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Abstract—Video services have hold a surprising proportion of
the whole network traffic in wireless communication networks.
Accurate prediction of video traffic can endow networks with
intelligence in resource management, especially for the forth-
coming beyond the fifth-generation (B5G) networks. However,
the existing approaches fail to accurately predict video traffic
with all types of frames, due to the natures of strong long-range
dependence, self-similarity and burstiness. Obviously, it is unable
to meet the QoS and QoE requirements of dynamic bandwidth
allocation. In this paper, we propose the feasibility of advanced
machine learning methodology applied in nonstationary video
traffic prediction, i.e., smoothing-aided support vector machine
(SSVM) model. The model utilizes classical smoothing methods
to preprocess video traffic by relieving the drastic fluctuation
of video stream. It can provide an effective association for
the subsequent support vector regression, as the preprocessed
data becomes more smooth and continuous than the original
unprocessed one. Experimental results show that our proposed
model significantly outperforms the state of the art model,
i.e., logistic smooth transition autoregressive, in prediction
performance. The superior nonlinear approximation capacity is
further demonstrated by visualized statistical analysis.

Index Terms—Variable bit rate, video traffic prediction, re-
source management, machine learning, support vector machine.

I. INTRODUCTION

BEyond the fifth-generation (B5G) networks are expected

to provide rather reliable services with large-scale con-

nectivity, superhigh transmission rate, ultra-low latency, much

enhanced security, very little energy loss, and excellent quality

of experience (QoE) [1]. Given these superiorities, the rising

B5G networks should be intelligent enough to cope with more

autonomous [2]–[4], self-organizing and dynamic situations,
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such as dynamic topologies, application-oriented storage,

autonomic and scalable computing, and various quality of

service (QoS) requirements. For the design of such smart

networks, machine learning is deemed as a critical element

and it has been adopted in many applications [5]–[16].

With the deployment of 5G mobile networks [17], traffic

has been governed by explosive video applications including

IPTV, video assisted surgery, video conference and augmented

reality. For the following B5G networks, this situation can be

further exacerbated. Network operators are confronted with

a significant issue: if they intend to reduce the bandwidth

provision for a users requirement to enable more users to

access the network, it may lead to potential packet loss that

has a significant impact on the communication quality; on the

other hand, if they oversupply bandwidth to cope with possible

bursts in data, bandwidth wastage occurs. These diversified

multimedia services certainly require higher bandwidth con-

figuration in contrast to traditional network traffic, such as web

and email. Generally, excellent rate control mechanisms are

design for video stream in dynamic heterogeneous network

scenarios. It yields well-known variable bit rate (VBR)

traffic. In this case, resource management should possess

potential robustness and efficiency, aiming at guaranteeing

high bandwidth utilization, so that any QoS requirement can be

protected [18]–[20]. Conventional fixed allocation of network

resource suggests the reservation of a great many bandwidth

for a specific QoS guarantee. Nevertheless, dynamic allocation

under the framework of video traffic prediction is an alternative

technique to solve this intractable issue [21].

From data characteristics, VBR traffic shows the properties

of strong nonlinearity, variability, and slow-decaying auto-

correlations between samples. These implicit traits determine

the long range dependent (LRD) of video streaming. Fixed

allocation mode has to abandon the available bandwidth.

To this problem, dynamic bandwidth allocation appears to

prevent probable network congestion. In this dynamic mode,

frame size prediction is regarded as a crucial supplementary

mean. However, the one-step ahead prediction models on

LRD video traffic can not respond to dynamic bandwidth

allocation in high-latency links. Hence, long-term video traffic

prediction should be required for ensuring flexible network

control strategies [22].

A great deal of machine learning research has been focused

on multiple-steps ahead video traffic prediction, mainly includ-

ing statistical learning methods and neural networks (NNs).

The key issue is how to improve nonlinear approximation
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capacity as much as possible [23]–[25]. It is demonstrated

that classic AR, ARMA and ARIMA can only seizure both

linearity and short range dependencies (SRD) hidden between

video data, but are powerless to LRD, which leads to weak

performance in video traffic prediction [26]. In [27], a logistic

smooth transition autoregressive was developed for VBR video

traffic prediction, where adaptive least mean square and its

extensions were considered for the determination of model

parameters. It could achieve a nonlinear approximation up to

300-step ahead prediction. In [28], a seasonal autoregressive

method was used for high definition video stream modeling.

In [29], a Markovian model was presented for the specific B-

frame prediction, aiming at reducing bandwidth requirements

and smoothing the video stream. In [30], a hybrid deep

computing model, consisting of stacked restricted Boltzmann

machine and minimum complex reservoir, was proposed for

one-step video frame size prediction. In [31], six NN models

were compared according to the capacities in predicting

each frame type of MPEG-4, i.e., I, P and B. Moreover,

this work was further extended, where more NNs were

introduced for whole MPEG-4 video stream processing [32].

In spite of these positive results, the accurate multiple-steps

ahead prediction of video traffic in autonomous network

management remains an challenging task and the technology

is far from actual deployment. This is mainly due to the

hight-variability in frame size of video traffic, i.e., burstiness.

This paper focuses on exploring more effective multi-steps

ahead prediction method of video traffic supporting intelligent

resource management towards B5G networks.

Support vector machine (SVM) is deemed as a powerful

machine learning tool for prediction, whose success lies

in Vapniks pioneering study in statistical learning theory

[33], including robustness, restorability to over-fitting, optimal

solution, and modularity of kernel mapping. Concretely, SVM

has remarkable characteristics of impressive generalization

capability, no local minimum and sparse representation of

solution [34]. It has been used widely for multi-steps ahead

prediction in numerous scenarios, such as inbound tourist

arrivals, physiological abnormal signals and consumer’s heat

load [35]–[37]. Besides, it has been demonstrated that data

smoothing is beneficial for nonlinear approximation in time

series prediction [38]. This preprocessing method could

handle significant fluctuations and outliers by adjusting the

built-in sliding window. Inspired by these, we consider the

combination of SVM and smoothing for the multi-steps ahead

prediction of VBR video traffic.

In this paper, we propose a smoothing-aided SVM (SSVM)

model for VBR video traffic prediction method in order

to meet the requirement of dynamic resource allocation.

Structurally, it can be viewed as a uniform and successive

system with functional modules of smoothing and regression.

The employed smoother is capable of reducing the size of

leptokurtic frame, thereby alleviating drastic fluctuation of

video stream. This way can facilitate obtaining a well-behaved

SVM for multi-steps ahead prediction. The effectiveness of

our proposal is illustrated on different video traffic prediction

tasks.

The rest of this paper is organized as follows. For the

dynamic resource allocation demands of B5G networks, Sec-

tion II provides a detailed description on the smoothed-aided

SVM model for nonstationary video traffic prediction. Section

III gives some experiments to verify the performance of our

proposal, including smoothing analysis, prediction accuracy

and statistical validation. Finally, Section IV concludes the

paper and points out the future research directions.

II. MODEL DESCRIPTION AND OUR PROPOSED METHOD

Tackling the challenges of resource management in B5G

network environments, a promising machine learning model,

combining with smoothing methods and SVM, is applied for

VBR video traffic prediction, called SSVM. In fact, it is

derived from the promising finding in [38]. In structure, our

video traffic prediction model consists with functional devices

of smoother and predictor. The prioritized smoothing aims at

effectively eliminating the tricky abrupt fluctuations of video

traffic, i.e., short-term burstiness. It is conducive to providing

more suitable initial points for nonlinear approximation. The

well-behaved SVM serves as a predictor, characterised by

a high-dimensional feature transformation based on kernel

projecting. Combining these two components, our model is

expected to achieve a strong prediction performance. For

a better insight, we provide a detailed description on the

functionalities of both.

Generally known, significant burstiness often appears in

compressed video over numerous time scales. This is largely

due to the special frame structures determined by different

encoding schemes and high variations related to scenes. More-

over, burstier VBR traffic can be formed from aggregations of

multiple video streams attaching orchestrated text, audio and

images. In our scenario, smoothing is used to decrease bit

rate variability appropriately, so that it can produce a relative

smooth video stream in priority for acceptable nonstationary

VBR video traffic prediction. The following four smoothing

methods are considered [38], given by

� Moving average (MA) is viewed as a simplest version of

smoothing methods. Its readout can be generated from

the average of its corresponding neighboring points in a

customizable window, expressed as follows

Z(zi) =
1

2n+ 1

n
∑

k=−n

zi+k (1)

where z denotes a sample of this smoother input, 2n+1
is the size of moving window, and j offers an index of

the current readout value.

� Gaussian smoothing (GS) is on the basis of the well-

known normal distribution, defined by the following

probability density function

G(x) =
1√
2πσ

e−
x
2

2σ2 (2)

where x is the sample value obeying Gaussian distri-

bution, σ, σ2 and µ denotes the standard deviation, the

variance and the mean of samples, respectively.
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� Robust locally weighted smoothing (RLWS) is achieved

by a bisquare function wi, given by

wi =

{

(1− (ri/κ)
2)2 |ri| < κ

0 |ri| ≥ κ
(3)

where ri denotes the i-th residual value generated form

the current smoothing, and κ is the sixfold median

absolute deviation (MAD) of these residuals, given by

MAD = median(|r|) (4)

� Savitzky-Golay smoothing (SG) is actually regarded as

a low-pass filter that has the ability of local least-square

polynomial approximation. Considering a window i ∈
(M,N −M), the smoothing has the following form

SG(i) =
n
∑

k=0

aki
k (5)

where N denotes the sample size, n denotes the poly-

nomial degree, and a denotes the vector of coefficients,

calculated by

E =

M
∑

i=−M

[SG(i)− xi]
2
. (6)

Once the smoothing on VBR traffic streams is completed,

the LS-SVM based predictor works for the subsequent

nonlinear approximation. For a given video dataset V =
{(si, oi), si ∈ Rn, oi ∈ R}li=1, the regression output is

measured by a nonlinear mapping function ϕ(·), defined as

follows

f(s) = wT · ϕ(s) + b (7)

where w denotes a weight vector, and b is the corresponding

bias. Given this, a separating hyperplane emerges for the fitting

of o and s.

Through the rule of structure risk minimization, the regres-

sion related to LS-SVM can be converted to the following

optimization issue, given by

min
w,b,e

O(w, b, e) =
1

2

(

‖w‖2 + C

l
∑

i=1

e2i

)

(8)

obeying

oi = w · ϕ(s) + b+ ei, i = 1, 2, 3, · · ·, l (9)

where ei denotes a randomly generated error, and C > 0
denotes a regularization measure. It can be solved by the

Lagrange multiplier method, formulated as follows

L(w, b, ei, αi) = O(w, b, ei)−
l
∑

i=1

αi[w · ϕ(si) + b+ ei−oi]
(10)

where αi is a Lagrange multiplier. Furthermore, we have the

following partial differentials

∂L
∂w

= 0 →
l
∑

i=1

αiϕ(si) = w

∂L
∂w

= 0 →
l
∑

i=1

αi = 0

∂L
∂ei

= 0 → Cei = αi
∂L
∂αi

= 0 → w · ϕ(si) + b+ ei−oi = 0

(11)

TABLE I: Model performance on the prediction tasks of NBC

News video traffic traces (QP=10 and QP=34) over different

prediction steps.

Video Step QP
Predictor

SSVM LSTAR [27]

News

1
10 0.0231 0.3466

34 0.0330 0.3424

50
10 0.2823 0.3409

34 0.1871 0.3960

200
10 0.3616 0.4015

34 0.3506 0.4822

Through eliminating the common parameters w and ei, we

have
[

0
→

IT
→

I Ω+ C−1I

]

[

b
α

]

=

[

0
y

]

(12)

where














I = [1, 1, 1, · · ·, 1]T
Ω= {Ωij |i, j = 1, . . . , l}
α = [α1, α2, α3, · · ·, αl]

T

y = [y1, y2, y3 · ··, yl]T
(13)

and Ωij = ϕ(si)
Tϕ(sj) = K(si, sj), for i, j = 1, 2, 3, · · ·, l

with K a Mercer kernel function. In our case, the linear kernel,

the polynomial kernel, the radial basis function kernel (RBF)

and multi-layer perceptron kernel (MLP) are considered, given

by

K (sj , si) = sj · si (14)

K (sj , si) = ((sj · si) + 1)
d

(15)

K (sj , si) = esp

(

−‖sj − si‖2
σ2

)

(16)

K (sj , si)=tanh (η < sj , si > +θ) (17)

Solving the linear equation (12), α and b can be determined. It

implies the completion of the LS-SVM training. Our optimal

model is given by

f(x) =

l
∑

i=1

αiK(x, xi) + b (18)

Subsequently, the trained model can be used for real-world

VBR video traffic prediction.

III. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, an exhaustive simulation is provided for the

performance assessment of our SSVM paradigm, considering

real-world nonstationary VBR video traces. During evaluation-

s, we consider different types of smoothers under user-defined

sliding window, such as MA, GS, RLWS and SG, as well
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(a) QP=10, MA (b) QP=34, MA

(c) QP=10, GS (d) QP=34, GS

(e) QP=10, RLWS (f) QP=34, RLWS

(g) QP=10, SG (h) QP=34, SG

Fig. 1: Comparisons of the original NBC News video traffic series (QP=10 and QP=34) and the smoothed ones via time

windows for the considered smoothing methods. The time window is set to the values from 0 to 200 (from left to right), where

the time step is 10.

as SVM-based predictor with the linear kernel. To prove the

effectiveness of our hybrid model, we also compare the logistic

smooth transition autoregressive model (LSTAR) in the same

application scenario [27]. Model parameters are determined by
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Fig. 2: Output comparisons of our SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic

traces (QP=10 and QP=34) over different prediction steps.
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Fig. 3: NMSE versus time window size for SSVM on the 50-

step ahead prediction tasks of NBC News video traffic traces.

the grid search method. All results are given over an average

of the experiments repeated 10 times.

A. Data and Assessment Criteria

Here, NBC news dataset from the video

trace library is used in experiments, found at

http://trace.kom.aau.dk/h264/index.html. With regard to

its characteristics, there exist frequent transitions among

scenes. Two types of NBC news video stream (QP=10 and

QP=34) are considered, and the number of frame is 49521.

These video frames encoded by H.264/AVC have a structure

of G16B3 GOP, in which 16 frames are introduced between

adjacent I and B frames. The prediction performance of

our model is measured by normalized mean squared error

(NMSE), given by

NMSE =
1

Lσ2
x

L
∑

l=1

(x(n)− x̂(n))
2

(19)

where σ2
x is the variance of video traffic series x over L points,

x̂(n) denotes the predicted value of x(n).

B. Smoothing Analysis

To investigate the effect of the smoothing on the series

characteristics, we plot the trends of the 21 video traffic

series as a function of the time window in Fig. 1, where

the time window is 0, meaning the original series, while its

other settings correspond to the 20 smoothed series. From
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Fig. 4: Histogram fitting of our SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic traces

(QP=10 and QP=34) over different prediction steps.

this figure, it can be seen that the original video series

shows a dramatic fluctuation, since there exit a great deal

of bursty sources. The specific data characteristic enables

accurate multi-step ahead prediction of video traffic to be a

quite challenging work. In fact, smoothing effectively reduces

significant oscillations in our scenario. Moreover, as the time

window increases, this smoothed series become relatively

stationary for the considered smoothing methods, which is

highly beneficial for prediction. However, this increase is

not arbitrary, because video streams may have fundamental

changes in internal and external characteristics, such as self-

similarity, bursty and trend. Hence, the reasonable choice of

the time window in smoothing is critical for given video

traffic prediction tasks. It requires an effective tradeoff between

prediction accuracy and data characteristics, but this is beyond

the scope of this paper. Our study aims at exploring the

feasibility in smoothing assisted video traffic prediction for

dynamic resource management.

C. Prediction Performance

Fig. 2 plots comparison curves of the actual signal and

the predicted output yielded by our SSVM model over frame

numbers, where multiple-steps ahead prediction, such as 1,

50 and 200, is considered for NBC News video traffic traces

(QP=10 and QP=34), as well as the most suitable smoothing

method and its time window are suggested for each prediction

mode. It can be observed from this figure that our model

readout is consistent with the actual series, especially for

the one-step ahead prediction. Nevertheless, this trend fitting

results become relative poor as the prediction step increases,

as shown in Fig. 2(c) and Fig. 2(f). The superior performance

of our model over LSTAR is further listed in Table I. It

is worth noting that compared with LSTAR, SSVM has

NMSE decreases of 32.35% and 30.94% for one-step ahead

prediction, respectively. In fact, its significant performance

advantages are mainly ascribed to the prepositive smoothing

mechanism controlled by time window, which can effectively

alleviate the high variability of video frames, i.e, burstiness.

Taking an example of 50-step ahead prediction, the relation

between time window and prediction performance is shown

in Fig 3. Obviously, our model is relatively sensitive to the

choice of time window. The bigger time window can lead to

the better prediction performance. However, the time window

is not infinitely increased, because it can make the smoothed

video streams lose the essential characteristics.

D. Statistical Validation

In the following part, from the perspective of statistical

analysis, we verify the nonlinear approximation capacity of

our SSVM in the video traffic prediction tasks. The methods,

such as histogram fitting, QQ plot and box-plot, are used in

the case.

Fig. 4 provides graphical representations of histogram plots

on the shapes and distributions of the actual and predicted
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Fig. 5: QQ plots of our proposed SSVM model with optimal smoothing on the prediction tasks of NBC News video traffic

traces (QP=10 and QP=34) over different prediction steps.

outputs for SSVM in our video traffic prediction scenario.

It is seen that for one-step ahead prediction, our model can

achieve good fittings of vertical bars and data distribution for

the two actual video trace. Whereas, as the prediction step is

up to 200, this fitting gets worse, meaning the performance

degradation of SSVM. Fig. 5 shows the QQ plots of the

actual and predicted video traffic, yielded by plotting the

quantiles of video data distribution versus the ones of normal

distribution. Obviously, the well-fittings in Fig. 5(a) and Fig.

5(d) indicate that SSVM behaves well in the scenario of one-

step ahead prediction. However, in Fig. 5(b)-(c) and Fig. 5(e)-

(f), the divergences between distributions mean relatively poor

multiple-steps ahead prediction performance. This case can be

further demonstrated in Fig. 6 based on the popular box-plot

visualization, where we gives an insight on the superiority

of our model through these comparisons of the upper and

lower quartiles, the upper and lower bound, the median and

the outliers. Besides, we can also observe that the smoothed

video streams have few outlier, meaning the decrease of bursty

points. Above all, these results correspond to the findings in

Fig. 2. It demonstrates the efficacy of the SSVM model in our

nonstationary VBR video traffic prediction tasks.

IV. CONCLUSION

In this paper, we explore the application of smoothed sup-

port vector machines for nonstationary video traffic prediction

in the B5G network environment. It is actually a hybrid

data processing model, where multiple smoothing methods

are considered for video stream preprocessing. The preceding

smoother can effectively alleviate burstiness in video data,

providing excellent initialization points for the following

SVM-based approximation. Experimental results verify the

utility of our SSVM model in terms of prediction accuracy and

statistical comparison. Further research will concentrate on the

adaptive determinations of smoothing methods for given VBR

video stream, as well as the selection of the corresponding

time windows.
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