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the plane to itself which has length distortion very similar to that of the ABF parameterization.
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parameterization with low length distortion. We notice that the procedure for computing the
inverse mapping can be applied to any other (convenient) mapping from the three-dimensional
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The mapping in the plane is computed by applying weighted Laplacian smoothing to a Cartesian
grid covering the planar domain of the initial mapping. Both the mapping and its inverse are
provably continuous. Since angle preserving (conformal) mappings, such as ABF, locally preserve
distances as well, the planar mapping has small local deformation. As a result, the inverse mapping
does not significantly increase the angular distortion.

The combined texture mapping procedure provides a mapping with low distance and angular
distortion which is guaranteed to be continuous.
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1. INTRODUCTION

Texture is an essential component of computer generated images. To create a tex-
ture on a three-dimensional surface model, a texture mapping procedure is used.
Texture mapping provides a projection function from a three-dimensional surface
to a two-dimensional texture pattern. Such a mapping corresponds to a two-
dimensional parameterization of the three-dimensional surface. To minimize the
distortion of the texture, the parameterization function has to preserve the surface
metric structures as much as possible.

Parameterization of three-dimensional surfaces has many other applications as
well, including finite-element surface meshing [Sheffer and de Sturler 2000a; Mar-
cum and Gaiter 1999], surface reconstruction [Floater 1997; Hormann and Greiner
2000], multiresolution analysis [Eck et al. 1995], formation of ship hulls, generation
of clothing patterns [McCartney et al. 1999], and metal forming.

When the surface is represented using an analytic description, this description can
often be used to provide the parameterization. However, many computer graphics
models are represented by a triangular tessellation and the analytic representation
of the surface is often not available. A triangulated mesh is the “natural” descrip-
tion of surfaces constructed from scattered data such as input from laser range
scanners or sampling on a regular three-dimensional grid.

An algorithm for two-dimensional parameterization or flattening of tessellated
surfaces first constructs a two-dimensional mesh with a connectivity equivalent
to that of the three-dimensional surface. Then, a parametric function is defined
between the two-dimensional mesh facets and their three-dimensional counterparts.

Several approaches for parameterization of tessellated surfaces have been sug-
gested. In [McCartney et al. 1999] the authors suggest a heuristic approach for
triangulation flattening. The method is based on optimal local positioning of pro-
jected nodes, based on a sequential addition of the nodes. Similar ideas were sug-
gested in [Samek et al. 1986] and [Bennis et al. 1991]. The methods are efficient and
produce good results for nearly planar surfaces. However, they do not guarantee
the preservation of the metric structures in the two-dimensional mesh or mapping
continuity. Discontinuities in the mapping arise when the mesh folds, i.e. mesh
faces get inverted.

Several works, such as [Azariadis and Aspragathos 2001], limit the parameteri-
zation problem to the case of nearly-developable surfaces, where they are able to
provide optimal results, without risking generation of discontinuities.

Eck et al. [Eck et al. 1995] suggest the use of harmonic maps [Eells and Sampson
1964; Eells and Lemaire 1988] to generate the two-dimensional projection of the
three-dimensional mesh. The algorithm produces approximations of good quality,
and provides an accurate mapping function. Nonetheless, it has a major disadvan-
tage in that it requires the boundary of the two-dimensional mesh to be predefined
and convex. Another drawback is that the method does not guarantee mapping
continuity (i.e. it may generate inverted elements).

Floater [Floater 1997] describes a parameterization method which computes the
positions of the nodes in the flat mesh using the solution of a linear system based
on convex combinations. Floater generalized earlier work by Tutte [Tutte 1960;
1963] to derive a method that sets nodes as convex combinations of their neighbors
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while aiming to preserve local shape characteristics. The method also guarantees
that the resulting mapping is continuous. However, similarly to the algorithm in
[Eck et al. 1995], the method requires the boundary of the two-dimensional mesh
domain to be predefined and convex.

Hormann and Greiner [Hormann and Greiner 2000] use Floater’s algorithm as a
starting point for a highly non-linear local optimization algorithm which computes
the positions for both interior and boundary nodes based on local shape preservation
criteria. The method is very promising, but it is not clear if the procedure is
guaranteed to converge to a valid solution.

Marcum [Marcum and Gaiter 1999] introduces the use of finite-element tech-
niques to compute the locations of the flat mesh nodes. The method computes the
boundary as part of the solution, using an iterative procedure that alternatingly
computes the boundary while keeping the interior fixed and vice versa. However,
no continuity guarantees are given for this method.

A lot of research on computing parameterizations of tessellated surfaces has been
done in the context of computer graphics, since parameterization is required to
generate non-distorted texture mappings [Foley et al. 1992]. Maillot et al. [Maillot
et al. 1993] presented one of the first works in the context of texture mapping which
formally defined a distortion functional and proceeded to minimize it. Zigelman et

al. [Zigelman et al. 2001] provide a method for flattening surfaces by using multi-
dimensional scaling. It computes the two-dimensional domain boundaries as part
of the solution. The method does not prevent foldovers. Levy and Mallet [Levy
and Mallet 1998] suggest a method which provides user control on the spread of the
distortion across the flattened mesh. The method uses some of the formulations
introduced in [Floater 1997], and as a result has similar limitations. In a more recent
work [Levy 2001], Levy suggested a procedure which allows the user to constrain
a number of point locations within the parameterization instead of defining the
boundary. The method provides impressive results, but can sometimes generate
foldovers.

Several recent works [Sander et al. 2001; Praun et al. 2000] subdivide the three-
dimensional surface into patches for which low distortion mapping is computed.
This leads to generation of texture seams, which the authors try to hide using
different techniques. Sorkine et al. [Sorkine et al. 2002] suggest a combination of
subdivision with local optimization which guarantees a distortion bound, but can
generate long texture seams.

Sheffer and de Sturler [Sheffer and de Sturler 2000a] introduced a quasi-conformal
mapping method. The method is based on the observation that a triangulated
planar mesh is fully defined by the mesh angles up to global scaling, rotation, and
translation. The authors formulate the parameterization problem in terms of the
flat mesh angles and solve it in the angle space. They use a set of constraints on
angles which define a valid (continuous) planar mesh. They proceed to minimize
the angular distortion of the parameterization, subject to the defined constraints.
Since the problem is formulated solely in terms of the planar angles, the new method
was named Angle Based Flattening (ABF). The ABF algorithm does not require
the two-dimensional boundary to be predefined, does not place any restrictions on
the shape of the boundary or the surface curvature, it guarantees a continuous
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mapping, and the numerical solution is guaranteed to converge; see [Sheffer and
de Sturler 2000b; 2000a]. Another quasi-conformal mapping method was recently
suggested by Hurdal [Hurdal et al. 1998]. It has many of the properties of the ABF,
in terms of continuity and boundary definition. The drawback of both methods is
that they minimize angular distortion, disregarding the linear distortion that may
occur.

Contribution

In this paper we introduce a method for computing a surface parameterization
that tries to minimize both angular distortion and linear distortion. This method
consists of two steps. The first step computes a quasi-conformal mapping, using
the ABF procedure, and the second step adapts this mapping to minimize linear
distortion.

This adaptation is implemented as follows. We superimpose a uniform Cartesian
grid on the ABF-generated flat triangulation. We use the associated parameter-
ization to compute the lengths of the uniform grid edges mapped to the three-
dimensional surface. Then we iteratively relax vertices in the Cartesian grid based
on their associated edge lengths on the three-dimensional surface. The relaxation
reduces the difference in (3D) length of the edges attached to the relaxed vertex.
Note that all this is carried out in the plane.

The combined mapping has the following advantages over many existing mapping
methods: (1) The method provably provides a continuous parameterization for any
surface which can be mapped to the plane. (2) The method minimizes the distortion
of both shape and length caused by the parameterization. (3) The solution process
computes the optimal planar domain boundary in terms of minimal distortion, and
does not place any restrictions on the boundary shape, e.g. convexity. (4) The
algorithm is efficient and takes a mater of seconds to generate the mapping.

Finally, we would like to point out that the overlay grid algorithm for minimizing
linear distortion can be used in conjunction with any other algorithm that computes
a (preliminary) surface parameterization. It is especially suited as a post-processing
step to results of other quasi-conformal methods such as harmonic mapping [Eck
et al. 1995] and others [Hurdal et al. 1998; Hormann and Greiner 2000]. In this pa-
per we provide several examples of texture mapping using the developed algorithm
and compare it with two commonly used methods. We also include an example of
using it as a post-processing step for harmonic mapping (Figure 6(f)).

2. ALGORITHM OVERVIEW

In order to preserve the surface metric structures in parameterization, both angle
and length distortion have to be minimized. For a general surface there is no
mapping to the plane which fully preserves lengths or areas [Ahlfors and Sario
1960]. Neither is there a mapping to the plane for a faceted surface with non-
zero curvature that preserves angles. Hence, we suggest a method which strives
to minimize both types of distortion. The first step of the combined algorithm
we suggest, minimizes the angular distortion and the second minimizes the linear
distortion.

Based on Riemann’s theorem [Ahlfors and Sario 1960] for a smooth surface, there
exists a mapping to the plane which is conformal, i.e., it preserves the surface angles.
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Such a mapping is also guaranteed to locally preserve the shape and the metric
structures. In general, however, a conformal mapping does not exist for a faceted
(non smooth) surface. The first part of our algorithm computes a mapping from the
three-dimensional surface to the plane which approximates a conformal mapping
(Section 3). Since the preservation of lengths is of major importance to texture
mapping, a second mapping which minimizes length distortion has to be applied.
Note that the two metrics do not usually have common minima, hence reducing
the length distortion may increase the angular one. However, from our experience,
using the technique described below, the improvement in length preservation does
not lead to significant deterioration in angle preservation. This is due to the fact
that angle preservation preserves length ratios locally.

After providing a flat parameterization using the ABF algorithm we compute a
mapping from a rectangular region of the plane, containing the flat triangulation to
itself. The mapping is designed to mimic the distortion of the distances of the ABF
parameterization. The mapping computation is based on applying a mesh smooth-
ing procedure to a Cartesian grid. The smoothing uses a sizing function which is
based on the ratios between the lengths of the edges in the three-dimensional sur-
face and their counterparts in the flat surface. It is described in detail in Section 4.
The mapping is provably one-to-one, hence an inverse mapping exists. The inverse
mapping is defined by mapping the smoothed Cartesian grid to the unsmoothed
(regular) one. By applying the inverse mapping to the result of the ABF param-
eterization we generate a combined, continuous mapping which has small metric
distortion.

The next section briefly reviews the ABF parameterization method. The second
mapping stage is described in detail in Section 4. We use the following notations
throughout the paper.

The index i, i = 1 . . . P always indicates faces, the index j, j = 1, 2, 3 indicates
angles inside a face, and the index k, k = 1 . . . M indicates nodes. We use α

j
i , i =

1 . . . P, j = 1, 2, 3 to denote the flat mesh angles. The vector of all angles is denoted
by α. We use β

j
i , i = 1 . . . P, j = 1, 2, 3 to denote the corresponding original mesh

angles.

3. ANGLE BASED FLATTENING

This section briefly outlines the angle based flattening algorithm that provides the
first component of the texture mapping function. For a more complete description
we refer the reader to [Sheffer and de Sturler 2000a] and [Sheffer and de Sturler
2000b].

As mentioned above, the ABF algorithm finds the planar parameterization by
solving a constrained minimization problem defined in terms of the angles in the flat
mesh. The minimized functional aims at generating a quasi-conformal mesh and
is based on minimizing the sum of relative square distances between the angles in
the original and flat meshes, i.e. the vectors β and α, respectively. The constraints
restrict the vector α to define a valid planar mesh. We say the flat mesh is valid if
its associated graph is equivalent to that of the three-dimensional surface mesh, if
it has no interior inconsistencies (see below), and if it has no intersecting boundary
edges. We say the resulting flat mesh has an interior inconsistency if (a) the order
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of the nodes in any face is reversed with respect to the three-dimensional surface
mesh, which means the face has changed orientation (folded-over) with respect to
the mesh, or (b) the angles in any face do not sum to π, or (c) two neighboring
faces disagree on the placement of their shared edge. The latter inconsistency can
arise in two different ways. First, (c1) the angles in each face may require different
directions for the shared edge; second, (c2) the lengths of their non-shared edges
(together with the given angles) for each face may require different lengths for the
shared edge. We note that either problem can occur for only one edge attached to
an interior node. For more details we refer again to [Sheffer and de Sturler 2000a].
To guarantee the interior validity we add four sets of constraints to our optimization
problem and to avoid boundary intersections we use a postprocessing step (rarely
needed), which is discussed at the end of this section.

We convert the constrained minimization problem into an unconstrained prob-
lem using a Lagrange multiplier formulation. We use Newton’s method to find the
minimum. In almost all cases Newton’s method converges in less then five itera-
tions. The ”robust Newton methods” (e.g., trust region methods) are guaranteed
to converge for minimization problems, such as the one we have. The sparse linear
systems of equations that arise in Newton’s method are solved using a sparse direct
solver from the SuperLU package [Demmel et al. 1999; Demmel et al. 1999].

Finally, after the algorithm computes the angles of the flat mesh, we compute
the locations of the flat mesh nodes, after ’arbitrarily’ choosing the placement of
a first edge. The node placement together with a local bijection per face (between
corresponding faces in the surface and flat mesh) defined by equal barycentric coor-
dinates yields the parameterization function T 1 from the three-dimensional surface
to the flat domain. Figure 1 shows two examples of applying the flattening proce-
dure to three-dimensional surfaces. The generated textures are shown in Figure 4.

The constraints above guarantee the continuity of the mapping T 1 (no foldovers).
However, they do not prevent the flat surface from having self-intersections at the
boundary. Such intersections can occur since the boundary is found as part of the
solution and not defined beforehand. Boundary intersections make the mapping
from the surface in R

3 to R
2 a many to one mapping instead of one-to-one.

For applications where the mapping has to be one to one, such as for mapping of a
larger image or pattern or for paint applications, our method removes intersections
in a post-processing step [Sheffer and de Sturler 2000a]. Alternatively the surface
can be subdivided into two or more patches, separating the overlaping parts [Levy
2002].

For texture mapping with a small regular pattern only the R
3 to R

2 mapping
is used, providing the texture value for each point on the three-dimensional sur-
face. The mapping in case of boundary overlaps remains continuous and smooth
and therefore it preserves the texture patterns (Figure 2). Hence, for this type of
applications the intersections can be ignored.

4. LENGTH PRESERVING MAPPING IN R
2

After the flat triangulation has been generated, the mapping T 1 from the three-
dimensional surface to R

2 can be computed. For every mesh node its image under
T 1 is given by the coordinates of the corresponding node in the flat mesh. Each
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(a) (b)

(c) (d)

Fig. 1. Flat triangulation examples. (a)-(b) Folded plane (nearly developable surface). (a) Original
model. (b) Flat triangulation. (c)-(d) Human face. (c) Original model. (d) Flat triangulation.

(a) (b) (c)

Fig. 2. Texture mapping for a spiral surface with non unique two-dimensional mapping. (a)
Original surface (110 elements). (b) Flat parameterization containing boundary intersections. (c)
Final texture.

triangle in the three-dimensional surface is mapped to the corresponding planar
triangle using barycentric coordinates. This means that for every point p on the
interior of a triangle its image under T 1 is the point with the same barycentric
coordinates in the planar triangle which p had in the corresponding surface triangle.
This mapping minimizes the angular distortion, but it may not preserve lengths
or areas accurately. To improve length (distance) preservation we compute an
additional mapping T 2 from R

2 to R
2, as explained below.

4.1 Sizing Function

To compute the mapping T 2, we first compute a sizing function representing the
(approximately isotropic) distortion of length, i.e., linear distortion, at any point
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on the flat mesh. The sizing function S is computed as follows.

—For each edge e = (nk, nl), compute the distortion ratio as Sk,l = ‖e2D‖
‖e3D‖ , the ratio

of the edge length in the flat mesh to the edge length in the original surface.

—For each node nk, k = 1 . . . M , compute the distortion ratio at the node, S̃k, as
the average of the distortions computed over the edges containing nk.

—For each point p we locate the mesh triangle fi = (na, nb, nc) to which it belongs.
We compute the linear distortion S(p) using the barycentric coordinates of p in
fi. For p = nau+nbv+ncw, where u+v+w = 1 we set S(p) = S̃au+ S̃bv+ S̃cw.

The function S approximates the linear distortion of T 1 for each point (target) on
the planar domain. Since T 1 is quasi-conformal, edge length ratio locally remains
almost unchanged. Hence, S has very small local variation (derivative).

4.2 Mapping

A texture mapping function T defines a mapping from the three-dimensional surface
to a rectangular (u, v) domain in R

2. If T 1 is used as this function, then the
linear distortion of the mapping will be (approximately) given by S. To reduce the
distortion, an additional mapping T 2 from R

2 to R
2 needs to be introduced with

linear distortion (approximately) given by S−1. The combined mapping will then
have the desired property of being nearly free from linear distortion.

To compute such T 2 we consider the inverse problem of finding T 2−1
and invert-

ing it. To achieve this the following procedure has been developed. Let F be the
flat triangulation.

1. Compute the bounding box of F .

2. Generate a uniform Cartesian grid G1 for a rectangular region containing the
bounding box. The grid region has to be sufficiently large to allow the necessary
freedom for the interior nodes during the smoothing procedure in stage 4. The
choice of region size and grid density are discussed in Section 4.4. The Cartesian
grid is constructed by using a triangular mesh, where each Cartesian square is
represented by two right-angle triangles sharing the hypotenuse. The triangu-
lar representation avoids the problems of mapping between possibly non-convex
quadrilaterals.

3. Generate a copy G2 of the grid G1, and embed F in G2.

4. Adapt G2 by grid smoothing using the sizing function S defined on F as ex-
plained below (Section 4.3). (The mapping from G1 to G2 gives us the desired

T 2−1
, i.e. a mapping with linear distortion S.)

5. Define T 2 : R
2 → R

2 by mapping each point on G2 to the point on the corre-
sponding triangle in G1 with the same barycentric coordinates.

The steps of the procedure are shown in Figure 3. The flat triangulation, Figure 3-
(b), is embedded in the smoothed grid, Figure 3-(e). We define the texture mapping
function T as:

T ≡ T 2 ◦ T 1 : R
3 → R

2. (1)

Due to the use of the additional sizing-based mapping T 2, the final texture map-
ping function preserves lengths fairly accurately.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 3. Texture mapping for a cat head model. (a) The head (256 elements). (b) Flat parameteri-
zation. (c) Texture using only T 1 (without sizing function). (d) Uniform grid G1 of the bounding
box. (e) Smoothed grid G2. (f) Final texture using T . (g), (h) Texture generated with convex
combinations and harmonic mapping, respectively. Note that harmonic mapping is very close to
ABF only mapping (c).

4.3 Smoothing

Mesh smoothing is a procedure which changes mesh specifications (size/element
shape) by changing the locations of the mesh nodes, without changing the mesh
connectivity [Owen 1998; Mallet 1989]. In our application we use the smoothing
procedure to modify the mesh sizing. We start with an initial uniform grid and
modify it to conform to the sizing function defined above. There are several methods
[Canann et al. 1998] for smoothing two-dimensional meshes. We use Laplacian
smoothing [Field 1988] for its simplicity.

The procedure to modify G2 to conform to the sizing function S is as follows.
Note that the smoothing algorithm uses only the Cartesian grid edges and ignores
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the mesh “diagonals” .

1. For each edge e = (na, nb) ∈ G2 compute the desired edge length (up to a global
scaling factor):

l(e) =
S(na) + S(nb)

2
(2)

(outside of F , S is set to 1).

2. Apply Laplacian smoothing to adjust the edge lengths to the sizing function:
2.1 For each interior node N ∈ G2 in turn,

compute N̄ =

∑
e=(N,N ′)

1
l(e)N

′

∑
e=(N,N ′)

1
l(e)

,

compute d = max(d, ‖N̄ − N‖),

and set N = N̄ .

2.2 Repeat 2.1 while d > ǫ.

3. Recompute the desired lengths and repeat the smoothing (goto 1.), until the
lengths l(e) or the node locations no longer change.

As discussed in the next section the procedure converges to a mesh which con-
forms to the sizing function. For the texture mapping we use the mapping function
from the smoothed grid G2 to the original uniform, Cartesian grid G1.

4.4 Algorithm Accuracy and Complexity

The accuracy of the smoothing procedure, namely how closely it satisfies the siz-
ing function, depends on two factors. The first is the size of the grid boundary.
Boundary nodes remain static throughout the procedure. Therefore, the mesh near
the boundary might not have enough degrees of freedom to satisfy the sizing. To
generate the desired inverse mapping, only the part of the grid within the ABF
mapping domain D is of interest. Hence, to satisfy the sizing within the domain
D we extend the grid boundary beyond the bounding box of D. By having several
mesh layers outside, we obtain sufficient degrees of freedom for the mesh on the
interior. Clearly, increasing the boundary size means increasing the number of el-
ements and nodes in the grid. This increases the computation cost, both in terms
of memory and processing time. We found that by increasing the bounding box by
a factor of 1.2 or 1.3, we were able to obtain a sufficiently accurate mapping at a
reasonable cost.

Another more important factor linking accuracy and complexity is the level of
grid refinement. When computing the weights for smoothing, the method samples
the sizing at the end nodes of each edge and uses the average as edge weight. To
compute the weight accurately, taking into account the sizing along the edge, we
should optimally use the integral over the sizing function S along the edge. However,
this is not practical; hence the use of the average to approximate the integral by
the trapezoid rule. Since all the edges in the regular grid are of equal size, we can
take the edge length in it to be any constant (here one). This is true throughout
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the algorithm iterations, as the length of the projected grid edges on the surface is
expected to be constant. The accuracy of the sampling and hence the smoothing
can be achieved either by sampling the size along the edge (not only at end points),
or using shorter grid edges. We choose the second option, linking accuracy to grid
refinement level. This choice is also motivated by the desire to capture the sizing
function across the region, which might not happen when sampling it only along
(possibly long) edges.

Since S is piecewise linear, sampling it, i.e. having grid points at shorter distances
than shortest edge in the flat mesh, will not increase sampling accuracy. As a
consequence, the lower bound for the grid refinement is the shortest edge length
in the flattened mesh. However, this leads to a very fine mesh and makes the
smoothing process very expensive. For the dome example (Figure 5) the process
reached the bound of 200 iterations after 11 minutes and gave 0.077 and 0.186 as
angular and linear distortions. The sizing we used was based on the median edge
length in the flat mesh. For the same model it gave just slightly worse linear and
angular distortion and took 1 second to converge (Table I). The motivation in using
the median rather than the average is the large deviation in edge lengths in the flat
meshes, as a result of regions which were ”stretched out” versus ones which were
”squeezed”, e.g. Figure 3. Therefore, the median tends to be significantly smaller
than the average. The coarser grid has a drastically smaller computational cost
but can potentially ”miss” very small details in the planar mesh, generated in areas
where the three-dimensional mesh has very high curvature.

Clearly, using a uniform grid for the grid (mesh) smoothing step creates a prob-
lem. In order to capture small details we need a fine grid that leads to wasted
computational effort in regions were such high resolution is not needed. This is
all the more so because the convergence of point smoothing deteriorates with finer
grids. We can resolve both problems by combining two techniques. The first is to
replace the uniform grid by an adaptively refined grid, for example, based on quad
trees. This allows us to locally adapt the grid resolution as needed. The second is
to do multilevel smoothing rather than just point smoothing. Multilevel algorithms
generally lead to significant convergence improvements [Brandt 1977; Trottenberg
et al. 2001]; in many cases the total amount of work is proportional to the number
of nodes in the (finest) grid. Clearly these two approaches will go together very
well. We plan to discuss this new multilevel adaptive grid smoothing strategy in a
follow-up paper. We will not discuss it further here.

Finally, the grid smoothing algorithm aimed at reducing linear distortion will
generally increase the angular distortion. Although in general this seems to create
few problems, it would be good to be able to make an explicit trade-off between the
two types of distortion. Since grid smoothing makes small updates to each point,
bounded by the quadrilateral defined by its neighbors, we can currently do this
by simply stopping the smoothing when angular distortion reaches some tolerance.
However, we have not experimented with this yet as the deterioration of angular
distortion seems to be negligible. An alternative approach would be to apply some
weighting between the original flat mesh and the smoothed mesh after each sweep
of smoothing (one update for each point).

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 ·

5. ALGORITHM VALIDITY

To show that the presented algorithm is valid we need to prove that both parts
of the algorithm provide the valid parameterization functions T 1 and T 2. Namely,
both algorithms find a one-to-one mapping between the source and target for valid
inputs. In this context a valid input is a mesh surface with genus zero and a
single outside boundary loop. A closed surface or surface of higher genus cannot
by definition be parameterized in the plane. The ABF algorithm, as well as most
other parameterization methods described in Section 1., cannot handle inputs with
multiple loops, even if they can be mapped to the plane. The Cartesian grid
mapping defining T 2 can handle such surfaces with no special treatment.

In [Sheffer and de Sturler 2000a] we prove the correctness of the ABF procedure,
which provides the first step of the texture mapping. It shows that given valid input
the algorithm is guaranteed to converge to a valid flat triangulation that minimizes
angular distortion. Hence all we need to show is that the Cartesian grid mapping
provides a one-to-one mapping and the solution method (smoothing procedure) is
guaranteed to converge.

The weighted Laplacian smoothing procedure is applied to a cartesian grid of
a rectangular domain. The fact that such smoothing over a convex domain is
guaranteed to converge to a valid (no-foldovers) mesh, has long been taken for
granted by the finite-element comunity [Field 1988]. Recent results by Floater
[Floater 2001] reinforce this claim. Given a triangular mesh of a convex domain
Floater proves the following. A system of linear equations which represents each
mesh node as a convex combination of its neighbors has as its solution a mesh with
no foldovers. A convex combination in this context is a weighted sum with non-
negative weights. He also proves that iterative solution of such systems (smoothing)
converges to the actual solution. This proof provides the necessary guarantee for
the Cartesian grid mapping method to be valid; namely we know the smoothing will
converge and the mapping from the smoothed grid to the original will be one-to-one.

In conclusion, both steps of the algorithm are guaranteed to converge to valid
solutions and combining the two mappings provides a mapping which is valid.

The new mapping appears to minimize both angular and area/length distor-
tions. As mentioned above, classical results in differential geometry [Ahlfors and
Sario 1960] assert that it is not possible to map a non-developable surface to a
plane without some distortion of the distances. It is also impossible to map a
faceted surface with non-zero local curvature to a plane without some angular dis-
tortion. Hence, at best, a compromise can be made between length preservation
and conformity of the map, minimizing the two types of distortion. This is what
the presented method tries to achieve.

6. EXAMPLES

Throughout the paper the texture mapping procedure is demonstrated on several
examples of varying complexity. The properties of our examples are summarized
in Table I. The number of iterations in the second stage (the computation of T 2)
indicates the outer iterations, involving the computation of the edge lengths (steps
(1)–(3)). We measure both angular and length distortion of the flat surface with
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(a) (b)

Fig. 4. Textures generated for the models in Figure 1

regard to the original mesh. We use

1

3P

∑

i,j

(αj
i − β

j
i )

2

β
j
i

2

to measure angular distortion. This value is similar to the minimized functional in
the ABF procedure. To measure distance distortion, we first compute the average
edge length in two- and three-dimensional meshes, a2D and a3D, and the ratio
between them a = a2D

a3D

. For a non-distorted parameterization, the ratios of two-
dimensional to three-dimensional lengths for each edge should be equal to a. Hence
we use the following as distortion measure

1

|{e}|

∑

e

(‖e2D‖
‖e3D‖ − a)2

a2
.

In both cases the division by the number of angles or edges, respectively is done
to normalize the error, making it independent of mesh size.

The table compares the distortion with and without smoothing, and also com-
pares the results to two popular parameterization methods: convex combinations
[Floater 1997] and harmonic mapping [Eck et al. 1995]. Both methods require an
a priori fixed planar boundary. In both cases a circle boundary was used, being
the most general. For all the models the combined method gives lower angular
and linear distortion than convex combinations. For models where the optimal
boundary given by the combined method is far from a circle, the method also sig-
nificantly outperforms harmonic mapping in both parameters. For models where
the boundary is close to a circle (Figures 3, 5, and 8) the harmonic mapping results
are only slightly worse than ABF results. This is due to the fact that harmonic
mapping does in fact minimize angular distortion, but with a fixed boundary con-
straint. After the smoothing stage, the angular distortion of the combined mapping
can therefore become higher than that achieved by harmonic mapping. However,
the linear distortion is significantly lower and the texture looks (empirically) much
better (Figures 3, 5, 8).

Figure 4 shows the texture mapping for the models in Figure 1. Figure 4(a)
shows the texture generated for a nearly developable surface. It demonstrates
the advantage of non-fixed boundary schemes, which indeed find a zero distortion
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Model # Runtime # T 1 # T 2 Distortion

faces (sec.) iter. iter. ABF Final Conv. Comb. Harmonic

ang. len. ang. len. ang. len. ang. len.

Folded Plane 280 1 2 1 6e-7 5e-5 7e-7 5e-5 0.21 0.11 0.19 0.11

Face 1394 22 5 43 0.003 0.019 0.006 0.01 0.28 0.18 0.011 0.04

Cat Head 257 3 4 48 0.029 0.7 0.079 0.24 0.135 1.28 0.039 0.74

3 Balls 1032 9 4 28 0.012 0.1 0.028 0.055 0.28 0.21 0.17∗ 0.17∗

Dome 244 1 4 12 0.025 0.23 0.093 0.19 1.05 1.5 0.027 0.23

Mech. form 864 8 4 59 0.0018 0.039 0.0098 0.017 0.25 0.105 0.093 0.066

Full Cat 671 59 5 127 0.019 0.94 0.138 0.23 0.184 0.92 0.04 0.99

Cut Cat 671 2 4 14 0.0029 0.031 0.0071 0.016 0.62 0.17 0.12 0.3

Table I. Flattening examples data. (Time measurements are on a 800MHz/384MB RAM laptop.)
∗ signifies that the harmonic mapping generates foldovers in the mesh for this model.

parameterization for developable surfaces. Figure 4(b) shows the texture for the
face model in 1(c). The checkered pattern is used in this and other examples to
emphasize the preservation of both angles and lengths in the mapping.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Texture mapping for a dome shape. (a) Original surface (256 elements). (b) Flat param-
eterization (providing T 1). (c) Texture using only T 1 (without sizing function). (d) Smoothed
grid G2. (e) Final texture using T . (f) Texture using harmonic mapping.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Texture mapping for three balls (non-smooth surface). (a) Original surface (1032 elements).
(b) Flat parameterization (providing T 1). (c) Final texture using T . (d) (e) Texture map using
convex combinations and harmonic mapping. The harmonic mapping generates a discontinuity
(folds over) at the meeting point of the three spheres. (f) Texture after applying overlay grid
smoothing to harmonic mapping results.

In Figure 3 we show a model of a cat’s head (cut around the neck). The model has
a large overall curvature, hence the distortion is relatively high. The figure shows
the difference between using the result of the first step directly for the texture map-
ping and using the combined mapping. Adding the smoothing step dramatically
reduces the distance and area distortion without affecting the angular deformation.
An empiric comparison with the results of convex combinations and harmonic map-
ping shows that the texture looks significantly better after the combined mapping.
Figure 5 shows another example emphasizing the need for the smoothing step. No-
tice that the results of harmonic mapping are almost identical to ABF, since in
this case the optimal outer boundary is identical to the fixed one (four equidistant
points on a circle).

Figure 6 displays a surface build from three spheres positioned at 120◦ around
a joint axis. The spheres are cut at about a quarter of the way up from the base,
to create a surface which can be parameterized. The surface mesh is highly non-
smooth with high local curvature changes and multiple sliver triangles, but, despite
this, the parameterization converges in a small number of iterations and gives good
results. Note that despite the increase in model size (compared to the cat and
dome models), the number of iterations required to obtain a solution during the
ABF stage does not increase. The results are compared to convex combinations
and harmonic mapping. In the first case, the mapping does not preserve angles or
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distances that well. In the case of harmonic mapping, the mapping actually folds
over at the meeting point of the three spheres (not seen on the picture) generating
a minor texture discontinuity. This explains the high angular distortion 0.17 (Table
I) Additionally, lengths are not preserved as well when comparing the top of the
balls with the creases and bottom areas. After applying the overlay grid smoothing
to harmonic map results (Figure 6(f)), the linear distortion is significantly reduced
(from 0.17 to 0.096); the angular distortion is increased (to 0.19), but not signifi-
cantly. The second step does not address the mapping discontinuity generated by
the harmonic mapping, which therefore remains.

(a) (b) (c)

Fig. 7. Texture mapping for a mechanical form. (a) Original surface (864 elements). (b) Flat
parameterization (after applyingT 2 to T 1 results). (c) Final texture using T .

Figure 7 shows a mechanical form model, courtesy of Kay Hormann [Floater and
Hormann 2001]. This model demonstrates the method’s ability to handle surfaces
with high variation in curvature. It includes nearly flat regions as well as highly
curved ones.

Finally, Figure 8 shows a model of an entire cat (without the planar base). This
example demonstrates the robustness of our method and its ability to handle highly
curved surfaces. For any flattening algorithm the distortion increases with the
increase in the surface-area-to-perimeter ratio as well as with the increase in local
and global curvature. As a result the texture distortion for a model as complicated
as the entire cat tends to be high (Figure 8(c)). As shown by the comparison to
other methods, the combined mapping still provides a better result both visually
and in terms of length distortion. At the same time the smoothing introduces high
angular distortion (Figure 8(b)). This is due to the fact that even though conformal
(quasi-conformal) mapping preserved length ratios locally, it can accumulate high
distortion over large distances on the mesh. As a result the smoothing introduces
relatively high angular deformation when reducing the length distortion. Due to
the high initial linear distortion, the algorithm takes significantly more iterations
to converge. However, it still remains within the one minute timeframe. The main
alternative for reducing the distortion is the introduction of seams in the model as
shown in Figure 8(f). This reduces the texture distortion but introduces texture
discontinuities along the seam. The seams were added using an algorithm described
in [Sheffer 2002].
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(a) (b) (c)

(d) (e)

(f) (g)

Fig. 8. Texture mapping for a full cat model (without the planar base). (a) The model (671
elements). (b) Texture using ABF. (c) Texture using the combined mapping. (d),(e) Texture
using convex combinations and harmonic map respectively. (f) Texture generated after cutting
seams (highlighted in blue). (g) Flat parameterization using seams.

7. SUMMARY

We have proposed a new method for texture mapping based on the combination of
a recently proposed algorithm for flattening three-dimensional surfaces and an algo-
rithm for mesh smoothing that takes into account a given sizing function. We have
outlined the main properties and underlying theory of our algorithm. Our method
can be applied to very general problems and has few restrictions. Specifically, it
does not require the boundary to be predefined or convex.
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We used the ABF parameterization as a first stage of the mapping. The ABF
is a quasi-conformal mapping based on minimizing the (relative) distortion of the
mesh angles in each face subject to the necessary and sufficient conditions of a valid
two-dimensional mesh.

The main contribution of this work is the introduction of the second mapping
stage, aimed at reducing the length distortion of the parameterization. We sug-
gested the use of a sizing function as a tool to measure the linear distortion of the
mapping at any point in the planar domain. The sizing function is then used to set
weights in a Laplacian smoothing procedure applied to a Cartesian grid covering
the planar domain. The mapping obtained by barycentric projection of points on
the smoothed grid to the regular grid has inverse linear distortion to the original
ABF parameterization. Hence, combining the two provides a mapping with low
linear distortion.

The use of an overlay grid rather than smoothing the existing planar mesh pro-
vides several major advantages. First, the boundary of the existing mesh need not
be fixed in the smoothing process. Second, in cases of non-convex mesh boundary
a smoothing procedure can lead to foldover in the mesh, i.e. generate mapping
discontinuity. This problem is avoided when a rectangular grid is used instead. A
rectangular grid also has the advantages of initially well shaped elements, avoid-
ing numerical instabilities which can arise when smoothing the planar mesh or any
mesh incorporating it, e.g. Delaunay mesh of its vertices. And finally, a rectangular
grid has the advantage of simplicity during both construction and manipulation.

The grid mapping is guaranteed to be one-to-one. Since quasi-conformal mapping
preserves edge ratios locally, the local change in length distortion is small. As
a result, in most cases, the smoothing procedure does not significantly alter the
angles. In our examples we demonstrate that the proposed method generates good
texture maps for complex surfaces in several seconds.

An important problem in future research is the trade-off between the quality of
sizing approximation provided by the smoothing and the size of the Cartesian grid
(Section 4.4). Increasing the size enables better capture of the sizing but increases
both time and memory costs. This issue grows in importance when handling large
models with hundreds of thousands of elements. We plan to investigate a multi-grid
approach for generating and smoothing the Cartesian grid.

Another interesting question which should be investigated is the trade-off between
angular and linear distortion. Currently the smoothing procedure concentrates on
reducing linear distortion. The user has no control on how much it increases the
angular distortion in the process. Providing such control would be useful for the
user, especially for more complicated models where the trade-off issue becomes
significant.
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