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Abstract: Gaussian process (GP) models encounter computational difficulties with

large spatial datasets since its computational complexity grows cubically with sam-

ple size n. Although the Full-Scale Approximation (FSA) using a block modulat-

ing function provides an effective way for approximating GP models, it has several

shortcomings such as the less smooth prediction surface on block boundaries and

sensitiveness to the knot set under small-scale data dependence. To address these

issues, we propose a Smoothed Full-Scale Approximation (SFSA) method for the

analysis of large spatial dataset. The SFSA leads to a class of scalable GP mod-

els, whose covariance functions consist of two parts: A reduced-rank covariance

function capturing large-scale spatial dependence and a covariance adjusting lo-

cal covariance approximation errors of the reduced-rank part both within blocks

and between neighboring blocks. This method can alleviate the prediction errors

on block boundaries; it also leads to more robust inference and prediction results

under different dependence scales due to better approximation of the residual co-

variance. The proposed method provides a unified view of approximation methods

for GP models, encompassing several existing computational methods for large

spatial datasets into one common framework, including the predictive process, the

FSA, and the nearest neighboring block Gaussian process methods, allowing effi-

cient algorithms for more robust and accurate model inference and prediction for

large spatial datasets in a unified framework. We illustrate the effectiveness of the

SFSA approach through simulation studies and a total column ozone dataset.

Key words and phrases: Conditional likelihood, full-scale approximation, Markov

chain Monte Carlo, spatial covariance functions.

1. Introduction

Spatial datasets arising from ecology, climatology, and other disciplines have

generated considerable interests for scientists. With the advent of remote sensing

and Geographic Information System (GIS) techniques, the spatial data collection

capacity increases dramatically, and statisticians nowadays are often facing a
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large number of observations on variables of interest. The growth in data volume

imposes computational challenges to classical geostatistical models (Stein (1999);

Banerjee et al. (2014)) and has driven the innovations of computational methods

scalable to handle large datasets (e.g., Sun et al. (2012)).

One of the most popular models for spatial datasets is the Gaussian process

(GP) model, assuming that finite observations are jointly Gaussian. Although

GP models enjoy mathematical tractability for model fitting and prediction, its

computational complexity generally grows cubically with sample size n, due to

expensive matrix operations. Specifically, calculations of the inverse and the

determinant of an n×n covariance matrix of a GP typically require O(n3) float-

ing point operations per second (flops), making model fitting of a GP model

computationally prohibitive for very large n.

Recently, Sang and Huang (2012) proposed a so-called Full-Scale Approxi-

mation (FSA) approach to approximate the original covariance function of GP

models for large spatial datasets. By combining the ideas of both low-rank mod-

els and sparse models, it can approximate the data covariance matrix well un-

der both large- and small-scale dependence structures. Popular low-rank mod-

els (e.g.,Higdon (2002); Banerjee et al. (2008); Cressie and Johannesson (2008);

Katzfuss and Cressie (2011); Nguyen et al. (2012, 2014)) seek to approximating

the original spatial process by a smoother process based on a reduced number of

basis functions. Although low-rank models can enjoy computational complexity

linear with n, they may fail to capture local variations well when using limited

number of basis functions (Finley et al. (2009); Stein (2014)). Sparse approxima-

tion techniques either shrink the covariance of distant pairs of spatial locations

to zero for yielding a sparse covariance matrix (Furrer et al. (2006); Kaufman

et al. (2008)), or assume Gaussian-Markov property of the spatial random field

for yielding a sparse precision matrix (Rue and Tjelmeland (2002); Lindgren

et al. (2011)). Another way for inducing sparsity of the precision matrix is to

use conditional likelihoods (e.g., Vecchia (1988)), and most recently, Datta et al.

(2016) proposed a nearest-neighbor GP (NNGP); a new permutation and group-

ing method for improving the performance of NNGP can be found in Guinness

(2016). Most recent “hybrid” methods extending the low-rank models include

Nychka et al. (2015); Katzfuss (2017); Ma and Kang (2017). The modern-version



SMOOTHED FULL-SCALE APPROXIMATION 3

local GP models (e.g., Gramacy and Apley, 2015; Gramacy and Haaland, 2016;

Zhang et al., 2016; Park and Apley, 2017) can also be applied very effectively

to modeling large or massive spatial data. Lastly, the divide and conquer based

approaches have also been proposed to model large and nonstationary spatial

datasets. See, e.g., the treed GP (e.g., Gramacy and Lee, 2008; Konomi et al.,

2014) and the spatial meta kriging (Guhaniyogi and Banerjee, 2017).

Let C(·, ·;θ) be the original covariance function of a GP model; to give a more

accurate approximation to C(·, ·;θ), the FSA approach first approximates the

original covariance function using the covariance function of a Gaussian predictive

process model (Banerjee et al. (2008)), denoted by Cl(·, ·;θ); then the “residual”

covariance, defined as Cs ≡ C − Cl, is approximated by a sparse positive semi-

definite function. The covariance function of FSA, denoted by C†(·, ·;θ), can

be written as Cl(·, ·;θ) + Cs(·, ·;θ)K(·, ·), where the function K, referred to as a

modulating function, is positive semi-definite and has a large number of zeros

evaluated on observed spatial locations. If we choose K(·, ·) to be compactly

supported covariance functions (Gneiting (2002)), the resulting approximation

is referred to as FSA-Taper; if K(·, ·) = 1 when two locations belong to the

same data block and K(·, ·) = 0 otherwise, then the resulting approximation is

referred to as FSA-Block. It turns out that FSA-Block outperforms FSA-Taper

empirically (Sang et al. (2011)), possibly due to its nature of being an unbiased

approximation of covariance within each data block, and the convenience of using

parallel computation. Zhang et al. (2015) extends the FSA-Block approximation

to GP models for large spatio-temporal datasets.

Although the FSA-Block approach can lead to effective and scalable approx-

imation to the covariance function of GP models, it has several shortcomings.

First, the predictions around boundaries of two adjacent blocks by the FSA-

Block approach are less smooth than the rest of the regions, mainly due to the

independent-blocks assumption for the residual covariance function, Cs; the mis-

matches of predictions on block boundaries can result in large prediction errors

on locations close to block boundaries. Second, although the overall performance

of the FSA-Block is more robust than that of the predictive process and inde-

pendent block estimations to the choice of knots and blocks, the approximation

error for the residual-covariance information across blocks can be severe when
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the predictive-process part does not perform well (e.g., when the underlying spa-

tial process is less smooth or the knot number is insufficient), leaving room for

further improvement.

In this paper we develop a new covariance approximation for spatial GP

models. We first extend the nearest-neighbor GP models developed by Datta

et al. (2016) to construct a nearest neighboring block GP model. We then propose

to apply it to approximate the residual covariance and combine this approximated

residual covariance with a reduced-rank predictive process. By doing this, we

relax the independent-blocks assumption in FSA-Block to further account for

the dependence between each block and its neighboring blocks in the residual

covariance matrix. The proposed method can alleviate the discontinuities of

predictions on boundary locations for the FSA-Block approach. We name the

new proposed method the Smoothed Full-Scale Approximation (SFSA).

We further show that the SFSA approach defines a class of valid Gaussian

process models scalable to large datasets. Therefore, both parameter estimation

and prediction by the SFSA approach can be readily done under a unified frame-

work due to the existence of a closed-form covariance function. The establishment

of the SFSA Gaussian process also allows it being flexibly embedded into hierar-

chical spatial models to facilitate computation while maintaining model richness.

The SFSA also provides a unifying view of approximations for spatial GP

models, putting various existing popular approximation methods under one um-

brella, including the predictive process, the FSA, the conditional composite like-

lihood, the independent blocks method, and the nearest-neighbor GP approxi-

mations. This unified modeling framework enables direct comparison and reveals

the relation among various computational methods for large spatial datasets.

The rest of the paper is organized as follows. Section 2 reviews the FSA-

Block approach and formulates the proposed SFSA approach. Section 3 discusses

the computational complexity of SFSA and gives the algorithm for evaluating its

log-likelihood. Section 4 gives details on the parameter-estimation and prediction

procedures of SFSA. Section 5 defines the valid GP constructed from the SFSA.

We compare SFSA with other state-of-the-art methods through simulation stud-

ies in Section 6.1 and a total column ozone dataset in Section 6.2. Finally Section

7 concludes the paper with a brief summary and discussions of some potential
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extensions. The proof of theorems and additional numerical results are given in

the supplementary materials.

2. Methodology

2.1 The spatial regression model

Let y(s) be a response variable observed at a spatial location s ∈ S ⊆ R
d,

where S is the spatial domain and d = 1, 2, 3. We model y(s) through the

following spatial regression model:

y(s) = x(s)Tβ + w(s) + ǫ(s), (2.1)

where x(s) is a p-dimensional vector of covariates, β is a vector of regression

coefficients, w(s) is a latent mean-zero Gaussian process, and ǫ(s) is a Gaussian

white noise process with a constant variance τ2, independent of w(s). The vari-

ance τ2 is often referred to as the “nugget,” accounting for the measurement-error

effect. The dependence structure of w(s) is specified by a valid covariance func-

tion, C(s, s′;θ) ≡ cov(w(s), w(s′)). For example, the Matérn covariance function

(e.g., see Stein (1999)) is widely used in spatial statistics due to its flexibility for

modeling different smoothness of a spatial process:

C(s, s′;θ) =
σ2

Γ(ν)
21−ν(h/φ)νKν(h/φ), (2.2)

where σ2 > 0 is the variance parameter, φ > 0 is the dependence range parameter,

and ν > 0 is the smoothness parameter; Γ(·) is the gamma function, and Kν(·)

is the modified Bessel function of the second kind of order ν. The Gaussian

covariance function, C(s, s′;θ) = σ2 exp(−h2/φ), and the exponential covariance

function, C(s, s′;θ) = σ2 exp(−h/φ), are two special cases of (2.2) with ν → ∞

and ν = 0.5, respectively.

Now suppose y(s) is observed at n spatial locations in S ≡ {s1, . . . , sn}. Let

y = (y(s1), . . . , y(sn))
T be the observed response vector and x = (x(s1), . . . , x(sn))

T

be the n× p design matrix. The log-likelihood function is:

ℓ(y|θ,β) = −
1

2
(y − xβ)TC−1

y
(y − xβ)−

1

2
|Cy| −

n

2
log(2π), (2.3)
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where Cy ≡ var(y) is the data covariance matrix. Since evaluating (2.3) in gen-

eral requires O(n3) flops for calculating |Cy| and C−1
y

, the computational cost

can be very expensive or even prohibitive when n is very large.

2.2 The FSA-Block approach

In this subsection, we will briefly review the FSA-Block approach. The FSA-

Block approach (Sang et al. (2011); Sang and Huang (2012)) is motivated from

the decomposition of the latent spatial process w(s):

w(s) = wl(s) + ws(s), (2.4)

where wl(s) is the Gaussian predictive process (Banerjee et al. (2008)), and ws(s)

is referred to as the residual process of w(s) that is independent of wl(s). Ap-

proximating w(s) by only using wl(s) will result in loss of residual covariance

information in ws(s), which could subsequently lead to bias in parameter estima-

tions and inaccuracy in spatial predictions (e.g., see Finley et al. (2009); Stein

(2014)).

Let S∗ ≡ {s∗1, . . . , s
∗
m} be a (pre-specified) set of locations in S, referred

to as the knot set. In the following, we use the generic notation C(A,B) ≡

[C(si, sj)]si∈A,sj∈B to denote the covariance matrix for two location sets A and

B. The covariance function of wl(s) is given by

Cl(s, s
′) = C(s, S∗)C(S∗, S∗)−1C(s′, S∗)T . (2.5)

It follows that the covariance function of ws(s) takes the form

Cs(s, s
′) = C(s, s′)− Cl(s, s

′). (2.6)

Let Cwl
≡ Cl(S, S) be the covariance matrix of the predictive-process component

and Cws
≡ Cs(S, S) be the residual covariance matrix. By the Schur complement

property of linear algebra, Cws
is positive definite when S ∩ S∗ = ∅ and positive

semi-definite otherwise. In general, Cws
has a dependence structure of a smaller

scale than the full covariance but it is still a dense matrix. Sang et al. (2011)

proposed to approximate Cws
by a block-diagonal matrix to reduce computations

while preserving the residual-covariance entries within blocks. Specifically, let P
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be a partition rule that partitions the observed data vector y into K disjoint sub-

vectors yk of length nk, for k = 1, . . . ,K. If one groups observations according

to blocks, then the approximated likelihood by the FSA-Block approach follows

the Gaussian distribution, N (xβ, (Cwl
+Cws

◦ TB + τ2In)), where TB is a block-

diagonal matrix with 1nk
1Tnk

as its k-th block, 1nk
is an nk × 1 vector of ones, In

is an identity matrix of size n, and ◦ is the Schur product (entrywise product) of

two matrices. Compared with Cwl
by the predictive process model, an additional

block-diagonal residual covariance matrix is incorporated to correct the approxi-

mation errors within each data block. Since (Cws
◦ TB + τ2In) is block-diagonal,

it takes O(n) order flops for computing its inverse and determinant. It can be

shown that the computational complexity of the FSA-Block approach is linear

with n (Sang and Huang (2012)).

However, the independent-blocks approximation of Cws
ignores the residual

dependence across different blocks. The loss of dependence information can be

severe when wl(s) does not provide a good approximation for w(s) so that the

entries across blocks of the residual covariance matrix are not negligible (e.g.,

the knots are not placed properly or the knot number is insufficient). More im-

portantly, since the approximation errors of the covariance matrix by FSA-Block

are zero for data within the same block and nonzero for data across blocks, there

exist jumps of approximation errors between each data block and its neighboring

blocks. This discontinuity of approximation errors can harm the prediction per-

formance, in particular around block boundary locations (see Section 6.1). To

address these issues, we seek a new method that can partially preserve the entries

of Cws
across data blocks, while still maintaining the computational efficiency.

2.3 The SFSA approach

Let w∗ = (w(s∗1), . . . , w(s
∗
m))T denote the vector of w(·) evaluated on the

knot set. To motivate the new method, we write the data likelihood as

p(y|β,θ) =

∫

p(y|β,θ,w∗) · p(w∗|θ)dw∗,

where p(y|β,θ,w∗) follows N (xβ + C(S, S∗)C(S∗, S∗)−1w∗, Cws
+ τ2In). The

computational bottleneck lies in evaluating p(y|β,θ,w∗), since Cws
is a dense

matrix in general. We propose to replace p(y|β,θ,w∗) with some Gaussian
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density whose computations are less expensive; then after integrating out w∗,

an approximated Gaussian likelihood with a reduced computational cost can be

readily obtained. Note that compared with the original data covariance matrix,

the covariance matrix in p(y|β,θ,w∗) has entries closer to zero. Therefore, data

located in distant blocks are more likely to be independent, conditional on w∗.

This observation motivates us to use the conditional block composite likelihood

(CBCL) approach in Stein et al. (2004) for approximating p(y|β,θ,w∗).

Specifically, let P be a partition rule leading to a partition S = ∪K
k=1Sk with

the corresponding partition of observations y = ∪K
k=1yk, where Sk and yk have

a size of nk, and
∑K

k=1 nk = n. Let y(k−1) = (yT
1 , . . . ,y

T
k−1)

T for k ≥ 2, and

y(0) = ∅. By the chain rule,

p(y|β,θ,w∗) =

K
∏

k=1

p(yk|y(k−1),β,θ,w
∗).

When n is very large, it is computationally expensive to evaluate the full condi-

tional density, p(yk|y(k−1),β,θ,w
∗), for a large k, because y(k−1) is high dimen-

sional. Thus, following Stein et al. (2004), we choose the conditional set to be a

subvector of y(k−1) for the k-th block:

p̃(y|β,θ,w∗) =

K
∏

k=1

p(yk|yN(k),β,θ,w
∗), (2.7)

where yN(k) is an nN(k)-dimensional subvector of y(k−1) with the location set

SN(k) (i.e., the neighboring observations of yk in y(k−1)); here we use the con-

vention that SN(1) = ∅. For notation simplicity, in this paper, we focus on the

special case that SN(k) contains all locations in the q-nearest neighboring blocks

of the k-th block (e.g., “closeness” may be measured by the Euclidean distances

of block centers). In specific, SN(k) is defined as

SN(k) =











∅, if k = 1;

{S1, S2, . . . , Sk−1}, if k ≤ q;

q-nearest blocks in {S1, S2, . . . , Sk−1}, if k > q.

In practice, one chooses K to partition the data such that each data block con-
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tains only a few hundreds observations for computation efficiency. By choosing

q ≪ K, evaluating p̃(y|β,θ,w∗) is computationally efficient. The FSA-Block

approach is a special case of the proposed method when one uses ∅ as the condi-

tional set for every yk. Usually we choose q ≥ 1 to ease the discontinuity issue of

approximation errors across data blocks. We later show that the prediction errors

around block boundaries can be reduced by applying the proposed approach. We

name the proposed approach the Smoothed FSA (SFSA) approach.

Next, we show that the SFSA approach generates a Gaussian likelihood

with a closed-form expression for its covariance matrix. For residual covariance

matrices of (ws(·) + ǫ(·)), we use the generic notations ΣA,B ≡ cov(ws(SA) +

ǫ(SA), ws(SB) + ǫ(SB)) and ΣA ≡ var(ws(SA) + ǫ(SA)), where SA and SB are

two sets of spatial locations. Now, for k, l = 1, . . . ,K, define

Bk,l =















Ink
, if l = k;

[

−Σk,N(k)Σ
−1
N(k)

]

(·, n(l−1) + 1 : n(l)), if l ∈ N(k);

0, otherwise,

(2.8)

where n(l) =
∑

1≤i≤l,i∈N(k) ni. Here Bk,l is an nk by nl matrix encoding the con-

ditional dependence information between the k-th block and the l-th block. Let

B∗
k = (Bk,1, . . . , Bk,K), then it can be shown that (in the supplementary material,

Section S1.1) the conditional density, p(yk|yN(k),β,θ,w
∗), is proportional to

|Σk|N(k)|
− 1

2 exp{−
1

2
(y − xβ − Uw∗)TB∗T

k Σ−1
k|N(k)B

∗
k(y − xβ − Uw∗)},

where Σk|N(k) = Σk − Σk,N(k)Σ
−1
N(k)Σ

T
k,N(k) is the residual covariance of the k-th

block conditional on its neighboring blocks, and U = C(S, S∗)C(S∗, S∗)−1. The

SFSA approach yields the following likelihood:

p̃(y|β,θ) =

∫

w∗

K
∏

k=1

p(yk|yN(k),β,θ,w
∗) · p(w∗|θ)dw∗.

The following theorem shows that this approximated likelihood corresponds to a

Gaussian density with a closed-form covariance matrix.
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Theorem 1. Let y ∼ N (xβ, Cy), then the approximated likelihood by the SFSA

approach, p̃(y|β,θ), follows N (xβ, C†
y), where

C†
y
= B−1ΣconB

T−1

+ C(S, S∗)C(S∗, S∗)−1C(S, S∗)T ,

where Σcon is a block-diagonal matrix with Σk|N(k) as its k-th block, and B =

(B∗T

1 , . . . , B∗T

K )T ∈ R
n×n.

The proof is given in the supplementary material, Section S1.1.

2.4 A new unifying view

The proposed method offers a unified approximation method for spatial GP

models. Evidently, the method is a direct generalization of the FSA-Block ap-

proach (SFSA with q = 0) and the conditional block composite likelihood ap-

proach (SFSA with m = 0), and hence includes both as special cases. Thus,

SFSA provides a unified approximation framework for spatial GP models that

allows us to compare different methods directly.

Below we compare the performance of each method in terms of covariance

matrix approximation. Figure 1 shows the absolute differences of entries between

the approximated data covariance matrix and the original data covariance matrix,

for each of these three approaches. Specifically, 4000 locations were randomly

generated in a square domain [0, 10] × [0, 10], and the exponential covariance

function, C(s, s′) = exp(−‖s− s′‖) with a nugget effect 0.01, was used to gener-

ate the covariance matrix on those locations. For all three approaches, equally

spaced blocks were generated and the block index takes an increasing order from

northwest to southeast; the locations within the same block were grouped to-

gether. For SFSA and FSA-Block approaches, m = 50 knots were uniformly

selected in the square domain; and for SFSA and CBCL, the neighboring block

set was the nearest neighboring block. We observe that for locations within a

certain band, the approximation errors by SFSA are much smaller than those

by the FSA-Block approach, due to the corrections of residual covariance be-

tween neighboring blocks. Compared with the CBCL approximation, while both

approaches provide good approximations for covariance entries within a certain

location band, the SFSA approach leads to smaller approximation errors for the

residual covariance entries off the location band, due to the inclusion of the low-
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Figure 1: Plots of the absolute differences between the approximated data covariance
matrix and the original data covariance matrix for three methods. SFSA: the Smoothed
Full-Scale Approximation; FSAB: the FSA-Block approximation; CBCL: the Conditional
Block Composite Likelihood approximation.

rank predictive process component.

2.5 Choices of tuning parameters for SFSA

The SFSA approach requires specifications of several tuning parameters, in-

cluding a knot set, a scheme of block partition, the ordering of data blocks, and

the number of neighboring blocks q. For the knot set, random sampling, Latin

Hypercube Sampling (McKay et al. (1979)) or a spatial grid can be applied to

place knots with a good space coverage. Alternatively, we can treat the knots as
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unknown parameters and model them stochastically (Guhaniyogi et al. (2011);

Katzfuss (2013); Zhang et al. (2015)). For the block partition, Eidsvik et al.

(2014) provided some guidance on blocking strategy, and recommended to use

the empirical variogram to determine the block width. The K-means clustering

algorithm based on Euclidean distances of locations is a simple choice for cre-

ating blocks; alternatively, one may apply a clustering algorithm based on the

estimated covariance matrix from a pilot study to account for nonstationarity.

For uniformly spaced spatial locations, we recommend using the regular rectangle

blocks (e.g., see Eidsvik et al. (2014); Katzfuss (2017)) which empirically work

very well. In this paper we have focused on using regular rectangle blocks for

implementation of our method. For highly non-uniformly distributed data, De-

launy triangulation (e.g., see Lee and Schachter (1980)) might be a more effective

partition method to create meshes for the proposed method.

After creating the blocks, it is necessary to order the blocks for constructing

the residual likelihood of SFSA. Following Guinness (2016), we compared the

model-fitting performances of SFSA for a few ordering methods, including the

sorted-coordinate (SC) ordering, the random ordering, the maximum-minimum-

distance (MMD) ordering, and the center-out (CO) ordering (see the supplemen-

tary material, Section S2.1). Based on the simulation-study results, we recom-

mend using the SC ordering for uniformly spaced data and the CO ordering for

non-uniformly spaced data.

Lastly, the selection of the number of neighboring blocks (q) is a trade-off

between the computational time and the statistical efficiency. Apparently, the

larger the number of neighboring blocks, the more accurate approximation the

SFSA leads to. Based on the simulation results (see the supplementary material,

Section S2.3), a small number of neighboring blocks such as q = 3 or 4 (with a

few hundreds observations) can already lead to parameter-estimation results of

good statistical efficiency. In this paper since we have focused on using regular

rectangle blocks, the Euclidean distance between block centers becomes a natu-

ral choice to determine the q-nearest neighboring blocks. Alternatively, one may

define the “closeness” of two blocks by a distance metric between the residual

correlations of observations in two blocks. But apparently such an approach re-

quires the estimation of residual correlation and will increase computational cost.
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Table 1: Notations for SFSA.

Sample size: n
Knot number: m
Block size: nb

Number of blocks: K
Number of neighbors: q

More detailed discussion on finding the nearest neighboring blocks based on the

residual correlations is provided in the supplementary material (Section S3).

3. Computational Aspects of the SFSA Approach

We first determine the computational complexity for evaluating the log-

likelihood of SFSA. For simplicity, suppose all data blocks have an equal block

size nb such that n = Knb, and each data block has at most q neighbors. The

log-likelihood function by SFSA, up to a constant, is (see equation (S1.1))

log p̃(y|β,θ) = −
1

2
(y − xβ)TBT (Σ−1

con − Σ−1
conBUΣw∗UTBTΣ−1

con)B(y − xβ)

−
1

2
|UTBTΣ−1

conBU | −
1

2
|Σcon| −

1

2
|C∗|, (3.1)

where Σw∗ = (UTBTΣ−1
conBU + C−1

∗ )−1 ∈ R
m×m and C∗ ≡ C(S∗, S∗).

Evaluating the determinant of the SFSA likelihood is computationally effi-

cient, since we only need to calculate the determinants of two m×m matrices and

a block-diagonal matrix. When evaluating |UTBTΣ−1
conBU |, we need to obtain

BU and Σcon first. We remark that B is a sparse matrix with at most (qnb + 1)

nonzero entries per row, and hence calculating BU is cheap with computational

complexity O(nmqnb). To obtain each diagonal block of the block-diagonal ma-

trix Σcon, we need to invert a (qnb × qnb) residual covariance matrix for neigh-

boring observations, which has the computational complexity of order O(q3n3
b).

Hence obtaining Σcon has the order O(Kq3n3
b) = O(nq3n2

b).

Now suppose Σcon has been obtained. To evaluate the quadratic term in

(3.1), the required quantities are (y − xβ)TBTΣ−1
conB(y − xβ), UTBTΣ−1

conBU ,

and UTBTΣ−1
conB(y − xβ). Recall that Σcon is block-diagonal, and its inverse

takes O(Kn3
b) = O(nn2

b) flops; BU has computational complexity O(nmqnb),
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because B is a lower-triangular matrix with at most (qnb+1) nonzero entries per

row and U is an n by m matrix; similarly, evaluating B(y − xβ) needs O(nqnb)

flops. After Σ−1
con, BU , and B(y − xβ) are calculated, (y − xβ)TBTΣ−1

conB(y −

xβ) needs O(nnb + n) flops, UTBTΣ−1
conBU needs O(nm2 + nmnb) flops, and

UTBTΣ−1
conB(y − xβ) needs O(nnb + nm) flops.

Therefore, the computational complexity of the SFSA approach has the order

O(nq3n2
b+nmqnb+nm2). In practice, the data is partitioned into K blocks such

that each block has a block size of a few hundreds. If we also choose the knot

size m to be a few hundreds and set q ≪ K, the SFSA approach then has the

computational complexity linear with n.

Parallel computation is possible for evaluating SFSA’s likelihood. Recall that

B = (B∗T

1 , . . . , B∗T

K )T is a lower-triangular matrix, where B∗
k = (Bk,1, . . . , Bk,K)

encodes the residual conditional dependence information between the k-th block

and each of the individual blocks, for k = 1, . . . ,K. Since Σcon is a block-diagonal

matrix with Σk|N(k) as its k-th block, then

(y − xβ)TBTΣ−1
conB(y − xβ) =

K
∑

k=1

(y − xβ)TB∗T

k Σ−1
k|N(k)B

∗
k(y − xβ).

Similarly,

UTBTΣ−1
conBU =

K
∑

k=1

UTB∗T

k Σ−1
k|N(k)B

∗
kU

and

UTBTΣ−1
conB(y − xβ) =

K
∑

k=1

UTB∗T

k Σ−1
k|N(k)B

∗
k(y − xβ).

Algorithm 1 shows how to evaluate log p̃(y|β,θ) step by step. Parallel-

computing technique can be applied to obtain the required quantities for each

block simultaneously and hence avoid the loop in algorithm 1. By using K cores,

the computational complexity of SFSA has the order O(q3n3
b + mqn2

b + nbm
2).

Besides, since U ∈ R
n×m, it will require large memory to store U for very large n.

We remark that due to the sparsity of B∗
k, only Uk = C(Sk, S

∗)C(S∗, S∗)−1 and

UN(k) = C(SN(k), S
∗)C(S∗, S∗)−1 are required to calculate B∗

kU when evaluating

the likelihood of SFSA.
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Algorithm 1 Evaluating the log-likelihood function of SFSA.

1: Compute C∗ = C(S∗, S∗) and U = C(S, S∗)C(S∗, S∗)−1. Factorize C∗ = QT
∗ Q∗.

2: for k = 1 to K do

3: Compute Σk, Σk,N(k), and ΣN(k). Then compute B∗
k = (Bk,1, . . . , Bk,K) according

to (2.8).
4: Compute Σk|N(k) = Σk −Σk,N(k)Σ

−1
N(k)Σ

T
k,N(k). Factorize Σk|N(k) = QT

k|N(k)Qk|N(k).

5: Compute the quantities (y− xβ)TB∗T

k Σ−1
k|N(k)B

∗
k(y− xβ), UTB∗T

k Σ−1
k|N(k)B

∗
kU , and

UTB∗T

k Σ−1
k|N(k)B

∗
k(y − xβ).

6: end for

7: Sum up the quantities for each block to obtain (y − xβ)TBTΣ−1
conB(y − xβ),

UTBTΣ−1
conBU , and UTBTΣ−1

conB(y − xβ).
8: Compute the quadratic term in (3.1) and Σw

∗ = UTBTΣ−1
conBU + C−1

∗ . Factorize
Σw

∗ = QT
w

∗Qw
∗

9: Compute the log of determinants: log |Σw
∗ | = 2 log |Qw

∗ |, log |Σcon| =

2
K
∑

k=1

log |Qk|N(k)| and log |C∗| = 2 log |Q∗|.

10: Evaluate the log-likelihood function in (3.1).

5K 10K 50K 100K 500K 1M 2M

0.25s

1s

3s

10s

30s
1min

5min
10min

C
P

U
 ti

m
e

SFSA, q=0(FSAB)
SFSA, q=1
SFSA, q=3
Full GP

Figure 2: Computational times (on a log scale) per likelihood evaluation versus different
sample sizes (on a log scale). For SFSA and FSAB, m = nb = 200, and the results were
obtained by using 16 CPU cores.

Figure 2 shows the computational time of SFSA for different sample sizes.

We can see that for the data size of two millions, evaluating the likelihood of

SFSA with q = 1 can still be done in a short time.

4. Parameter Estimation and Prediction
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4.1 Maximum likelihood estimation

The maximum likelihood estimators maximize the log-likelihood function

in (2.3). To facilitate computations, we replace the full covariance matrix Cy

with the approximated covariance matrix C†
y in Theorem 1. The approximated

log-likelihood by SFSA is:

log p̃(y|β,θ) = −
1

2
(y − xβ)TC†−1

y
(y − xβ)−

1

2
|C†

y
| −

n

2
log(2π).

We calculate the inverse covariance matrix as (see equation (S1.2))

C†−1

y
= Σ−1

con − Σ−1
conBUΣw∗UTBTΣ−1

con.

Then we can evaluate the quadratic term in the log-likelihood efficiently using

Algorithm 1. For |C†
y| (see equation (S1.3)),

|C†
y
| = |UTBTΣ−1

conBU + C−1
∗ | · |Σcon| · |C∗|.

Calculation of UTBTΣ−1
conBU involves the multipulication of an n× n matrix B

and an n×m matrix U . Recall that B is a sparse matrix with at most (qnb +1)

nonzero entries per row, and hence calculating BU is cheap with computational

complexity O(nqnbm). Then efficient computations are achieved, since calculat-

ing C†
y only involves computing the determinants of two m×m matrices and one

block-diagonal matrix.

4.2 Bayesian inference on model parameters

The Bayesian inference starts from specifying the prior distributions of β

and θ. The conjugate Gaussian prior π(β) ∼ N (µ0,Σ0) can be assigned to β.

The prior of θ depends on the form of a covariance function. Taking the Matérn

covariance function in (2.2) as an example, the inverse gamma prior IG(a, b)

can be assigned to the variance parameter σ2 and the nugget τ2, where hyper-

parameters a, b are chosen to assign vague priors or to reflect reasonable guesses

for the mean and variance; for the dependence range parameter φ, a uniform

prior with a reasonable support of practical dependence ranges can be used; and

for smoothness parameter ν, usually a uniform prior at (0, 3] is used, since high

values of smoothness can hardly be identified from real datasets.
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The marginalized likelihood that integrates out both β and w is

p(y|θ) =

∫

β

p(y|β,θ)π(β)dβ ∼ N (µ
y
,Σy),

where µ
y
= ΣyC

−1
y

x(xTC−1
y

x+Σ−1
0 )−1Σ−1

0 µ0 and Σy = Cy+xΣ0x
T . Since the

posterior distribution of θ does not have a closed form, we first draw posterior

samples of θ based on the marginalized likelihood p(y|θ) by using Metropolis-

Hastings algorithm (Gelman et al. (2014)). Since p(β|y) =
∫

θ
p(β|θ,y)p(θ|y)dθ

and p(β|θ,y) is Gaussian, the posterior samples of β can be drawn from p(β|y)

using the method of composition. Similarly, the posterior samples of w can be

recovered by sampling from

p(w|y) =

∫

θ

∫

β

p(w|y,θ,β)p(β|y)p(θ|y)dβdθ.

When n is large, we replace Cy with C†
y (see Theorem 1) in p(y|θ), p(β|θ,y),

and p(w|y,θ,β), for drawing posterior samples efficiently.

4.3 Prediction

Let Sp ≡ {s1, . . . , snp
} be a set of predictive spatial locations such that

Sp ∩ S = ∅, with yp = (y(s1), . . . , y(snp
))T as the corresponding response vector.

Using the same partition rule P that partitions S into K disjoint blocks, suppose

Sp is partitioned into K disjoint location blocks Sp,k (Sp,k may be empty), with

yp,k as the response vector of y(·) evaluated on Sp,k, k = 1, . . . ,K. We start from

the joint density of yp and y,

p(yp,y|β,θ) =

∫

p(yp|y,w
∗,β,θ) · p(y|w∗,β,θ) · p(w∗|θ)dw∗.

When n is very large, since p(yp|y,w
∗,β,θ) and p(y|w∗,β,θ) are high dimen-

sional, their exact computations may not be feasible. Thus, we define the follow-

ing approximated conditional density,

p̃(yp|y,w
∗,β,θ) =

K
∏

k=1

p(yp,k|yk,yN(k),w
∗,β,θ),

where we set p(yp,k|yk,yN(k),w
∗,β,θ) = 1 if yp,k = ∅. This definition assumes
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that yp,k is independent of the rest of predictive responses, conditional on w∗,

the observations in the same block yk, and the observations in neighboring blocks

yN(k). Notice that for the predictive response vector yp,k, its neighboring location

set is Sp,N(k) ≡ {SN(k), Sk}, for k = 1, . . . ,K, where recall that SN(k) is the

neighboring location set for the observed response vector yk.

Then an approximated marginal joint density with computational efficiency

can be obtained as

p̃(yp,y|β,θ) =

∫

p̃(yp|y,w
∗,β,θ) · p̃(y|w∗,β,θ) · p(w∗|θ)dw∗, (4.1)

where p̃(y|w∗,β,θ) is the Gaussian density given in (2.7). The (approximated)

predictive distribution, p̃(yp|y,β,θ), can be readily obtained from p̃(yp,y|β,θ).

Let xp,k be the design matrix for yp,k, Up,k = C(Sp,k, S
∗)C−1

∗ , and Σp,k|N(k)

be the residual conditional variance of yp,k, given yk and yN(k). Then define

Bp,k = (Bp,k,1, . . . , Bp,k,K), where Bp,k,l has the similar definition to Bk,l in (2.8),

encoding the residual conditional dependence information of yp,k given its neigh-

bors y(Sp,N(k)) for the l-th block, l = 1, . . . ,K. Let xp = (xT
p,1, . . . ,x

T
p,K)T ,

Up = (UT
p,1, . . . , U

T
p,K)T , Bp = (BT

p,1, . . . , B
T
p,K)T , and Σp,con be a block-diagonal

matrix with Σp,k|N(k) as its k-th block. The following proposition shows that

p̃(yp|y,β,θ) follows a Gaussian distribution.

Proposition 1. The approximated conditional density p̃(yp|y,β,θ) based on

(4.1) follows a Gaussian distribution N (µp,Σp), where

µp = xpβ + FpC
†−1

y
(y − xβ),

Σp = Σp,con +BpB
−1ΣconB

T−1

BT
p + UpC∗U

T
p − FpC

†−1

y
F T
p ,

Fp = (−BpB
−1ΣconB

T−1

+ UpC∗U
T ).

The proof of Proposition 1 is given in the supplementary material, Sec-

tion S1.2. The conditional mean µp is the kriging formula for spatial predictions

under the SFSA approximation. In fact, in Section 5, we prove that the SFSA

approach can induce a valid GP with a closed-form covariance function.

Remark: There are different ways to approximate p(yp,y|β,θ) for predic-

tion. For example, consider the case in which the predictive response vector yp

belongs to some block l, then we can have an approximation of the augmented



SMOOTHED FULL-SCALE APPROXIMATION 19

data likelihood, p̃(yp,y|β,θ), defined as

∫

∏

1≤k≤K,k 6=l

p(yk|y
aug

N(k),w
∗,β,θ) · p(yp,yl|yN(l),w

∗,β,θ) · p(w∗|θ)dw∗,

where y
aug

N(k) = (yT
p ,y

T
N(k))

T if block l is a neighbor of the k-th block and

y
aug

N(k) = yN(k) otherwise. However, the prediction obtained by this approx-

imation cannot yield a valid GP, since integrating out yp in general cannot

lead to p̃(y|β,θ) in Theorem 1 (except for the special case that l = K so that

y
aug

N(k) = yN(k) for k = 1, . . . ,K, which corresponds to the proposed prediction

method).

5. The Smoothed FSA Spatial Process

In this section, we show that the SFSA approach equipped with the predic-

tion method in Section 4 yields a valid spatial GP with a closed-form covariance

function. Therefore, both parameter estimation and prediction of SFSA can be

performed in a unified GP framework. Recall in Section 2.2 we showed that

the underlying spatial process w(s) can be decomposed into two independent

processes wl(s) and ws(s), where wl(s) is the predictive process with covariance

function Cl(·, ·), and ws(s) is the exact residual process with covariance func-

tion C(·, ·) − Cl(·, ·). Let w̃s(s) = ws(s) + ǫ(s) be the new residual process that

incorporates the measurement-error term; then the data process is:

y(s) = xT (s)β + wl(s) + w̃s(s).

In the following, we show that SFSA approximates the process w̃s(s) by using the

nearest neighboring block GP that extends the nearest neighbor GP developed in

Datta et al. (2016), and hence the approximated process by the SFSA approach

is a valid GP.

Given a partition rule P leading to S = ∪K
k=1Sk, the key assumption on

deriving the likelihood of the SFSA approach is

p̃(y|β,θ,w∗) =

K
∏

k=1

p(yk|yN(k),β,θ,w
∗),
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which is equivalent to

p̃(w̃s(S)|θ) =
K
∏

k=1

p(w̃s(Sk)|w̃s(SN(k)),θ). (5.1)

Let P also partition a set of predictive locations Sp into K disjoint blocks Sp,k,

k = 1, . . . ,K. The assumption in Section 4,

p̃(yp|y,w
∗,θ) =

K
∏

k=1

p(yp,k|yk,yN(k),w
∗,θ),

is equivalent to

p̃(w̃s(Sp)|w̃s(S),θ) =

K
∏

k=1

p(w̃s(Sp,k)|w̃s(Sk), w̃s(SN(k)),θ). (5.2)

We remark that assumptions (5.1) and (5.2) are the block versions of key as-

sumptions for the nearest neighbor GP defined on w̃s(s).

Consider an arbitrary set of locations Sv ⊂ S. Let Sp = Sv \S be the subset

of Sv that is outside of S (predictive locations). We define

p̃(w̃s(Sv)|θ) =

∫

p̃(w̃s(Sp)|w̃s(S),θ)p̃(w̃s(S)|θ)
∏

si∈S\Sv

dw̃s(si), (5.3)

where p̃(w̃s(Sp)|w̃s(S),θ) has the expression in (5.2) and p̃(w̃s(S)|θ) has the

expression in (5.1). The following theorem shows that the approximated process

with finite dimensional densities defined in (5.3) is a valid GP.

Theorem 2. Let w̃†
s(s) be the constructed process with finite dimensional distri-

bution defined in (5.3). Then w̃†
s(s) is a valid Gaussian process with covariance

function defined as

C̃†
s(s, s

′) =











































Σ†
y(s, s

′), if s, s′ ∈ S;

−BsΣ
†
y(S, s

′), if s /∈ S, s′ ∈ S;

BsΣ
†
yB

T
s′
, if s, s′ /∈ S, and s, s′

belong to different blocks;

BsΣ
†
yB

T
s′
+Σp,k|N(k)(s, s

′), if s, s′ /∈ S, and s, s′ belong

to the same block k,

(5.4)
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where Bs and Bs′ are similarly defined as Bp in Section 4.3, under the special

scenario that the predictive location set Sp = {s} or {s′}; Σ†
y ≡ B−1ΣconB

T−1

is

the approximated residual covariance matrix in Theorem 1; Σp,k|N(k) is the resid-

ual variance of w̃s(Sp,k), conditional on its neighbors in w̃s(S); Σ
†
y(S1, S2) and

Σp,k|N(k)(S1, S2) denote the sub-matrices of Σ†
y and Σp,k|N(k) for corresponding

location sets S1 and S2, respectively.

The proof of Theorem 2 basically follows Datta et al. (2016) (see the supple-

mentary material, Section S1.3). Now adding the predictive process covariance-

function part, the covariance function of the SFSA GP is:

C†(s, s′) = Cl(s, s
′) + C̃†

s(s, s
′). (5.5)

Utilizing the finite-dimensional distribution giving in Theorem 2, we can

recover the conditional distribution expression given in Proposition 1 by using

the properties of multivariate Gaussian distributions. Specifically, following the

results in (5.4) and (5.5), the approximated cross covariance between the pre-

diction set Sp and the training set S is (UpC∗U
T − BpΣ

†
y); the usual kriging

formula yields the conditional mean and the conditional variance of yp given y

presented in Proposition 1.

6. Numerical Examples

In this section, we illustrate the effectiveness of our method through simu-

lation studies. The implementations of the NNGP, SFSA, and SFSA’s variants

(FSAB and CBCL) were written in Matlab; we used the R package “laGP”

to obtain results of the local Gaussian process method with adaptive local de-

signs (Gramacy and Apley (2015)). All methods ran on a AMD Opteron (tm)

processor with 2.3 GHz CPUs and 32 GB memory. For log-likelihood func-

tion optimization, we used the matlab function, fminunc, which implements a

Broyden-Fletcher-Goldfarb-Shanno (BFGS) based Quasi-Newton method. We

used parfor command in Matlab for parallel computations.

6.1. Simulation Studies

We use the following example to show that compared to FSAB, the SFSA

approach with q ≥ 1 can alleviate the prediction errors around block boundaries.
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We generated 500 data from a Gaussian process with mean zero and Matérn

covariance function in (2.2) on an equally spaced grid in domain S ≡ [−1, 7].

Then predictions were performed at 100 equally spaced locations in S and the

rest of data was used for training. For both the FSAB and SFSA approaches, we

partitioned [−1, 7] equally to create K = 4 blocks, with 5 knots equally placed

on [−1, 4]. Therefore, the block boundaries are s = 1, 3, 5 and there are no knots

close to the boundary s = 5. For SFSA, we set q = 1 and N(k) = {k − 1}

for k = 2, 3, 4. We experimented both the Matérn covariance function with

σ2 = 1, ν = 1.5, φ = 0.2, τ2 = 0.01 and the Gaussian covariance function with

σ2 = 1, φ = 0.1, τ2 = 0.01. The parameter settings correspond to smooth GP

processes with relatively small dependence ranges.

loc
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P
E
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(a) Matérn covariance
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P
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(b) Gaussian covariance

Figure 3: MSPEs versus the predictive locations. Crosses denote the locations of knots
and the dotted lines indicate the block boundaries. The results were obtained based on
200 simulated datasets.

Figure 3 shows the plots of Mean Squared Prediction Errors (MSPE) against

the predictive locations. For the Matérn-covariance case (left panel), the MSPEs

by the FSAB approach are particularly very large around block boundaries (s =

1, 3, 5). In contrast, the SFSA approach can reduce prediction errors around

block-boundary points by borrowing dependence information from neighboring

blocks. It can be seen that the MSPEs of SFSA are almost indistinguishable from

those of the full model. Similar conclusions hold for the Gaussian-covariance

case (right panel). Thus, for a smooth spatial process with a relatively small

dependence range, the SFSA approach with q ≥ 1 is preferred, since it can
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significantly alleviate discontinuities of predictions around block boundaries.

6.2. Application to a Total Column Ozone Dataset

In this section, we analyze the total column ozone (TCO) level 2 dataset

collected on October, 1st, 1988 (previous analysis of this dataset can be found in

Cressie and Johannesson (2008); Eidsvik et al. (2014)). This TCO level 2 dataset

has n = 173, 405 observations, and we partitioned the data into a training set

and a prediction set under two prediction scenarios: 1) Prediction on 25, 000

randomly selected locations (MAR); and 2) prediction on locations in a hold-

out 15 degree × 15 degree rectangle region (MBD) that consists of around 600

predictive locations. For both prediction scenarios, we randomly generated three

sets for evaluating the prediction performance of all comparison methods.

Following the analysis in Eidsvik et al. (2014), we used a fixed mean param-

eter and a Cauchy covariance function C(s, s′) = σ2(1 + ‖s − s′‖/φ)−3 with a

nugget effect for modeling the TCO dataset, where σ2 > 0, φ > 0 are the vari-

ance and range parameters, respectively. We also considered a Matérn covariance

function (see (2.2)), with the smoothness ν fixed at 1 suggested by a pilot study

using the full covariance model on 10, 000 randomly selected observations. The

constant mean was removed before estimating the covariance-function parame-

ters. We compare SFSA with the FSAB, NNGP, and LaGP methods in terms of

prediction performance, considering the mean squared prediction error (MSPE)

and the mean continuous rank probability score (CRPS) (e.g., see Gneiting and

Raftery (2007)). For SFSA and FSAB, we used 24 × 24 regular blocks and 225

regular-grid knots so that both the block size nb and the knot size m are around

200. For SFSA, we applied the sorted-coordinates (SC) ordering for the MAR

scenario and the center-out (CO) ordering for the MBD scenario; then the num-

ber of neighboring blocks q = 1 was specified. For NNGP and LaGP, 50 neighbors

were used for both parameter estimation and prediction. For LaGP, the “mspe”

heuristic was considered.

Table 2 shows the prediction results for all comparison methods. We focus

on the results of the Matérn covariance, since it generally leads to better MSPE

results than the Cauchy covariance, except for SFSA under the MBD scenario.

For the MAR scenario testing the small-range predictions, NNGP performs the

best, with slightly smaller MSPE and CRPS values than those of SFSA. However
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Table 2: Prediction performances of SFSA, FSAB, NNGP, and LaGP for the TCO data.
The results were obtained based on 3 prediction sets for each prediction scenario.

Scenarios SFSA FSAB NNGP LaGP-mspe
Matérn Cauchy Matérn Cauchy Matérn Cauchy

MAR MSPE 27.06 27.77 27.24 27.98 26.67 27.43 38.03
CRPS 2.51 2.53 2.53 2.55 2.50 2.52 3.78
Time (min) 58 33 47 31 57 27 121

MBD MSPE 16.73 16.32 21.46 24.26 21.77 23.88 23.47
CRPS 2.75 2.54 2.91 2.90 2.88 2.85 3.31
Time (min) 79 27 72 31 100 38 4

for the MBD scenario, the SFSA method results in the best prediction results.

NNGP results in larger MSPE and CRPS values than those of SFSA for the

MBD scenario, which may be because the correlations of the TCO data have

a relatively large scale so that borrowing information from non-neighboring lo-

cations is helpful for improving the prediction accuracy. Compared with other

methods, the LaGP leads to much larger prediction errors (especially for the

MAR scenario), which may be because its methodology is developed based on

the Gaussian covariance that is too smooth for modeling the TCO dataset; using

other covariance functions (e.g., the Cauchy or Matérn covariance functions) may

improve its prediction performance significantly, but the current LaGP package

does not support this.

For computational times (including both the parameter-estimation and pre-

diction steps), SFSA, FSAB and NNGP have comparable computational speeds.

Compared with other methods, LaGP has much longer computational time for

the MAR scenario but much shorter time for the MBD scenario. The reason is

that its computational time mainly depends on the total number of the predictive

locations. In contrast, for SFSA, FSAB, and NNGP, the computational bottle-

neck lies in the parameter-estimation step rather than the prediction step, since

the high-dimensional likelihood of all the training data needs to be evaluated

repeatedly by the optimization function in the parameter-estimation step.

The prediction plots on a 288× 180 longitude-latitude regular grid using the

Matérn covariance are shown in the left column of Figure 4. The three methods,

SFSA, FSAB, and NNGP produce very similar prediction surfaces, due to their

comparable capability on the short-range predictions. Their associated predic-
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(a) TCO data

(b) SFSA predictions (c) SFSA prediction errors (on a log scale)

(d) FSAB predictions (e) FSAB prediction errors (on a log scale)

(f) NNGP predictions (g) NNGP prediction errors (on a log scale)

Figure 4: Prediction surfaces and the prediction standard errors (on a log scale) for
SFSA, FSAB, and NNGP.

tion standard errors (on a log scale) are shown in the right column, and we can

observe that the prediction standard errors are particularly large for regions with-

out any observations. For SFSA and FSAB, relatively larger prediction standard

errors are observed around block boundaries; and this artifact is alleviated for
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SFSA compared with FSAB.

7. Discussion

We propose a Smoothed Full-Scale Approximation approach (SFSA) that

extends the FSA-Block approach by correcting the approximation errors of co-

variance between each block and its neighboring blocks. We prove that the SFSA

approach yields a class of valid Gaussian process models so that both parameter

estimation and prediction of SFSA can be performed in a unified framework. The

proposed method incorporates the FSA-Block approach and the block conditional

composite likelihood approach as special cases, and hence it can achieve better

statistical efficiency. Compared with the FSA-Block approach, the SFSA ap-

proach can reduce prediction errors at locations around block boundaries, which

can help produce a smoother prediction surface.

A natural extension of the proposed method is the spatio-temporal setting

(Katzfuss and Cressie (2011); Bevilacqua et al. (2012); Zhang et al. (2015)),

where we consider a spatio-temporal partition of observations and define the

neighboring blocks in space and time. In this case, the Euclidean distance of

spatio-temporal locations may not be a good measure for finding neighbors. We

will explore using other measures to define the block partition and neighbor-

ing blocks that minimize the residual covariance for non-neighboring blocks to

improve the approximation accuracy.

For modeling non-Gaussian observations from exponential family of distri-

butions, SFSA can be embedded in the hierarchical spatial generalized linear

models (GLM) (e.g., Diggle et al. (1998); Banerjee et al. (2014)) to speed up

computations. The spatial GLM proposed by Diggle et al. (1998) for modeling

non-Gaussian spatially dependent observations involves two stages. In the first

stage, the data conditional on a latent spatial process are i.i.d exponential family

random variables; and in the second stage, the latent spatial process is modeled

as a GP with both fixed and random effects. For this modeling strategy, the

SFSA approximation is applied to η(s) ≡ g(E(y(s)|η(·))) = x(s)Tβ+w(s)+ ǫ(s)

in the second stage, where g(·) is a link function, y(·) is the data process, and

η(·) is the latent spatial process. Similarly to the Gaussian case, we approximate

w(s) with the process induced by SFSA, denoted by w†(s), to facilitate compu-
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tations for evaluating the joint likelihood function. However, the marginalized

likelihood that integrates out the latent spatial process η(·) does not have an

analytical form and hence, MCMC algorithms need to be employed to obtain

posterior samples of model parameters θ along with η(s). Alternatively, the EM

algorithm can be used to estimate model parameters for the spatial GLM (e.g.,

see Sengupta and Cressie (2013)).

Supplementary Materials

The supplementary material contains the proofs of Theorems, and additional

numerical results for comparing SFSA with other methods.
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