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e Cox proportional hazards regression model has become the traditional choice for modeling survival data in medical studies.
To introduce �exibility into the Cox model, several smoothing methods may be applied, and approaches based on splines are the
most frequently considered in this context. To better understand the e�ects that each continuous covariate has on the outcome,
results can be expressed in terms of splines-based hazard ratio (HR) curves, taking a speci
c covariate value as reference. Despite
the potential advantages of using spline smoothing methods in survival analysis, there is currently no analytical method in the R
so�ware to choose the optimal degrees of freedom in multivariable Cox models (with two or more nonlinear covariate e�ects).

is paper describes an R package, called smoothHR, that allows the computation of pointwise estimates of the HRs—and their
corresponding con
dence limits—of continuous predictors introduced nonlinearly. In addition the package provides functions for
choosing automatically the degrees of freedom in multivariable Cox models. 
e package is available from the R homepage. We
illustrate the use of the key functions of the smoothHR package using data from a study on breast cancer and data on acute coronary
syndrome, from Galicia, Spain.

1. Introduction

An important aim in longitudinal medical studies is to study
the possible e�ect of a set of prognostic factors on the course
of a disease. In many of these studies, some of the prognostic
factors may be continuous and their e�ects can be unknown.
A classical approach for studying these e�ects is through
the Cox regression model (Cox [1], Kalb�eisch and Prentice
[2]). One possible approach allowing for nonlinear e�ects in
the Cox model is to express the hazard as an additive Cox
model (see, e.g., Hastie and Tibshirani [3], Gray [4], Huang
et al. [5], and Huang and Liu [6]). In this paper, we use
natural cubic regression splines (de Boor [7]) and penalized
splines (P-splines, Eilers, and Marx [8]) to re�ect the nature
of continuous covariate e�ects in the additive Cox model.
One of the most commonly used measures of this e�ect is
the hazard ratio (HR) function. Cadarso-Suárez et al. [9]
proposed a �exible method for constructing smoothing

hazard ratio curves with con
dence limits, which facilitates
the expression of the results in a manner that is standard
in clinical survival studies. 
e authors suggest the use
of an additive Cox model where the e�ects of continuous
predictors on log hazards are modeled nonlinearly using
P-splines. 
is paper describes the R-based smoothHR
(available from the Comprehensive R Archive Network at
http://CRAN.R-project.org/package=smoothHR) package’s
capabilities for implementing pointwise estimates of HRs as
well as their corresponding con
dence limits. Numerical and
graphical output can easily be obtained. 
e main feature of
the package is its use for continuous predictors introduced
nonlinearly in an additive Cox model but it can also be used
when the predictor is introduced with a linear e�ect.

One disadvantage of natural cubic splines or penalized
splines for modelling a continuous covariate’s e�ect is the
di�culty in choosing the number and location of the knots
between which the smooth line is drawn. An arbitrary choice
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of number of knots and/or arbitrary knot location can mask
important features in the data. While too many knots can
lead to oversmoothing, too few can lead to undersmoothing.
Within the R-function pspline (available in the survival
package) two automatic selection criteria for selecting the
optimal degree of smoothing (or equivalently, the optimal
degrees of freedom) with P-splines are implemented: one is
based on minimizing Akaike’s Information Criterion (AIC,
Akaike [10]) and the other one is based on minimizing
a corrected version of this (AICc, Hurvich et al. [11]).
Minimization of these two criteria can easily be achieved in
the univariate setting but becomes increasingly complex in
themultivariable setting.
eBayesian InformationCriterion
(BIC) proposed by Schwarz [12], and extended by Volinsky
and Ra�ery [13] to survival data, can also be used in this
context. In this paper we propose a function called dfmacox,
within the package smoothHR, that provides the optimal
number of degrees of freedom in the multivariable Cox
model. 
e optimal degree of smoothing is obtained by
minimizing any of the following criteria: AIC, AICc, or BIC.

is function can also be used for natural cubic regression
splines.


e rest of the paper is organized as follows. Section 2
introduces the Cox proportional hazards model. Section 3
describes the procedure to obtain the con
dence limits for
the hazard ratio curve taking a speci
c covariate value as
reference. An overview of the features and functions of the
package smoothHR is given in Section 4. Illustrative real data
application is provided in Section 5 using two databases from
Galicia, Spain. 
e main body of the paper ends with a
discussion section.

2. The Additive Cox Model


e e�ect of prognostic factors in survival analysis is gen-
erally modeled using the Cox proportional hazards model.
Formally, the Cox model assumes that the hazard function
can be written as

� (�; �) = �0 (�) exp (���) , (1)

where � is time, � = (�1, . . . , ��)� is a �-dimensional
vector of time-
xed covariates, � is the associated vector
of unknown regression parameters, and �0(�) a nonnegative
baseline hazard function.


e e�ect of covariates estimated by any proportional
hazards model can thus be reported as hazard ratios (HRs).

e adjusted HR for a subject with (continuous) covariate
value �� compared to a subject with covariate value 	�,ref is
given by

HR� (��, 	�,ref) = exp (�� (�� − 	�,ref)) . (2)


e logarithm of the hazard ratio curve is then reduced to
a straight line, indicating that the expected change in risk for
a (�� −	�,ref) change in�� is a constant value (the well-known
proportional hazards assumption).

For the Cox model (1) the e�ect of prognostic factors
is assumed to have a log-linear functional form. However,

the incorrect functional form for a covariate can lead to a
diagnosis of nonproportional hazards (
erneau andGramb-
sch [14]) or to erroneous statistical conclusions (bias and
decreased power of tests for statistical signi
cance) (Struthers
and Kalb�eisch [15], and Anderson and Fleming [16]). 
e
need to overcome these problems has led to many devel-
opments (Hastie and Tibshirani [3], Kneib and Fahrmeir
[17], Huang et al. [5], and Huang and Liu [6]). One possible
approach to incorporate nonlinear e�ects into the Coxmodel
is to express the log hazard as an additive function:

� (�; �) = �0 (�) exp( �∑
�=1
�� (��) + �∑

�=�+1
����) , (3)

where the 
rst � covariates are continuous and introduced
nonlinearly through (unknown) smooth functions, ��, and
the remaining ones are covariates introduced parametrically
in the model. 
e major feature making model (3) more
suitable in most applications is that it allows for nonlin-
ear, smooth e�ects for continuous predictors, leading to a
considerable amount of additional �exibility. 
e e�ects can
e�ciently be modeled using natural regression splines (de
Boor [7]) or penalized splines (P-splines; Eilers and Marx
[8]).
e general idea is to approximate the functions by linear
combinations of B-spline basis functions (de Boor [7]).

2.1. Smoothers and Controlling the Amount of Smoothing.
Natural cubic splines have proven to be a good choice, leading
to twice continuous di�erentiable (smooth) functions. 
ese
functions impose monotonicity in the tail regions (with
constraints to be linear beyond certain extreme observa-
tions), whereas in regionswhere data are dense,monotonicity
is e�ectively imposed by the data themselves. 
e curve
complexity is governed by the number of degrees of freedom
(one fewer than the number of knots), which is given
by the number of basis function, equal to the number of

tted regression coe�cients. Interpretation of the regression
coe�cients is not particularly interesting in itself but their
estimates allow for visualizing the spline 
t. 
e ns function
in package splines accomplishes the 
t of model (3) using
natural splines. One important issue is the choice of the
number of degrees of freedomand the placement of the knots.

e Akaike Information Criterion (AIC) proposed by Akaike
[10] and the Bayesian Information Criterion (BIC) proposed
by Schwarz [12] are two of the more popular criteria for
choosing a best model for a given data set. 
ese two criteria
are based on the log likelihood but can be extended to handle
the Cox proportional hazards model by using the log-partial
likelihood. 
e choice of the degrees of freedom in additive
Cox models can be accomplished by comparing models
with di�erent degrees of freedom and choosing the model
with minimum AIC or BIC scores. In the Cox proportional
hazards model, AIC and BIC scores are calculated as

AIC = −2 × LPL + 2 × df,
BIC = −2 × LPL + log (�) × df, (4)

where LPL is themaximum log-partial likelihood of the 
tted
model, df represents the equivalent degrees of freedom of
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the 
t, and � is the number of observations in a given data
set. Since there are censored observations in survival data,
Volinsky and Ra�ery [13] modi
ed/corrected the penalty
coe�cient log(�) in BIC de
ned for censored survival mod-
els. 
ey used the number of uncensored observations in
the penalty term instead of the sample size �. 
roughout
this paper we will make use of the corrected version of
Bayesian Information Criterion (BIC) proposed by Volinsky
and Ra�ery [13]. 
e AIC and BIC scores have similar forms,
di�ering only in the penalty coe�cient. In both scores, the

rst term rewards goodness of 
t whereas the second is
a penalty that is an increasing function of the number of
estimated parameters (df). 
e penalties in the expressions
of the AIC and BIC (2 × df and log(�) × df, resp.) discourage
over
tting.Methods for knot placement have been developed
in the literature (Durrleman and Simon [18], Friedman [19],
and Royston and Parmar [20]). 
e ns function uses default
knot positions which are placed at prede
ned percentiles of
the survival times.


ere have been doubts about the penalty in the Akaike
Information Criterion (AIC). Too many degrees of freedom
will lead to extra variability whereas too few degrees of
freedom could mean serious modeling bias and missing
important explanatory features in the analysis.
us selecting
“optimal” number of degrees of freedom is a statistical
balancing act between bias and variance. Usually, the results
point to the fact that AIC score leads to over
tting choosing
models with larger number of degrees of freedom, regardless
of �. Because of this, this criterion may not be suitable if the
number of data points is small; then some correction is o�en
necessary. Hurvich et al. [11] show that in nonparametric
regression, the AIC can underpenalize, leading to models
with very large number of degrees of freedom, especially
whendata are dispersed.
ey suggest a correctedAIC (AICc)
which uses � × (df + 1)/(� − (df + 2)) as the correction term
instead of df:

AICc = −2 × LPL + (2 × � × (df + 1))� − (df + 2) . (5)

In the case of a Cox model, � is replaced by the total number
of events (
erneau and Grambsch [14]).

Penalized spline methods have gained recent popularity
due to Eilers and Marx [8] when they introduce penalties
to the B-splines. 
e idea is to represent the curves �� in
model (3) by an over
tted spline function and to control
the smoothness by imposing a penalty term to the model’s
likelihood function. Penalized spline models are a popular
statistical tool in Cox additive regression models due to
their �exibility and computational e�ciency. 
e R-function
pspline in package survival can be used to 
t model (3).
One particular concern in 
tting P-splines is the selection of
reasonable values for the smoothing parameters. By default,
in the R-function pspline implementation, the amount of
smoothing for a continuous covariate e�ect is given by a
total of four degrees of freedom. 
e AIC criterion and the
corrected AIC option are also available in the R-function
pspline. Minimization of the criteria AIC and AICc can easily
be achieved in the univariate setting but becomes increasingly
complex in the multivariable setting.

2.2. Obtaining the Optimal Degrees of Freedom. We propose
the following procedure to obtain the (multivariable) degrees
of freedom that minimize each one of the three criteria
mentioned in Section 2.1. 
is procedure consists of the
following steps.

Step 1. Set the maximum value for the degrees of freedom for
each (continuous) covariate. 
is value can be 
xed by the
user. By default, when penalized spline is used, the corrected
AIC from Hurvich et al. [11] obtained in the corresponding
univariate additive Cox model is used.

Step 2. Set the minimum value for the degrees of freedom.

is value is set to 1 if the selected smoother is “natural
splines” (since the degrees of freedom must be integer) and
strictly greater than 1 for “penalized splines.”

Step 3. For each covariate a vector with three values for the
degrees of freedom is created: (minimum,mean = (minimum
+ maximum)/2, maximum). 
en, a data frame is created
from all combinations of the supplied vectors (one for each
covariate), the corresponding Cox model is 
tted, and the
score for the corresponding criterion is obtained.

Step 4. For each covariate a vector with two values for the
degrees of freedom is created based on the results (scores)
obtained in Step 3 (minimum and mean, or mean and
maximum).

Step 5. Repeat Step 3 and Step 4 a number of times, �times.
By default �times = 5. 
e degrees of freedom are obtained
from the model minimizing the selected criterion.

If natural splines are used, and theminimum value equals
1 (Step 1) and themaximum equals 20 (Step 2), then �times =4 ensures that the “true” minimum of the (AIC, AICc,
or BIC) criterion will be achieved. Such target (the “true”
minimum of the criterion) will be unknown for penalized
splines (because the degrees of freedom are nonnegative
real numbers). However, our procedure guarantees that the
obtained degrees of freedom will be close to that target.


is methodology is implemented in the R-function
called dfmacox, within the package smoothHR.
is approach
is based on minimization of the three criteria (AIC, AICc,
and BIC) and can be used with penalized splines or natural
splines. 
e P-spline approach is computationally intensive
for modeling the unknown functions �� in (3), especially if
the number of smooth terms � in the model is large.

In general, the AIC has a big chance of choosing too
much degrees of freedom. Because of this, the corrected AIC
may be preferable. On the other hand, for small samples, the
BIC o�en chooses models that are too simple (i.e., with few
degrees of freedom). 
us, it might be better to use AICc
and BIC together for selecting the degrees of freedom. It is
worth mention that some authors (Cadarso-Suárez et al. [9]
and Govindarajulu et al. [21]) suggest a compromise between
the AIC criterion and prior ideas of biologic plausibility,
which would support a more monotonic (i.e., less degrees of
freedom) curve.

An alternative approach that allows for determining the
smoothing parameters has been proposed by Kneib and
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Table 1: Summary of functions in the package.

Function Description

smoothHR Main function of the package. Returns an object of class HR.

dfmacox Provides the number of degrees of freedom in the additive Cox model.

plot
A function that provides the plots for the hazard ratio curves taking a speci
c value
as reference.

predict Provides estimates for the hazard ratio and their corresponding con
dence limits.

print Prints details about the Cox model.

Fahrmeir [17]. Such approach is based on amixedmodel rep-
resentation of penalized splines. 
e basic idea is to interpret
the penalty term as a random e�ects distribution assigned
to the vector of regression e�ects, which e�ectively turns the
smoothing parameter into a variance component. Concepts
frommixedmodelmethodology such as restrictedmaximum
likelihood (REML) estimation can then be adapted to the
additive hazard model setting. Cross-validation (CV) or
generalized cross-validation (GCV) can serve as alternative
approaches (Wood [22], and Tsujitani and Tanaka [23]).

3. Smooth Hazard Ratio Curves


e HR curve for a continuous predictor �� in an additive
Cox model (3) can be written as

HR (��, 	�,ref) = exp (�� (��) − �� (	�,ref)) , (6)

where 	�,ref is a speci
c value of the predictor taken as
the reference. A natural estimate of the adjusted HR curve

HR(��, 	�,ref) in (6) can be constructed as ĤR�(��, 	�,ref) =
exp(�̂�(��) − �̂�(	�,ref)) by replacing ��(⋅) by the correspond-

ing P-spline estimate, �̂�(⋅) (or any other smoother). A�er
taking logarithms for simplicity, the asymptotic variance of

LnĤR(��, 	�,ref) can be expressed in terms of the covariance

matrix of the P-spline estimate �̂�(⋅):
Var (LnĤR (��, 	�,ref)) = Var (�̂� (��)) + Var (�̂� (	�,ref))

− 2Cov (�̂� (��) , �̂� (	�,ref)) ,
(7)

where the asymptotic covariance matrix takes the form of�−1��−1, with � being the usual observed information and� = � + �, where � is the second derivative matrix of the
penalty function (see details in Eilers and Marx [8], Gray
[4], or Cadarso-Suárez et al. [9]). Finally, assuming normality,(1 − �)100% pointwise con
dence limits can be constructed
around the HR�(��, 	�,ref) curve

exp (LnĤR (��, z�,ref)) ± 	1−�/2SE (LnĤR (��, 	�,ref)) , (8)

where SE(LnĤR(��, 	�,ref) = √(Var(LnĤR(��, 	�,ref))) is the
standard error of LnĤR (��, 	�,ref) and 	1−�/2 is the upper
quantile of the standard normal distribution.

We developed an R package, called smoothHR, for
computing the HR curve and to provide “optimal” degrees

of freedom in multivariable additive Cox models. Detailed
information about this so�ware is shown in the next section.

4. Software Description


e R-based package smoothHR contains functions that
provide pointwise estimates of Cox model HR curve for
continuous predictors as well as the corresponding con
-
dence limits.
ough penalized spline smoothing is suggested
the so�ware is able to deal with other smoothers such as
natural splines or B-splines (within the R-functions bs and
ns available in the package spline). For the moment, function
dfmacox only deals with natural splines (ns) and P-splines
(pspline).


is package is intended to be used with the R statistical
program (R Development Core Team [24]). Our package is
composed of 
ve functions that allow users to obtain both
numerical and graphical outputs. Table 1 provides a summary
of the functions in this package. Details on the usage of these
functions can be obtained within the corresponding help
pages.

As mentioned in Section 2, controlling the amount of
smoothing is not a problem in univariate additive Cox
models. In the multivariable case, however, various problems
may arise. In this paper, we propose a new function called
dfmacox:

dfmacox (time, time2 = NULL, status,

nl.predictors, other.predictors,

smoother, method, mindf = NULL,

maxdf = NULL, ntimes = NULL, data)


is function provides an approach to obtain the degrees
of freedom for multivariable additive Cox models. 
e
continuous predictors to be introduced nonlinearly must be
included in the argument nl.predictors (as a vector),
whereas the remaining predictors (continuous or not) are
included in argument other.predictors. 
is function
returns a list with the degrees of freedom for the spline
smoothing (cubic natural splines, if smoother="ns", and
penalized splines, if smoother="pspline") and the corre-
sponding 
t of the Cox model (3). 
e degrees of freedom
are obtained by minimization of the following criteria: (a)
the AIC criterion (if method="AIC"), (b) based on the
adaptation of the corrected AIC proposed by Hurvich et
al. [11] (if method="AICc"), and (c) the BIC criterion (if
method="BIC").
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e main function of the package, smoothHR, can then
be used. If the Coxmodel has been 
tted, then the smoothHR
function only needs arguments data and coxfit. Other-
wise, arguments time and time2 (optional, for counting
process data) and status are required:

smoothHR (data, time = NULL, time2 = NULL,

status = NULL, formula = NULL, coxfit,

status.event = NULL)

A�erwards, the plot function can be used to plot �exible
hazard ratio curves allowing nonlinear relationships between
continuous predictors and survival. Results are expressed
in terms of hazard ratio curves, taking a speci
c covariate
value as reference. Con
dence limits for these curves are also
derived:

plot (x, predictor, prob = NULL,

pred.value = NULL, conf.level = 0.95,

round.x = NULL, ref.label

= NULL, col, main, xlab, ylab, lty,

xlim, ylim, xx,⋅ ⋅ ⋅ )

e reference value can be speci
ed using argument

pred.value. Alternatively, the reference value can be
de
ned automatically as the value at which the HR curve has
a minimum (prob = 0) or a maximum (prob = 1).

Numerical output (including estimates for the hazard
ratio and corresponding con
dence limits) can be obtained
within the predict function of the package. Finally, the print
function gives details about the Cox model such as the 
tted
model and the proportional hazards assumption (Grambsch
and
erneau [25]).


ese functions will be illustrated in the next section
using two real data sets.

5. Examples of Application

To illustrate our so�ware, we use data from two databases
from Galicia, Spain. In the 
rst database we reanalyzed
survival data from 811 patients admitted to the coronary care
unit of the Santiago University Teaching Hospital between
September 2003 and March 2007 with a diagnosis of acute
coronary syndrome (ACS). In the paper by Cid-Alvarez
et al. [26] the authors study the predictive capacities of
admission and fasting glucose among patients with and
without diabetes. A J-shaped dependence of the all-time
mortality hazard ratio on fasting glucose was found among
patients with no history of diabetes.

In addition to the acute coronary syndrome we consider
data on 584 incident cases of breast cancer, diagnosed at
the Santiago University Teaching Hospital (Cadarso-Suárez
et al. [9]) from 1991 to 2000. In this data set Cadarso-
Suárez et al. [9] have found DNA measurements of worth
prognostic for predicting recurrence. In addition they found
a signi
cant nonlinear e�ect of this prognostic factor while
using penalized smoothing splines in a Cox proportional
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Figure 1: Nonparametric estimates of the dependence of all-time
risk of death on fasting glucose among ACS patients without a prior
diagnosis of diabetesmellitus (log hazard ratio, with 95% con
dence
limits, unadjusted analysis).

hazards model. Plots were given for the smooth hazard ratio
curve taking the value 1 as the reference. Below we will
illustrate how such a plot can be obtained using our R package
smoothHR.

5.1. Acute Coronary Syndrome Data. In the study by Cid-
Alvarez et al. [26] the authors assess and compare the abilities
of admission and fasting glucose to predict the death of
ACS patients, distinguishing those with or those without a
previous diagnosis of diabetes. In their analysis, the nonlinear
relationships between glucose levels and risk of death were
modeled by means of natural cubic spline Cox analyses.

Below we present the input commands for obtaining the
log hazard ratio curve of the dependence of all-time risk
of death on fasting glucose among ACS patients without a
prior diagnosis of diabetes mellitus. 
e corresponding plot
is shown in Figure 1. It is clear from this 
gure that among the
558 patients with no history of diabetes there was a J-shaped
dependence of the all-time mortality hazard ratio on fasting
glucose: hazard was lowest at 105mg/dL (5.8mmol/L; to
convertmg/dL of glucose tommol/L, divide by 18.). Estimates
for the log hazard ratio and the corresponding con
dence
limits were obtained using the predict function:

R> library ("survival")

R> library ("smoothHR")

R> heart2<-heart [heart$diabetes==0,]

R> df1<-dfmacox (time= "time", status

= "exitus", nl.predictors = c ("fasting"),

smoother = "ns", method = "AIC",

data = heart2)

R> df1$df
[1] 3

R> hr1<-smoothHR (time = "time", status

= "exitus", formula = ∼ns (fasting, df =
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df1$df), data = heart2)

R> xx<-c (66, 110, 162, 258, 354, 450)

R> plot (hr1, predictor = "fasting",

prob = 0, conf.level = 0.95, ref.label =

"Ref.", xaxt = "n", main = "", xlab

= "Fasting glucose(mg/dL)")

R> axis (1, xx)

R> pdval<-c (70, 80, 90, 100, 110, 120,

140, 180, 250, 400)

R> predict (hr1, predictor = "fasting",

prob = 0, conf.level = 0.95,

prediction.values = pdval,

ref.label = "Ref.")

Ref. LnHR lower .95 upper .95
70 2.37979359 1.373405918 3.38618127
80 1.34478266 0.754949787 1.93461553

90 0.51996384 0.265847588 0.77408010
100 0.05756081 0.006292008 0.10882961
110 0.03570870 −0.006614930 0.07803233
120 0.24812978 0.106706909 0.38955265
140 0.69406975 0.367837385 1.02030212
180 1.41323847 0.849039341 1.97743761
250 2.19517432 1.501843530 2.88850510
400 2.49387870 0.851760407 4.13599700

Various multivariable Cox models of all-time risk of
death were constructed, including fasting glucose (fasting)
(which in the single-variable analyses proved to have greater
predictive value than admission glucose) and other vari-
ables of known prognostic value: age, heart failure (killip),
ST-segment elevation myocardial infarction (stemi), sex,
smoking, previous coronary artery disease (pcad), coronary
angiography (cang), creatinine, and anemia. 
e analyses
were performed for the two groups of patients: those with a
diagnosis of diabetesmellitus (diabetes = 1) and those without
(diabetes = 0).


e dfmacox function may be computationally demand-
ing, especially for large sample sizes. Because of this, 
rst, we
recommend 
tting univariate additive Cox models to study
the in�uence of each covariate separately. 
is procedure
suggests the inclusion of three continuous predictors (fasting,
creatinine, and age) with nonlinear e�ects. 
en, we use
function dfmacox to get the optimal degrees of freedom for
the natural cubic spline 
t of these three covariates:

R> df2<-dfmacox (time = "time", status

= "exitus", nl.predictor = c ("fasting",

"age", "creatinine"), other.predictors

= c ("cang", "sex", "smoking", "stemi",

"pcad", "killip", "anemia"), smoother

= "ns", method = "AIC", data = heart2)

R> df2$df
[1] 3 1 2

R> fit.mvcox.1<-coxph (Surv (time, exitus)∼ns (fasting, df = df2$df[1])

+ ns (age, df = df2$df[2])

+ ns (creatinine, df = df2$df[3])

+ cang + sex + smoking

+ stemi + pcad + killip + anemia,

data = heart2, x = TRUE)

R> hr2<-smoothHR (data = heart2,

coxfit = fit.mvcox.1)

R> xx<-c (66, 110, 162, 258, 354, 450)

R> plot (hr2, predictor = "fasting",

prob = 0,conf.level = 0.95, ref.label

= "Ref.", xaxt = "n", main = "", xlab

= "Fasting glucose (mg/dL)")

R> axis(1, xx)

Among those patients with no history of diabetes the J-
shaped dependence of the all-time mortality hazard ratio on
fasting glucose persisted when adjusted in a multivariable
Cox model (see plot on the le� hand side of Figure 2). A
minimum risk is now achieved at 103mg/dL.

However, fasting glucose levels did not reveal itself as a
good predictor among patients with diabetes in regard to risk
of death. 
is can be seen in the Cox model 
tted below
(���.�V���.2; results not shown). For comparison purposes
we present in Figure 2 the log hazard ratio curve for those
patients using the reference value of 103:

R> heart3<-heart [heart$diabetes==1,]

R> df3<-dfmacox (time = "time", status

= "exitus", nl.predictors = c

("fasting","creatinine", "age"),

other.predictors = c ("cang", "smoking",

"stemi", "sex", "pcad", "killip",

"anemia"), smoother = "ns", method

= "AIC", data = heart3)

R> fit.mvcox.2<-coxph (Surv (time, exitus)∼ns (fasting, df3$df[1]) + ns

(creatinine, df3$df[2]) + ns

(age, df3$df[3]) + cang + smoking

+ stemi + sex + pcad + killip + anemia,

data = heart3, x = T)

R> hr3<-smoothHR (data = heart3, coxfit

= fit.mvcox.2)

R> xx<-c (66, 110, 162, 258, 354, 450)
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Figure 2: Nonparametric estimates of the dependence of all-time risk of death on fasting glucose among ACS patients with (b) and without
(a) a prior diagnosis of diabetes mellitus (log hazard ratio, with 95% con
dence limits).

R> plot (hr3, predictor = "fasting",

pred.value = 103, conf.level = 0.95,

ref.label = "Ref.", xaxt = "n", main

= "", xlab = "Fasting glucose (mg/dL)")

R> axis(1, xx)

5.2. Breast CancerData. In the paper byCadarso-Suárez et al.
[9] the Galician breast cancer data is analyzed using a 3-state
progressive model. In this section we will focus on various
factors for predicting recurrence. Cadarso-Suárez et al. [9]
found that DNA index (DI, the ratio of the G0/G1 channel
number of tumor cells to the G0/G1 channel number of
diploid cells), tumor size (size, measured in mm), and LNI
(lymphnode involvement) were important prognostic factors
and that their e�ect should be introduced nonlinearly. Addi-
tional important prognostic factors were SPF (percentage of
cells in phase S, in which the cell duplicates its DNA) and ER
(hormone receptor status).

In order to implement the Cox model (3), 
rst we need
to 
nd the degrees of freedom for the three continuous

covariates to be introduced with a nonlinear (P-spline) e�ect.
For this purpose, we use the dfmacox function to obtain the
degrees of freedom minimizing the corrected AIC. Below,
we present the corresponding input command. In addition,
we show the degrees of freedom attained, the corresponding
value (score) for theAIC, and the corresponding 
ttedmodel:

R> dfbreast<-dfmacox (time = "time rec",

status = "rec", nl.predictors = c ("DI",

"size", "LNI"), other.predictors = c

("SPF","ER"), smoother = "pspline",

method = "AICc", data = breast)

R> dfbreast$df
[1] 14.987432 10.6316311.503889

R> dfbreast$AIC
[1] 1506.235

R> dfbreast$myfit
coef se(coef) se2 Chisq DF p

pspline(DI, df = 15), lin −0.0167 0.11155 0.11127 0.02 1.00 8.8e-01

pspline(DI, df = 15), non 57.01 13.99 3.9e-07

pspline(size, df = 10.6), 0.0738 0.03778 0.03711 3.82 1.00 5.1e-02

pspline(size, df = 10.6), 28.26 9.63 1.3e-03

pspline(LNI, df = 1.5), l 0.0185 0.00267 0.00262 47.99 1.00 4.3e-12

pspline(LNI, df = 1.5), n 3.53 0.50 2.4e-02

SPF 0.0619 0.01488 0.01464 17.29 1.00 3.2e-05

er −0.5171 0.20629 0.20279 6.28 1.00 1.2e-02

Iterations: 5 outer, 21 Newton-Raphson
Theta = 0.268

Theta = 0.0344
Theta = 0.938



8 Computational and Mathematical Methods in Medicine

Degrees of freedom for terms = 15.0 10.6
1.5 1.0 1.0
Likelihood ratio test = 228 on 29.1 df, p = 0
n = 498 (86 observations deleted due to
missingness)
Results are in good agreement with those obtained by

Cadarso-Suárez et al. [9].
Smooth log hazard ratio estimates with 95% pointwise

con
dence limits for DNA index (DI) can be obtained using
a reference value of 1. 
e corresponding input commands
are displayed below and the corresponding plot is shown
in Figure 3. 
e corresponding log HR curve depicted in
Figure 3 reveals that the risk of recurrence diminishes sharply
until a value of 1.13, then increases until a value of 1.4, and then
remains roughly constant. 
ese features can be seen more
clearly in Figure 4. In this plot we restrict the �-axis to the
interval 0.7–1.5. Numerical results can also be obtained for
this (and other) interval using the predict function (see the
corresponding input commands below):

R> fit.mvcox.3<-coxph (Surv (time rec,

rec) ∼pspline (DI, dfbreast$df[1])

+ pspline (size, dfbreast$df[2])

+ pspline (LNI, dfbreast$df[3])

+ SPF + ER, data = breast, x = T)

R> hr4<-smoothHR (data = breast, coxfit

= fit.mvcox.3)

R> xx<-c (0.5, 1, 2, 3, 4)

R> plot (hr4, predictor = "DI", conf.level

= 0.95, pred.value = 1, xlim

= c (0.4, 4), ref.label = "Ref.", xaxt

= "n", main = "", xlab = "DNA Index")

R> axis (1, xx)

R> xx<-c (0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3,

1.4, 1.5)

R> plot (hr4, predictor = "DI",

conf.level = 0.95, pred.value = 1,

xlim = c (0.7,1.5), ref.label = "Ref.",

xaxt = "n", main = "",

xlab = "DNA Index")

R> axis(1, xx)

R> predict (hr4, predictor = "DI",

pred.value = 1, conf.level = 0.95,

prediction.values = xx,

ref.label = "Ref.")
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Figure 3: Nonparametric estimates of the dependence of all-time
risk of recurrence on DNA index among patients with breast cancer
(log hazard ratio, with 95% con
dence limits). Reference value = 1.
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Figure 4: Nonparametric estimates of the dependence of all-time
risk of recurrence on DNA index (restricted to the interval between
0.7 and 1.5) among patients with breast cancer (log hazard ratio, with
95% con
dence limits). Reference value = 1.

Ref. LnHR lower .95 upper .95

0.7 0.8310670 −0.61085374 2.2729877

0.8 0.6760241 0.04022432 1.3118239

0.9 0.5240520 0.29600604 0.7520980

1.0 −0.7066324 −1.00061294 −0.4126519
1.1 −1.7828357 −2.49857573 −1.0670957
1.2 −1.6083702 −2.50834785 −0.7083925
1.3 −0.7997677 −1.70220182 0.1026664

1.4 −0.4557794 −1.21962211 0.3080632

1.5 −0.6556382 −1.34879361 0.0375172

We should mention that direct comparisons with the
results and plots provided by Cadarso-Suárez et al. [9] should
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Table 2: Degrees of freedom (df) for the multivariable Cox model
with penalized splines for fasting, creatinine, and age (cang, sex,
smoking, stemi, pcad, killip, and anemia were the remaining
predictors). Acute coronary syndrome data.

Covariates dfAIC dfAICc dfBIC dfREML

Fasting 4.80 3.62 1.59 2.57

Creatinine 7.97 1.48 1.49 2.04

Age 9.50 1.56 1.56 2.51

be taken with care since the two 
ts are based on di�erent
sample sizes.
is is due to the fact that the covariate SBRwith
missing data was excluded in the present study, so our 
tted
model is based on a larger sample (� = 498 against � = 421).
5.3. Comparison Study of the Choice of Degrees of Freedom.
It is well known that, in general, the AIC has a big chance of
choosing too much degrees whereas the BIC o�en chooses
models with few degrees of freedom. 
e corrected AIC
(AICc) can be considered as an alternative to both. In this
section we compare the attained degrees of freedom from
the three criteria (AIC, AICc, and BIC). For comparison
purposes we also include the degrees of freedom obtained
automatically using REML (using the so�ware BayesX; Kneib
and Fahrmeir [17], and Cadarso-Suárez et al. [9]). 
is
procedure was considered using the two data sets with the
same set of covariates for each multivariable Cox model
(
t.mvcox.1 and 
t.mvcox.3).

Table 2 shows the degrees of freedom obtained for the
multivariable Cox model with penalized splines for fasting,
creatinine and age (acute coronary syndrome data). As for
model ���.�V���.1, cang, sex, smoking, stemi, pcad, killip,
and anemia were the remaining predictors. Results con
rm
that theAIC-basedmethod leads to a large number of degrees
of freedom when compared to AICc, BIC, and REML. On
Table 3 we show the values (scores) obtained for criteria AIC,
AICc, and BIC (rows) for each Cox model with degrees of
freedom obtained from minimization of the corresponding
criterion (see the degrees of freedom obtained in Table 2).
From this table we can see that the dfmacox function is indeed
obtaining an optimal model in the sense of minimizing the
corresponding criterion. For all four models (AIC, AICc,
BIC, and REML), the AIC score is lower for the model
with degrees of freedom based on the AIC criterion (using
function dfmacox). Similarly, the AICc score is lower for the
AICc model and the BIC score is lower for the BIC model.
REML is not minimizing none of the three criteria. Aside
from the AIC criterion all other criteria lead to similar plots
for the log HR curves and similar results in terms of the
signi
cant predictive capability (� values).

A similar study was performed for the breast cancer data.
Tables 4 and 5 report the analogous results attained in Tables
2 and 3 for the acute coronary syndrome data. 
e degrees
of freedom shown in Table 4 were obtained using the same
set of covariates as in model ���.�V���.3. Again, the AIC-
based method leads to more degrees of freedom than BIC
and REML which is re�ected in the corresponding log HR
curves. Results for the four multivariable Cox models with

degrees of freedom based on the di�erent criteria reveal
that all models are very similar in terms of the signi
cant
predictive capability (� values). For this set of covariates
the corrected AIC (AICc) still obtains higher values for the
degrees of freedom of some covariates. 
e problem with
the big number of degrees of freedom can be seen in the
variability shown in the right tail of Figure 3. However, this
can be controlled using the argument Boundary.knots in
function pspline. However, it seems that this 
gure captures
quite well the e�ect of DNA index (DI) around 1 (as shown
in Figure 4). 
e results reported in Table 5 con
rm that the
dfmacox function is indeed obtaining an “optimal” model in
the sense of minimizing the corresponding criterion.

For comparison purposes we also obtain the degrees of
freedom and the AIC score using the pspline function with
the argument df = 0 (i.e., supposed to use the AIC criterion).

e 
tted Cox model attained a AIC score of 1528.04 larger
than the results attained with function dfmacox:

R> fit<-coxph (Surv (time rec, rec)

∼pspline (DI, df = 0) + pspline

(size, df = 0) + pspline (LNI, df = 0)

+ SPF + ER, data= breast, x = T)

R> fit$df
[1] 15.9151082 10.8817302

16.9549295 0.9984411 0.9999322

R> −2∗fit$loglik [2] + 2∗sum (fit$df)

[1]1528.04

6. Discussion


is paper gives an overview of the smoothHR package
for the computation of pointwise estimates of HR curves
as well as the corresponding con
dence limits for con-
tinuous predictors introduced nonlinearly in an additive
multivariable Cox regression model. 
is function provides
both numerical and graphical output. In this paper, spline
based approaches (natural cubic splines and P-splines) were
used as the smoothing technique. Although these smoothing
approaches have shown to be a good option, other smoothers
can also be used in this context.

When using spline smoothing, special attention is called
for when selecting the optimal amount of smoothing. 
e
package includes an R-function that considers the methodol-
ogy of Eilers andMarx [8] to implement AIC-based criterion
in survival analysis. 
e so�ware also enables the user to
obtain degrees of freedom using the corrected AIC criterion
proposed by Hurvich et al. [11] and the BIC criterion by
Volinsky andRa�ery [13]. An alternative approach that allows
for determining smoothing parameters in the multivariable
setting has been proposed by Kneib and Fahrmeir [17]
based on a mixed model representation of penalized splines.
It may be worthwhile to conduct a comparative study to
compare the two approaches. We have also illustrated the
proposed methods using real data. 
e analysis of the real
data revealed that the minimization of these criteria, can
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Table 3: Values obtained for criteria AIC, AICc, and BIC (rows) for the corresponding Cox models (columns). Acute coronary syndrome
data.

Model AIC AICc BIC REML

Score

AIC 858.096 860.048 862.907 861.898

AICc 899.816 869.928 870.774 872.283

BIC 930.326 895.101 893.166 898.032

Table 4: Degrees of freedom (df) for themultivariable Coxmodel with penalized splines forDI, size, and LNI. SPF and ERwere the remaining
predictors. Breast cancer data.

Covariates dfAIC dfAICc dfBIC dfREML

DI 14.99 14.99 5.10 6.39

Size 10.98 10.63 1.78 2.78

LNI 2.01 1.50 1.50 2.18

Table 5: Values obtained for criteria AIC, AICc, and BIC (rows) for
the corresponding Cox models (columns). Breast cancer data.

Model AIC AICc BIC REML

Score

AIC 1505.559 1506.235 1539.252 1537.230

AICc 1524.557 1524.200 1543.318 1542.556

BIC 1595.218 1593.327 1570.269 1577.272

lead to signi
cant di�erences in the choice of the degrees of
freedom.A compromise between the correctedAIC criterion,
the BIC criterion and prior ideas of biologic plausibility is
recommended.

An interesting open question is to generalize the applica-
tion of these ideas tomore complex additive Coxmodels with
di�erent smoothers or with a smooth baseline. 
e amount
of smoothing can also be determined using cross-validation
(CV) or generalized cross-validation (GCV). However, these
may fail to work if the number of smoothing parameters is
large as then the computational e�ort to compute an optimal
solution becomes intractable.
ese are topics of currentwork
and hopefully will be implemented in the future.
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