=0.3, H = 2/3E

(d) The radial stress for p =18 kN/m2 with
ν=0.3, H = 0



308 Stéphane Pierre Alain Bordascorres, Hung Nguyen-Dang, Quyen Phan-Phuong . . .

(e) The radial stress for p =18 kN/m2 with ν=0.3, H =
2/3E

Fig. 15. Radial stress for various load levels.

(a) p =16 kN/m2 c = 0.1333 m in the case H = 0 (b) p =16 kN/m2 c = 0.1266 in the case H = 2/3E

Fig. 16. Mesh and plastic domain at p =16 kN/m2 with and without hardening

We now consider the same problem for a nearly incompressible material (ν =
0.49999) in plane strain conditions. As shown in Figure 18 and Figure 19, the stresses
σr and σθ are very accurate for all the SC1Q4, SC2Q4, SC3Q4, SC4Q4 element.
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Fig. 17. Thick cylinder problem, comparison of SFEM with FEM for moderately
distorted mesh (αir = 0.3. The figure shows the radial stress for no hardening and
ν = 0.3. Note the absence of spurious oscillations in the SFEM solution (4 subcells
were used here).

(a) The radial stress for p = 8 kN/m2 with
ν=0.49999, H = 0

(b) The radial stress for p =14 kN/m2 with
ν=0.49999, H = 0

(c) The radial stress for p =14 kN/m2 with
ν=0.49999, H = 2/3E

(d) The radial stress for p =18 kN/m2 with
ν=0.49999, H = 0
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(e) The radial stress for p =18 kN/m2 with
ν=0.49999, H = 2/3E

Fig. 18. Radial stress for different load levels, perfect and hardening plasticity in
the incompressible case.

(a) The hoop stress for p = 18 kN/m2 with
ν=0.49999, H = 0

(b) The hoop stress for p =14 kN/m2 with
ν=0.49999, H = 0

Fig. 19. Hoop stress for different load levels, perfect and hardening plasticity in
the incompressible case.

7. CONCLUSION

This paper presented the extension of recent work on the smoothed finite element
(SFEM) to elasto-plasticity. The four elements tested, all based on smoothed strain four-
noded quadrilateral elements produced load-displacement and stress results which compare
very well with the analytical and finite element solution.

In particular, the smoothed finite element method was shown to produce accurate
results, even for extremely distorted meshes including elements with obtuse angles. The
method was also shown to be insensitive to volumetric locking.

This work is the first step toward the longer term goal of simulating large elasto-
plastic deformation while limiting the amount of remeshing for which the aptitude of the
method in dealing with highly distorted meshes is promising.
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PHƯƠNG PHÁP PHẦN TỬ HỮU HẠN TRƠN CHO
ĐÀN-DẺO HAI CHIỀU

Báo cáo này chỉ ra làm thể nào để mở rộng phương pháp phần tử hữu hạn trơn (SFEM)
được G.R. Liu đề nghị trong thời gian gần đây cho bài toán đàn-dẻo. Các kết quả của
SFEM cực kỳ phù hợp với các kết quả của phương pháp phần tử hữu hạn và giải tích. Với
các ví dụ khảo sát, SFEM ít nhạy cảm với sự vặn của lưới và nghẽn thể tích. Thêm vào
đó, như mong đợi từ sự phát triển lý thuyết được công bố gần đây trong [1], [3] và [6],
SFEM đưa tới các biểu đồ lực-chuyển vị thích hợp hơn so với phương pháp phần tử hữu
hạn chuẩn dựa trên trường chuyển vị.
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