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Smoothers for Discontinuous Signals
by G. Winkler, V. Liebscher ! and V. Aurich?

Abstract

First we explain the interplay between robust loss functions, non-
linear filters and Bayes smoothers for edge-preserving image recon-
struction. Then we prove the surprising fact that maximum posterior
smoothers are nonlinear filters. A (generalized) Potts prior for segmen-
tation and piecewise smoothing of noisy signals and images is adopted.
For one-dimensional signals, an exact solution for the maximum poste-
rior mode - based on dynamic programming - is derived. After, some
results on the performance of nonlinear filters on jumps and ramps
we finally introduce a cascade of nonlinear filters with varying scale
parameters and discuss the choice of parameters for segmentation and
piecewise smoothing.

Keywords: Image processing, jump preserving smoothing, filters, Potts
model

1 Introduction

Spatio-temporal statistics is penetrating into image analysis more and more.
This leads to both, new methods and a better understanding of algorithms
from apparently different fields like computer science or engineering. More-
over, there is rapidly increasing interest in models and methods which can
deal with discontinuous phenomena. Focus is on identification of disconti-
nuities in corrupted signal or image data, since relevant basic features like
jumps, spikes and boundaries are to be preserved during noise reduction.
This is of particular importance in applications our group presently is con-
cerned with, like processing responses to outer stimuli in functional magnetic
resonance imaging, detection of microcalcification in X-ray mammography
and similar applications in medical imaging and life sciences.
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Recent and very recent methods we have in mind were developed by the
authors and their groups ([29], [3], [20], [2], [12]), [31], [19]), as well as by
others ([4], [8], [9], [21](a), (b), (c), [5]). We started to discuss and compare
such methods in the common framework of Bayesian image analysis [30] and
robust statistics [15], [14] in the paper [31]. We interpreted them in the lan-
guage of ‘energy functions’ and this way worked out common aspects. Their
performance was compared by way of application to suitably constructed
phantoms which show typical features like smooth regions, sudden changes
of intensity, canyons or spikes (for instance from [5]). The reasoning was on
an informal level.

Typical examples of such approaches are (i) Bayesian methods similar to
those in S. and D. GEMAN(1984), [8], which also comprise those suggested
in A. BLAKE AND A. ZISSERMAN (1987), [4], cf. also G. WINKLER (1995),
[30], (i) (local) M-smoothers with score functions redescending to zero intro-
duced in C.K. CHu, I. GLAD, F. GODTLIEBSEN AND J.S. MARRON (1998),
[5], (i) nonlinear filters or o-filters studied for example in J. WEULE (1994),
[29] or F. GODTLIEBSEN, E. SPJ@TVOLL AND J.S. MARRON (1994), [9],
(iv) chains of nonlinear filters with varying scale-parameters developed and
studied in a series of papers by V. AURICH and his group (1994 — 98), [2], [3],
120], [29], (v) adaptive weights smoothing adressed recently by J. POLZEHL
AND V.G. SPOKOINY (1998), [21], [22], [23]. (vi) local radial-basis-function
networks introduced by K. HAHN AND TH. WASCHULZIK (1998), [12].

In this paper we restrict ourselves to two apparently antagonistic ap-
proaches: Bayesian segmentation and piecewise smoothing (i) on the one
hand and nonlinear filtering (4ii), (iv), on the other hand. It turns out that
there are close relations between these methods; the missing link inbetween
is (local) M-smoothing discussed in [5]. We are interested in such relations
since all these methods have obvious merits and shortcomings which - loosely
spoken - are opposite to each other. The Bayesian method for example rests
on a beautiful and transparent model including a natural quality measure;
on the other hand it leads to nearly intractable optimization problems, for
instance to compute maximum posterior estimates. Suboptimal solutions
are obtained by Markov-Chain-Monte-Carlo algorithms like simulated an-
nealing; but these can be discouragingly slow and, even worse, they are not
exact. Monitoring the output to check mixing and convergence may be cum-
bersome. Thus imperfection of convergence frequently cannot be told from
imperfection of the model or of model parameters (cf. [10]). As opposed to
this (chains of) nonlinear filters converge very fast and give excellent results
but the theoretical foundations presently are insufficient. In fact, even i.i.d.
noise is transformed into coloured noise in an obscure way even by a single
filter step. Thus these filter chains share theoretical shortcomings with other

2



iterated nonlinear filters (a thorough discussion of these aspects for iterated
medians is given in [16] and [27]). Hopefully, relations between the methods
can be established by which we might gain more insight into one method
from what we learned about the other.

The plan of this paper is as follows: Having introduced basic notions and
concepts we briefly sketch relations between some methods on an intuitive
level. Then we prove a somewhat surprising result: under mild conditions
maximum posterior mode estimations amounts to o-filtering in a sense to
be made precise. Then we turn to the Bayesian approach; focus is on the
simple case of a Potts prior distribution suited for segmentation or regression
onto piecewise constant signals. A generalization in the spirit of [4] allows
for piecewise smoothing. For one-dimensional signals we derive an algorithm
which computes ezact (Bayesian) mazimum a posterior modes estimation
(M AP) estimates extremely fast and therefore allows to scan the family of
estimates over the whole range of hyperparameters. Then we introduce a
chain of nonlinear filters with varying scale-parameters. Having derived first
properties like the ability to preserve jumps or to sharpen blurred edges we
give heuristic arguments for the optimal choice of scale-parameters.

2 Relations between Smoothers

In this section we look at image smoothers from three different points of view:
minimizers of loss functions, filters i.e. convex combinations of data and
Bayes estimators. Focus is on segmentation and edge-preserving smoothing.

We first try to bring out relations between these seemingly different no-
tions. It turns out that (local) minimizers of M-functions and iteratively
reweighted squares algorithms practically are equivalent and thus the former
are closely related to W-estimators. Simultaneously nonlinear or o-filters
are embedded into this framework and hence a link to w-estimation is estab-
lished. A loose connection to M AP-estimation is established as well.

In the second part of this section we study the relation between nonlinear
filters and maximum posterior modes in more detail. We give a rigorous
proof for the somewhat surprising fact, that under mild conditions MA P-
estimation is a special case of nonlinear filtering.

Let us first fix some notation. Let S denote a finite set of design points
s in BEuclidean space R?. They need not necessarily be equispaced but in
most examples they are. The design points will frequently be called pizels.
A signal or ‘image’ is a family x = (x4)secs of intensities or ‘grey-values’
from a supply G which may be finite or not; if convenient we shall write z(s)
instead of x;. For simplicity we assume real intensities x, € R.



2.1 Loss Functions, Sigma-Filters and MA P-Smoothers

Nothing in this subsection is really new; some of the observations are scat-
tered over the literature others seem to be folklore. Nevertheless, we found
it useful to put different aspects together and comment on their relations.
In the course of the following discussion we shall be somewhat sloppy with
derivatives. We shall tacitly assume generalized derivatives ¢’ if for instance
a function ¢ has isolated jumps and is differentiable elsewhere. Thereby we
include indicator functions of intervals or trapezoidal functions which fre-
quently arise in imaging.

Suppose that data (y;)ics is observed, i.e. a realization of random vari-
ables (Y})ies (in this paper we do not care about missing data). The aim is
to infer signals x from data y under certain regularity conditions or prior ex-
pectations. Sometimes these are given in explicit form, for example as prior
distributions, regularization terms or penalties. Sometimes they are hidden
behind the formalism of the algorithm like in the case of filters.

Robustness aspects enter in a natural way since edges, i.e. abrupt changes
in intensity, are important image features. Smoothing out noise in a smooth
part of the image - say in a moving window - should not be affected by the
contamination caused by intensities beyond an edge gradually entering the
window. This requirement is equivalent to edge preservation.

Let us start now from the very beginning. Given real random observations
Y1, ....,Y, the standard form of a loss-function for a location parameter is

P(0) =3 (¥ =)

Minimizers of @ are called M -estimators. For local smoothing of an image at
pixel s the observed values y;, t € B(s), in a window B(s) around s may be
plugged in for the Y;. The idea behind is that locally at least the majority of
the Y; are approximately i.i.d. Hence loss functions of this type are suitable
for ‘piecewise constant’ or locally slowly varying images. Robustness is built
in preservation of discontinuities. It is mirrored by ‘cup’-shaped function ¢
with ‘derivatives redescending to zero’; this basically means that |p(u)| 1 ¢
for some constant ¢ as |u| T co. Usually the functions ¢ are symmetric with
minimum at 0 and nondecreasing on the positive half-line. Spacial influence
of data frequently is modelled by soft windows rather than hard ones. They
are given by functions v(u) = h(||u||) where || - || is Euclidean norm and
h is a kernel function similar in shape to —p. They weight the influence
of remote pixels down. Throughout this paper we shall generically denote
‘cup’-functions by Greek letters like ¢ or 1 and bell-shaped functions by
italic letters like v or w.



For the intensity estimate at pixel s one thereby arrives at a loss-function

Bo(0) =Y oy — D)v(t — s). (1)

tes

Example 2.1 (a) Hard windows are given by indicator functions like
vt = 5) = Laa ([t = sll)

in the isotropic case. Frequently Gauflian functions

v(u) = g(u/7)/7, g(u) = exp(—|lul[*/2)

are adopted.
(b) For the intensity weight functions negative Gauflians

p(u) = —g(u/o)/o

are most popular. Indicator functions - corresponding to truncated means -
are of interest as well. For computational reasons trapezoidal ¢ are used for
instance in [7]. Functions

p(u) =min{(A-u)*, 7}, v >0, (2)

arise naturally in [4]. We shall argue below that they are intimately connected
with edge detection.
Contour lines of the map

(5,0) —> &, (9) (3)

are displayed in Fig. 1 for the Gauflian case. Data are simulated from the
phantom in [5].

A view at the contour lines of the function (s,d) — ®4(¥), displayed in Fig.
1 shows that the global minimizers of (1) will respect boundaries between
reasonably large plateaus. A spike in a pixel s, however, in general cannot
prevail since the superposition of many terms ¢(y, — 9)v(t — t) for ¢ near
s and similar values y; will produce a deeper valley along the cut {s} x G
than the single spike term ¢(ys; — 9)v(t — s) with y; > y;. As a remedy, local
minimizers of (1) are proposed in [5] and in fact, these local M-smoothers
show an excellent performance for a large variety of images. More precisely,
the authors for each s choose the next local minimum of @, which is downhill
from ;.



Figure 1: Data y (dots) and contour lines for the map (3), local M-smoothing
(solid line) and w- or o-filter smoothing (wiggly line).

It was observed in [25] and independently by the first author that local M-
smoothing is intimately connected to W-estimation presumably introduced
by J.W. TUKEY, 1970 (cf. [14], Chapter 2.3.d). In the present context
W-estimators are defined by the fixed point equation

0= wly — Wt —s)y /> wly— 0t —s), (4)

tes tesS

where w is some kernel function. As a convex combination of observations
the W-estimator is of filter type; it is nonlinear since the estimate itself enters
the filter weights. One usually resorts to the iterative algorithm

Vg1 = Zw(yt — p)v(t — s)y Zw(yt — D)v(t — s)

= O+ > wly =)ot =)y — k) /D wly,—dx)o(t—s) . (5)

If a function ¢ is (up to a constant) defined by ¢'(u) = u - w(u) then (5)
reads
Oker = Ok — (k) D ¢ (g = De)o(t — 5) (6)

tes
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with adaptive gains 7. This reformulation shows that (if we are lucky with
convergence) the algorithm initialized with y, results precisely in the local M-
estimate introduced above. The only difference is that the latter is formulated
as a general minimization problem whereas the former is given by a fixed
point equation (4) together with the special algorithm (5). The simulations in
[24] indicate that the algorithm (6) initiated with data (y;) in practice gives
the same result as local M-smoothing with other optimization techniques
albeit we are not aware of a rigorous proof.

Next we conclude from (6) that (5) is an iteratively reweighted least
squares algorithm. The generic step transforms an input ¥ into an output

@sz(yt—ﬁ (t—s)y Z w(y, — No(t —s),

tesS tes

which implies

Zw(yt — vt —s)(y— V) =0

and hence
§ = argmin " w(y, ~ D)ol — 5) (A (7

Thus each step is an estimator associated to its own loss function (7).
The first step ¥y — ¥ in (6) is called a w-estimator (cf. [14], Chap.
2.3.d). Initiated with data y it has output

fy:(Zw(yt—ys (t—s)y Z t—s):sES). (8)

tes tes

We recognize this nonlinear filter as the o-filter, well-known in imaging for
a long time; if v and w are Gauflian then it is called the nonlinear Gauffian
filter (NLGF). The above derivation clearly shows that the o-filter drives
data y, towards the local M-estimate but in general gets stuck before they
are reached. Hence its output lies between the data and the output of the
local M-smoother. This explains the observation that o-filters have small-
scale ‘wiggliness’ (cf. [5]).

Remark 2.2 (a) The original o-filter by J.S. LEE (1983), [18], used indica-
tor functions w = 1;_. q and hard windows. Hence in window around s, for
suitable ¢ it performs a test of significance to decide whether Y; has mean y;
and takes only the mean of those y; which pass the test.

(b)The case w = 1 gives the Nadaraya-Watson kernel smoother (cf. [6])
which for Gauflian v simply is a linear Gaufian filter.
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Recall that we established a one-to-one correspondence between local M-
smoothers and iteratively reweighted least squares, which turned out to be a
sequence of o-filters. The correspondence between loss functions (1) and filter
weights in (8) is given by the identity ¢'(u) = u-w(u). If for example ¢ = —g
is a Gauflian function turned upside down then w is a Gauflian function; if
©(u) = u? then w = 1 (the linear GauBlian filter); if p(u) = min{(\u)?, v},
v > 0, is a truncated square then w(u) = 1j_. 4(u) with ¢ = /7/A; hence
the associated o-filter is a truncated mean. We shall argue below that this
‘sharp cup’ function ¢ corresponds to ‘sharp boundaries’.

Finally we consider Bayesian a smoothers. Some notation is needed be-
fore. We give the definitions for discrete spaces only; for continuous spaces
densities are plugged in. The prior probabilities II(x) > 0, Y II(x) = 1,
rate (favourable) regularity properties of the x. For each © = (z,), data
y = (y;) is observed with probability (density) II(y|x). Given y the prior is
modified to the posterior (distribution) I (x|y) = II(x)II(y|x)/II(y). A pop-
ular estimate of the ‘true image’ is the MA P-estimate 2* = argmax, I (z|y).
In the Gibbsian formulation this reads

H(x) o exp(=K(x)), H(ylr) o exp(=D(z,y)),
(zly) oc exp(=K(z) - D(z,y)),
r* = argmin (K (z) + D(z,y)).

x

The data term is determined by the observation device; hence the prior
energy K(z) is the interesting term.

For s € S consider the conditional prior IT(zs|x; : t # s). The conditional
prior energy is

—InIT(z5|w; : t # 5) = K(z5, 24 : t # 8) + const.

A common way to construct prior energy functions is to plug in suitable loss
functions like (1) whilst replacing the variables y; by ;. This results in

Zcp s — x)v(t — s).
tes

Each of the above statements about ¢ and v holds mutatis mutandis for
Bayesian models as well. Let now S be endowed with an undirected graph
structure and call s and t neighbours if they are connected by an edge of
the graph. This will be indicated by the symbol s ~ t. Assume further that
neighbours have distance 1. Then with v = 1gy(|| - ||) we get

K(z) + D(z,y) = ng s — o) + D(z,y).

s~t
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We now want to work out the relation between such priors and boundaries.
This is easiest explained in the case of sharp cups (2). They can be written
in the form

Y(u) = min{(Au)?, v} = min {\*(v)*(1 — a)) +va:a € {0,1}}.

Setting

[ 0ifu<Ay2/N
d(u) = { 1 otherwise (9)

this reads
(u) = (M)’ (1 = d(u)) + ~d(u).
Having introduced binary variables b = (bs : 5,1 € S, s ~ t), by € {0,1}, we
conclude that the following are equivalent:
(a) z* minimizes
x»—)Z@b s —x) + D(x,y) (10)
s~1
and b, = 0 if |2 — 2| < y'/2/)X and b?, = 1 elsewhere,
(b) (z*, b*) minimizes

(D) HZ( =) (1—bst)+7bst) + D(z,y). (11)

s~t

Now we arrived at the classical model from [4]. Simultaneously it is a special
case of [8]. This allows a new interpretation of this prior: the variables
bs; are interpreted as active or inactive (micro) edges between neighbouring
pixels s and t according to by; = 1 or by = 0. Active edges correspond to
discontinuities of intensity and ‘switch off” smoothing. Thus {s ~ ¢ : by = 1}
is a ‘contour’. The terms ~b penalize each active edge by v > 0. Since
their sum is v times contour length, short and thus ‘smooth’ contours are
favourable. If by = 1 then the quadratic smoothing term is switched off
which — in view of the penalty — pays off if \?(z; — x;)? > . Small intensity
differences are favourable. In summary, the prior favours smooth regions but
allows for abrupt changes in intensity where there is evidence for a boundary
in the data.

Let us stress that the reformulation in terms of edge elements provides a
link between robust priors and edge-preserving smoothing with a conspicuous
interpretation.

There still remains another interesting observation. Using the loss func-
tion of the o-filter in (7) instead of (1) we get

K(x) = Z(xt — x4)*w(z; — ). (12)

s~t



Specializing to the binary case w = 1j_. with ¢ = ¥/2/)\ we find that
(1 — d) = w and hence MAP-smoothing with (12) is equivalent to the mini-
mization of

(2,0) — 3 (N, = 2)*(1 = b)) + Dl y).

s~t

This (11) without the penalty term ~vbs. Therefore boundaries will be less
smooth in accordance with wiggliness of the o-filter.

We finally compare local M-smoothers, NLG filters and a chain of NLG
filters in Fig. 2.

S R ) N
’ i N\’] I \‘J‘M ’ E fMﬂv 1 NM " ,./\,VIJ»' > ! IL] '/}K\ 1 ﬁ“\l " \%’.
AL I UL B R L

WTM&E 3 £ M(,»WJ E

»

Figure 2: Noisy phantom smoothed by the local M-smoother, the NLG filter
chain and a NLG filter.

2.2 Maximum Posterior Modes are Filters

In this section we prove that MAP-estimators are (nonlinear) filter under
mild and natural conditions.

Let us first give a precise definition of the latter. The space { (xs) : x5 €
R } of signals will be denoted by X. Recall that S is finite; hence we may
consider matrices M = (My)ses. If My > 0and ), o My, = 1 then M is
called a (S x S-) stochastic matriz.

Definition 2.3 A map F : X — X is called a nonlinear filter if there is a
map W : X — R%S into the set of stochastic matrices such that

Fr=W(zx)x.
F is a nonlinear filter if

(Fx)s = Z Wi(x)zy (13)

tesS
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forall x € X s € S. We shall use the term filter in this section for a nonlinear
filter. Obviously, o-filters introduced above are filters.

We are going to characterize filters by means of convexity. Let conv A
denote the convex hull of A.

Lemma 2.4 A map F : X — X is a nonlinear filter if and only if
(Fx)s €conv{x,:te S} (14)
forallz € X and s € S

Proof. If F is a filter then (Fz), is a convex combination of the values x;,
t € S by (13) and hence in the convex hull of these points. Conversely, if
(Fx)s € conv{z : t € S} then (Fx), is a convex combination of { z; :
t € S }. Hence there are nonnegative weights W (), >, W (z) = 1 with
(13). Thus F is a filter.

Obviously, the function W is far from being unique. One can define an
(almost) unique setting all weights to zero exept those for extremal z;.

We are interested in maps F induced by MA P-estimates. More precisely,
let

Fy = argmin H (z,y) = argmin(K (z) + D(z,y)). (15)

xT xT
In the following, we assume that the prior energy K only penalizes ‘non-
smoothness’ of signals. This results in shift-invariance conditions like

K +0) = K(a),
where (x+¢)s = x5+ ¢, ¢c € R. Under this assumption, we can fix a function
K with .

K (@) = K((x, — 21)oma).
Typically, there are functions ¢ and p such that

K(z) = Y oz, —z), (16)

s~t

D(z,y) = Zp s = Ys)- (17)

To state the main result, we introduce relations <,, y € X, on X by
x <y z if and only if 2z, < xy <y, or z; > a3 > y, forall s € S;

Hence x <, z means that for each single site s the signal z, is closer to y;
than z; and that it is on the same side of y,. Call K and D monotonous if

r <oz = K(z)<K(2) (18)
r=<y2z,x# 2 = D(z,y) <D(z,). (19)

11



Theorem 2.5 If K : X+—— R and D : X X X —— R are monotonous then
each map F : X — X fulfilling (15) is a nonlinear filter.

The formulation explicitly takes into account that minimizers of (15) in
general are not unique.

Remark 2.6 Conditions (18) and (19) have simple interpretations. The first
condition means that a signal z, all jumps of which are smaller than those
of another signal z and of the same sign, is smoother than the signal z. In
other words, K is a measure of smoothness in a precise sense. The second
condition (19) simply means that the term D(-,y) - measuring fidelity to
data y - is strictly smaller for x closer to y than z, i.e., D penalizes bias
from y. One easily concludes that under these conditions constant signals
are fixed points of F. In this special case, this boils down to (14).

It does not matter whether K or D is assumed to be strictly monotonous.
We decided on strict monotony of D since it fits better to the robust priors
applied in section 3.

Proof. The proof is based on Lemma 2.4. For each y € X we define the map
x +— 1Y by

max{ ys:s €S} ifrg >max{y;:s€S5}
2 =¢ min{y;:s€S} ifrg <min{y,:s€S5} ,
T otherwise
cf. Fig. 3. It is easy to see that

d <y Z, (l‘s — l't)s,\,t <0 (ZCS - :Ut)swt-

Moreover, if x; ¢ conv{y, : t € S} for some s € S then ¥ # x. As
a consequence of the assumptions we find H(z,y) > H(&¥,y) for such z.
Now we conclude from #¥ € conv{z, : s € S }° that all minimizers z* of
r — H(z,y) fulfil 2% € conv{y, : t € S} for all s € S. Application of
Lemma 2.4 completes the proof.

Corollary 2.7 Suppose that D and K are given by (17) and (16) and ¢ and
p are monotonous w.r.t. <g; more precisely

/
(' <u<0 or u,>u20):>{<2(u)§cp(u)

Then each MAP-estimate F : X — X is a filter.

12



Figure 3: Illustration of the map x — 2¥. The signal y is represented by
crosses, x by circles and the points of z¥ different from = by bullets.

A similar result holds for priors like

K(x) = Z P(xs — 224 + T4).

sbu

These correspond to locally linear smoothing in contrast to locally constant
smoothing considered above. For the corresponding MAP-estimate F not
only constant signals but also linear signals are fixed points.

3 Generalized Potts Priors for Segmentation
and Smoothing

We continue with M AP-estimation in the models (10). The main problems
- not yet overcome - are estimation of hyperparameters and the numerical
solution of the minimization problem. Focus is on optimization; but the
considerations below will also shed some light on the choice of parameters.
Usually such optimization problems are solved by stochastic relaxation tech-
niques like Gibbs- or Metropolis annealing ([30], [11]). In cases like the Potts
model specially taylored relaxation algorithms like the Swendson-Wang al-
gorithm [26] may be adopted. But all stochastic relaxation algorithms cause
considerable practical problems. They theoretically find minima but do not

13



realize that they are there (cf. [30], Chapter 7). In particular, there is no stop-
ping criterion. Moreover, we are faced to considerable numerical problems.
Due to rounding errors annealing tends to mutate into a greedy algorithm, a
problem which is not well understood. Finite time annealing - i.e annealing
with a bounded number of steps - usually leads to an optimization problem
much harder to the original one (cf. [13]).

Hence each ezact algorithm is a useful tool to infer models on the one
hand and to study convergence of relaxation on the other. Only few exact
algorithms for Bayesian image analysis are known; examples are the Ford-
Fulkerson approach to binary data in [10] or the GNC-algorithm to solve (10)
for the GauBlian case D(z,y) = >, (ys — x5)? (and the special functions )
in [4]. Both algorithms are restricted to these very special situations and as
far as it is known cannot be generalized.

Below we present an extremely fast exact algorithm for the computation of
M A P-estimates for one-dimensional signals based on dynamic programming.
It works for the Potts model and any kind of noise for which an explicit
estimator of the mean can be computed like the empirical mean if noise is i.i.d.
Gauflian or the median for i.i.d. double exponential noise. Implementation
for the general model (10) in one dimension is work in progress as well as the
extension to the 2-d case. We also keep track of parameters.

Let us first introduce the Potts prior. For A = oo or ¢(u) = v(1—10}(u))
the energy (10) boils down to a Potts model

H(z) =Y W(r, —2) + D(w,y) =7 s~ t:z, # x}|+ Dlx,y) (20)

s~t
where |A| is the cardinality of the set A. The prior term simply counts

neighbours with different intensities.

3.1 Exact MAP for the 1-d Potts Prior

We now impose some severe restrictions:

(1) S is a one-dimensional lattice S = {1,..., N} with a nearest neighbour
structure.

(2) Noise is i.i.d. and hence D(z,y) = > ¢ p(xs — y,) With some function
p-

A signal = is completely determined by a partition P, of S into discrete
intervals I € P, and the constant intensities up = (u; : I € P) on the

14



intervals and, conversely, each (P, up) determines a unique z. Hence we may
write H(x) = Hp(up) if convenient. Then (20) boils down to

H(z) = Hp, (1p,) = 7(IPul =)+ D> > plys
IeP, sel
Given a partition P, the minimization problem reduces to the minimization

of each single term
=7+ nlys -
sel

For many functions p the minimizers p; are known. If, for instance, noise
is GauBian and thus p(u) = u? then the means pj = (3, ;vs)/(|I]) will
be plugged in; if it is double-exponential and p(u) = |u| then the mean is
replaced by the median of {y; : s € I'} and so on. One has

min H(z) = min Hp(pup). (21)

T P.up

A minimizer of this function minimizes some Hp. This observation reduces
the minimization problem (21) to the discrete problem

minimize P —— Hp(1p). (22)
Here we incorporate dynamic programming: Define

J(n)= min Hp(x
(n) = min_ Hp(rp)

where B (n) denotes the set of all partitions of { 1,...,n }. Since

H{Ily---ylk}(M{hr--:lk}) =7+ ZHII (k1)
l

= H{h ----- 1k71}(:u{11 ..... Ik—l})+HIk(/1’Ik)

for all N > n > 1 the following holds

J(n) = min (J(r) + min Hyu1(0)). (23)

1<r<n-—1 RER

In other words, .J is a Bellmann function.
Now we can establish the algorithm for the minimization of (21). It runs
as follows:

(1) For all 1 < r < s < N determine y;, = argmin,cg Hj, 4(p) and
H[T;S](ME;,S})'
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(2) Set J(1) = 0.

(3) Determine J(n) for all 1 < n < N in (23), keeping track of (at least
one) r} giving the minimum in (23).

(4) Determine recursively from minimizers r* for J(N), J(r}), ... a par-
tition { Iy,..., Iy } of { 1,..., N }. Then z* is determined by 2} = pj,
for s € I,.

By a suitable arrangement, the complexity is O(N?) for (1), O(1) for (2),
O(N?) for (3) and O(N) for (4). Thus the whole algorithm works in O(N?)
complexity. This is of the same order of the generic complexity of nonlinear
filters.

Up to now the parameter v was fixed. Like for the filter chain (26) there
remains the crucial problem to determine the best parameter. Of course, this
value depends on the model behind the data y and the quality function on
the set of approximations.

We adopt a completely different approach. Depending on the value of «
the algorithm determines piecewise constant approximations to the data. If
v} 0, data is recovered. If v — oo, the optimal vector x* becomes a constant
signal. In the range between v controls the degree of smoothness.

Therefore we should compute the minimizers of (22) for all values of ~.
Reformulation of the above scheme in terms of H}(u) = Hr(p) — v and
HY = Hp — (|P| — 1) results in

J(k,n) = in - Hp(up).
51 = el U7

Again, for N > n > k > 1 we find a recurrence relation

J(k,n) = min (J(k—1,7) + min H[(:"—l-l,n}(/l’))' (24)

1<r<n-1 BER

Because of .
min H(x) = min (y(k—1) + J(k, N))

x 1<k<N
the global minimum is a continuous piecewise linear function in ~. Since
k — J(k,N) is increasing one finds the points of discontinuity of its first
derivative in O(N).
In summary, we adopt the following algorithm
(1) For all 1 <7 < s < N determine g, ; = argmin,cg H) (1) and

r,s [r,s]
0

Hy (i, 5)-
(2) Set J(1,n) = Hp (1, 19)-
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(3) Determine J(k,n) for all 1 < k < n < N from (24), keeping track of
(at least one) rj  giving the minimum in (24).

(4) Determined recursively from the minimizers r* for J(k,N), J(k —
L7 n), --- & partition { [f,...,[;f } of S ={1,...,N}. z"* is de-
termined by z5* = p*, for s € If.

!

(5) Construct the piecewise linear function y +— min, H(z) = min;, H (z%*).

Complexity changes because of step (3) to O(N?). On the other hand, this
gives us now the solution for any value of .

Fig. 4 displays segmentation of a noisy phantom by exact MA P-segment-
ation with the Potts model and different parameters v. Some snapshots are
cut out of the movie with decreasing . Observe that the number of jumps
- and hence the segmentation stay constant over large y-intervals.

Example 3.1 We started to apply this program to data from human brain
mapping assessed by functional magnetic resonance imaging (fMRI). The
observed time series represents a response in one voxel of the visual cortex
to an outer boxcar-shaped visual stimulus [1]. The task is to decide whether
there is a response in the voxel or not. The above algorithm transforms data
into a ‘segmentation’; in particular it gives a series of jumps. These may be
used as a decision criterion. Such an approach should work with minimal
prior statistical hypothesis. The only relevant features of a signal considered
are the jumps. This is work in progress.

Such a time series and its segmentation by this method is displayed in
Fig. (5). For simplicity, noise was assumed to be Gaufiian. For N = 69
the C-implementation on a 133 MHz Pentium PC ran in much less than a
second. For visualization we used the language IDL.

3.2 Generalizations

If X in the definition of ¢ is finite then the problem is more involved. For
GaufBian noise, i.e. p(u) = u?, basically the same procedure as above applies;
we simply replace Hy by

H}p(l‘l) =7 + Z )‘2(1‘5 - l‘t)2 + Z(l‘s - ys)Q'
s~tel sel

Now the minimizers of H; are not constant any more. Thus there is the ad-
ditional problem to minimize Hy. Let (-,-) denote Euclidean inner product.
It is easy to see that

Hf(zr) =~ + (&, N X+ Dar) — 20z, yr) + (v, vn) (25)
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Figure 4: Segmentation of a noisy phantom by exact MAP-segmentation
with the Potts model (to be viewed from top left to bottom right) for pa-
rameters v € [61.1,00), v € [41.6,61.1], v € [7.18,9.84], v € [1.12,3.16],
v € [0.116,0.118], 7 € [0.00677, 0.00678].

where X' is the || x |I| matrix



boxear 0.0040250>=gamma> = 0.0008140
T — ars — T T T T

I aes I 1
a0 &0 ) o 20 w0

gamma> = 0.0058440 Q.0001140>=gamma = 0.0001020
i I — ars — L B e e I

I
40 &0 ) o 20 w0

0.0058440>=gamma>= ©.0040250 08 —— — T
T

Figure 5: Steps in 7-scanning. Left column: boxcar signal, first step
of reconstruction (y > 0.0058) and data, second step of reconstruction
(v € [0.0040,0.0058]). Right column: third step of reconstruction (y €
[0.0008,0.0040], 20th step of reconstruction (v € [0.00011,0.00010], an out-
put of a radial-basis-function network, [12]. Solid line: (response) signal;
dotted line: segmentation.

For the quadratic minimization problem H7(x;) — min differentiation of
(25) with respect to x; shows that the unique solution is given by

zy = (X + Id)"'y;.
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To compute (\2X+1Id) ! it may help that the eigenvalues and eigenvectors of
the X are well-known, see e.g. [17]. In contrast to the above scheme H7 (z%)
now depends nonlinearly on \?; we have

Hf(z}) = v+ (yr, (Id = (N2 +1d)"")yr)
7]

= +Zﬂ< Pryyr)

where ), is the k" eigenvalue of X and Pry, is its kth eigen-projection. Due
to this nonlinearity in A2 it is somewhat harder to implement the scanning of
minimizers as a function of both A\? and . Nevertheless, for constant A\ the
algorithm has the same computational complexity (quadratic respectively
cubic) as computed above.

We conclusion that this dynamic programming approach is flexible and
applies to a wide variety of functions ¢ and p, mainly with modifications in
the computation of x7. We conjecture that suitable algorithms should exist
for all smooth convex p and all ¢)(u) = min { ¢, } with smooth convex .

4 Sigma-Filters and Chains of Sigma-Filters

We now introduce a chain of o-filters with varying scale parameters (cf. [2],
3], [20], [29]). It is given by

Fonin ©-o-0Fp 1, (26)

where each F,, ; is a nonlinear Gaufian filter with weights w,, and v, . It
is an edge preserving segmentation and smoothing algorithm which even is
able to sharpen blurred edges without any displacement. It first approximates
data by (nearly) piecewise constant functions thus providing a segmentation
into smooth parts. This is then used as the basis of smoothing in a subsequent
processing step. The chain is based on NLG-Filters and thus each filter step
reqires only two parameters. Furthermore, only few steps are necessary in
practice and there are no practical problems with convergence. In this section
we focus on the choice of chain parameters.

In passing we we comment on some aspects of o-filters we did not meet
in the literature.

4.1 Some Basic Properties of Sigma-Filters

An important property of o-filters is edge preservation. Closely connected is
the way it transforms blurred jumps, i.e. ramps and slopes. We give some
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elementary arguments that o-filters even are able to steepen slopes. We
restrict ourselves to one dimensional signals. It is convenient to switch from
the discrete to the continuous filter. It is given by

) = [t =yttt | [wlat)—usyote - o,

(27)
where it is assumed that v and w are symmetric around 0 and integration
extends from —oo to oo. For sake of completeness we assume v, w > 0,
veL,we L and y € L™.
The jump-preserving property is best illustrated by application to a pure
jump
2= O(=1( 00 *+ 1j0,00))/2, (28)

a(s) :!/ﬂv@dh:/ov@—@dt

W):/%wﬁ:[i@ﬂﬂt

One readily computes

of height C'. Let

C —w(0)a(s) + w(C)b(s) .
2 (w(0)a(s) +w(C)b(s)’

Since a(s),b(s) — [v(t)dt/2 as s — 0 the left-hand limit of the output at
the jump is

(F2)(s) = <0.

C w()—w(
F0-) = § - o=l
and by symmetry the right-hand limit is
_C w(0) —w(C)
2 w(0)+w(C)
After filtering the jump has height

A = (Fz)(0+) — (Fz)(0-)

(F2)(0+)

and the proportion of jump heights is
A w(0) —w(C)

C = w(0)+w(C)

From this identity one concludes that the output of the filter has a jump
where the input has a jump; moreover, the proportion of jump heights can
be derived from the shape of w.
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Example 4.1 Obviously, one has Fz = z for the pure jump whenever
w(C) = 0. More generally, by such a filter a jump at 0 of height C' is
preserved for all signals which increase on the support of v.

All this holds in particular for truncated means w = 1/_,,, o < C. For
such w the filter transforms a signal y like a linear filter if o > sup, , |y(s) —
y(t)]. For the nonlinear Gaufiian filter and input z the outputs are displayed
forr=1and o =£k-0.5,1 <k <10 in Fig. 6. It also shows a plot of A as
a function of o.

Figure 6: Jump height for input signal (28) filtered by NLGF as a function
of o and filter outputs for r=1and o =k -0.5, 1 < k < 10.

Another remarkable property of o-filters is their ability to flatten and -
even more important - to steepen slopes. Plainly, this ability strongly depends
on the parameters. If o is larger than the diameter of the range of intensities
then the o-filter tends to perform like a linear filter and blur edges. If -
on the other hand - ¢ is small and 7 is sufficiently large then ramp edges
can be sharpened. Let us make these heuristic considerations more precise.
For differentiable signals let us consider derivatives as measures of steepness.
Then steepening or flattening an increasing slope means that the derivative
is in- or decreased, respectively. The following general result provides an
explicit formula. Let the (strictly positive) denominator in (27) be denoted
by D(s).

Proposition 4.2 Let y be a continuously differentiable, bounded and odd
function on the real line with bounded derivative y'. Let further v and w
be continuously differentiable, strictly positive and even, assume that v is
integrable and there are € > 0 and an integrable function u such that |v'(t —
s)| < u(t) for all s € (—e,¢). Then

D) () =) = [ (1) = 0))o(0) (wwte) + w'y(e)te)) d
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The calculations (carried out in the appendix of [29]) are straightforward but
somewhat tricky. For convenience of the reader we give a simpler proof in
the appendix.

If we assume y' to be maximal at 0 then y'(¢) — ¥'(0) < 0; moreover,
w(y) > 0 and yw'(y) < 0. The latter holds if y is odd and increasing and w
is bell-shaped. After a minute of reflection one concludes that according to
the shape of v and w there is steepening or flattening at 0. This behaviour
of the o-filter was already claimed in [24] and discussed there in an informal
way.

Example 4.3 This becomes more conspicuous in the case of Gauflian kernels

we(u) = g(u/o), v-(t) = g(t/7)., g(t) = exp(—1*/2).

In this case the identity boils down to

D(s)((fy)’(o)—y’(o)) =0’ / (y'(o)—y'(t))vr(t)wg(y(t))((y(t)/a)Z—l) dt.

It is immediately clear that for o > ||y||~ there is flattening. But for suitable
signals, small o and large enough 7 the slope is steepened. This is illustrated
in Fig. 7. The input signal is y = 2G — 1 where G denotes the cumulative
distribution function of the standard normal distribution; it is filtered by
NLGF with parameters ¢ = 0.5 and 7 = 3. One should keep in mind that
G can be thought of as a jump function of type (28) blurred by a linear
Gauflian filter with 7 = 1. The residual (Fy)'(0) — y'(0) for fixed o = 0.5 as

Figure 7: Sharpening of a blurred edge by NLGF with 0 = 0.5 and 7 = 3.
a function of 7 is plotted in Fig. 8 .

Remark 4.4 The NLG filter is closely related to anisotropic diffusion du /0t =
div(h(u) - grad)u, cf. [28]. We shall not pursue this aspect here.
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Figure 8: The function 7 — F%>7(y)'(0) — 4/(0) for y = 2G — 1 with the
standard normal c.d.f. G.

4.2 Best Parameters for the NLG Filter Chain

The above observed parameter-dependent abilities of o-filters to smooth and
sharpen may be combined in a chain of such filters with different parameters
in each step. Formally, such a chain is given by (26). The chain (26) gives a
segmentation of the signal. After segmentation, the filter weights of the last
step may be used in subsequent filtering of raw data to perform smoothing
on the segments. Below we only discuss segmentation. For carefully chosen
parameters performance is illustrated in Fig. 9. A two-dimensional example
is displayed in Fig. 10, where a very dirty radio is cleaned by the chain.

It is difficult to analyze the exact performance of a nonlinear Gauflian
filter chain because each filter stage mixes the input in a complicated way.
Even if the input (Y;) is white noise which means that the X, are i.i.d.
random variables with zero mean, the output variables (F,, ,, X ), of the first
filter step are correlated in a tortuous way. Hence it is very difficult to obtain
rigorous results for the distribution of the outputs this and the following filter
steps.

Nevertheless, on a heuristic level plausible arguments can be given for
the parameter choice; at least for many practical application the derived
strategy proved to be successful and, in fact could not be outperformed in
any experiment. We basically follow the arguments of V. AURICH and E.
MUHLHAUS, cf. [20]. Outputs of nonlinear filters will frequently be compared
to those of of linear ones; hence we introduce the linear Gauflian filter

(Gry)s =D vrlt—=s)ye [ Y vt —s).

tesS tes
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Figure 9: Performance of the NLG filter chain. From first to last row: Data
and windows (indicated by boxes) of first step; output of first , second, third
step; output of modified fourth, fifth step; residuals; original signal.

Figure 10: A dirty radio cleaned by the NLG filter chain

The following arguments are based on some simplifying heuristics. Through-
out the rest of this section, Y = (Y;) will denote i.i.d. random variables with
normal distribution A (y, p?).

(A1) If 0 > 3p then (F,,Y), and (G,;Y), have similar distributions.
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(A2) If Z is the output of a linear Gaufian filter G, fed with Y and if
o > 2(varZ,)/? then (F,,Z), and (G,Z), have similar distributions.

The Z; are again GauBlian but dependent. The nearer s and t are to
each other the more the joint distribution of 7, and Z; is concentrated
near the diagonal. Therefore o can be chosen smaller than in (A1).

A3) The chain G,. o---0G,, of linear Gauflian filters can be replaced by the
ki 1
single GauBian filter G, with 7 = (327_, 72)'/%.
In the continuous case the exact equality G, o---0G, = G, holds and

such an assumption is not critical.

(A4) The variance of (G,Y), is about g?/(2r'/7)<.

In fact, neglecting the discretization error one computes

1 1
varg,Y, = S @) = 5 3 0, valite?
t t

o Qz/gT/ﬂ(||75||)cz7s(/gr(lhfll)dt)_2

_ Q2 . (7T1/27')d/((271')1/27')2d — QZ/(QWI/ZT)d.

To ensure that F, . smoothes white noise in a similar way as the linear
Gauflian filter G, does, the parameter ¢ has to be sufficiently large compared
to noise. On the other hand, blur of a jump is negligible if o is smaller
than the height of the jump. Therefore we assume exponentially decreasing
parameters with

0je1 = 0/ = 01/

for some o > 1. Given the noise variance 02, we watch out for parameters
01,Ti,...,T, as small as possible on the one hand but on the other hand
fulfilling the following property:

(P) The distributions of 7, 0...0F, Y and of G o...0G. Y are close
to each other.

We proceed by induction:

Set 01 = 3p. According to (Al) F,, Y and G, Y have similar distributions.
The parameter 7; has to be chosen such that (A2) applies to the second filter
step Fy,.r,- Therefore and by (A4)

o9 > 2(va1r(gnY)s)1/2 ~ 29/(2ﬁ71)d/2
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Because 0y = 0y /a = 3p/« this implies
> (207N (2a/3)%/4 = (2727,

To keep blur of jumps small we set 7, = p. Then F,, ;,0F, Y and G,,0G, Y
have similar distributions.

For j > 2 we argue as follows. Suppose that oy, 71,..., 7,1 are given such
that 7,, | .. ,0---0F; nY and G,  o---0G,Y have similar distributions.
Because of (A3) F,,_, ., 0+ 0F, Y and G, Y with n; = (3}, 72)"/?
have similar distributions.

Hence

2

var(Fo, 0 ... 0 Foy V)5 & var(GyY)s & (2\/—77)

by (A4). Using (A2), (A3), (A4) one obtains

Var(fo'j—lﬂ'j—l ©:+++0 fal,ﬁy)s ~ Va‘r(gTj—l ©:++0 gﬂY)S

Q2

~ Var(gnj‘lY)s ~ m
j—

By the same reasoning as above, we find

o; = o1/al ™t > 2

0
(2y/mnj—1)%/?

or
47TZTk > (2a/3)"4,
Again, we should choose 7,_; m1n1mal. This yields

71 = (2v/7) V(281 /3)2 42 — 1.
Thus

o (22771/3)%4if j > 2
V=1 ifj=2"
For practical experiments we chose o = 2 and used the following
Strategy: If o? is the estimated noise variance then choose

ijl

o = ——lefor]>1

T = 2\/_\[ = {i/ZITj_I for ] > 1.
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Notice that (v/2* —1)'/? & /4; hence we use for j = 2 and j > 2 the same
recursion for o.
Special cases:

d=1 Tj:47—j—1
d=2: TjZQTj,I
d=3 Tj:\?/ZTj,I%L6'Tj,1

In practice 7 is chosen between 0.5 and 1.

Numerous experiments in dimensions 1,2 and 3 have been performed.
The above strategy worked very well if noise was more or less white and
bell-shaped distributed. The choice of the parameters o; and 7 is usu-
ally not critical; small changes have only little influence on the filter re-
sult. Implementations which are reasonably fast can be downloaded from
http://www.cs.uni-duesseldorf.de/aurich/nlg.

Although the above strategy works quite well it is not satisfying from a
theoretical point of view because the decay of the o; is fixed in advance. A
more flexible choice can possibly diminish the blurring signal jumps without
spoiling the noise reduction. For this purpose [Miihlhaus, 47| introduces the
notion of total blur of a filter chain and defines a filter chain as optimal if its
total blur is minimal. The application of this notion in practice suffers from
the fact that the minimization problem is not solved explicitly.

4.3 Non-Horizontal Gauflian Filters

Nonlinear Gauflian filter chains tend to break up ramp-like input signals
into steps since they give a kind of segmentation. The reason is that the
weight term locally penalizes deviations from constants: it is based on first
discrete derivatives. Second discrete derivatives would be a straightforward
generalization. Since the input data are noisy we avoid them here and instead
plug in the output of a linear Gauflian filter. Thus a non-horizontal nonlinear
Gauflian filter is defined by

(Hoot))s = NisZgT(Ht—sH)gg(yt—(gny»)yt,
N, = S gr(lft - sll)go (X — (6,X)0).

Chains of such filters can eliminate noise without destroying ramps or jumps.
We mention this without any further discussion. Performance is illustrated
in Fig. 11 where the noisy image is filtered by a non-horizontal Gauflian filter
chain with 4 steps.
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Figure 11: Image data with ramps and edges corrupted by Gauflian noise
and processed by the non-horizontal nonlinear Gauflian filter chain
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These images can be downloaded from
http://www.cs.uni-duesseldorf.de/aurich/testimages. The reader is
invited to compare with the performance of other filters.

5 Appendix

In this appendix we reprove a formula from [29], p. 112-113. It is used to
explain sharpening of blurred edges in Section 4.1.

Proposition 5.1 Let y be a continuously differentiable, bounded and odd
function on the real line with bounded derivative y'. Let further v and w
be continuously differentiable, strictly positive and even, assume that v is
integrable and there are € > 0 and an integrable function u such that |v'(t —
s)| <wul(t) for all s € (—,¢). Then

/ (y’(t) - Z/(O)>v(t) (w(y(t) + w’(y(t))y(t)>dt
/w(y(t))v(t)dt '

(Fy)' —y'(0) =

Proof. We have to differentiate the function

w(y(t) —y(s))v(t — s)y(t) dt
[l - v swma
s — (Fy)(s) = = X))
[ wlo® -~ y)ute - s)di
Denominator and numerator D(y) and N(y) are continuously differentiable
functions, N(y) is strictly positive and D(y)(0) = 0 which implies

_ D) (0)N(y)(0) + D(y)(0)N'(y)(0) _ D'(y)(0)
N2(y)(0) N(y)(0)
Interchange of differentiation w.r.t. s and integration w.r.t. t yields

D)(s) = [ - wlylt) = y(o)o(t — (o)
= [~ O ~ y(s)e - (o) d
+ [ott=s){u(u® - v6)r o + o (u0) - v6))u® (r®) - () far.

The first term vanishes and a rearrangement of terms gives the desired iden-
tity.
The last remark concerns box-shaped kernels.

(Fy)'(0)
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Remark 5.2 Let y be as above, 3y’ strictly positive but for v and w we
choose box-functions. Define v = 1,3 and w = 1j, 3 and assume that
N(y)(0) = [w(y(t))v(t)dt > 0. Then we get for s close to 0

vy~ (y(s)+B)As+b
(Fy)(s) = / y(t) dt / Ny)(s)

“L(y(s)+a)Vs+a

and by Leibniz’ rule

0= NG)O) = s + oL pcon
—y(@)1{y(a)>a} — %hm( )}

Q

If y(b) = B or y(a) = a the function (Fy) is not differentiable at s = 0.

Acknowledgement: We thank A. MARTIN for generalizing the formula
in the appendix and smoothing some arguments. K. HAHN and K. RODE-
NACKER provided technical support and background from applications.
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