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METHODOLOGY

Smoothing and extraction of traits 
in the growth analysis of noninvasive 
phenotypic data
Chris Brien1,2,3*, Nathaniel Jewell1,2, Stephanie J. Watts-Williams2, Trevor Garnett1,2 and Bettina Berger1,2

Abstract 

Background: Non-destructive high-throughput plant phenotyping is becoming increasingly used and various 

methods for growth analysis have been proposed. Traditional longitudinal or repeated measures analyses that model 

growth using statistical models are common. However, often the variation in the data is inappropriately modelled, in 

part because the required models are complicated and difficult to fit. We provide a novel, computationally efficient 

technique that is based on smoothing and extraction of traits (SET), which we compare with the alternative tradi-

tional longitudinal analysis methods.

Results: The SET-based and longitudinal analyses were applied to a tomato experiment to investigate the effects 

on plant growth of zinc (Zn) addition and growing plants in soil inoculated with arbuscular mycorrhizal fungi (AMF). 

Conclusions from the SET-based and longitudinal analyses are similar, although the former analysis results in more 

significant differences. They showed that added Zn had little effect on plants grown in inoculated soils, but that 

growth depended on the amount of added Zn for plants grown in uninoculated soils. The longitudinal analysis of the 

unsmoothed data fitted a mixed model that involved both fixed and random regression modelling with splines, as 

well as allowing for unequal variances and autocorrelation between time points.

Conclusions: A SET-based analysis can be used in any situation in which a traditional longitudinal analysis might 

be applied, especially when there are many observed time points. Two reasons for deploying the SET-based method 

are (i) biologically relevant growth parameters are required that parsimoniously describe growth, usually focussing 

on a small number of intervals, and/or (ii) a computationally efficient method is required for which a valid analysis 

is easier to achieve, while still capturing the essential features of the exhibited growth dynamics. Also discussed are 

the statistical models that need to be considered for traditional longitudinal analyses and it is demonstrated that the 

oft-omitted unequal variances and autocorrelation may be required for a valid longitudinal analysis. With respect to 

the separate issue of the subjective choice of mathematical growth functions or splines to characterize growth, it is 

recommended that, for both SET-based and longitudinal analyses, an evidence-based procedure is adopted.

Keywords: High-throughput phenotyping, Growth analysis, Growth traits, Functional analysis, Greenhouse 

experiments, Longitudinal analysis, Tomato, Random regression modelling
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Background
High-throughput phenotyping (HTP) has become 

an important tool in investigating shoot growth and 

structure in a range of plants that include rice, maize, 

sorghum, wheat, barley, chickpeas, setaria, medic, straw-

berries and tomatoes, either for studying shoot growth 
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responses per se or as a precursor to genetic analysis 

[1–13]. Because it involves non-invasive phenotyping of 

the same plants at different time points, it is now possi-

ble to measure many plants at many time points so that 

the precision of growth analyses [14] is much improved. 

�e basic structure of such data is that there are units, or 

‘subjects’, on each of which measurements are made over 

time.

One approach to analyzing growth is to carry out a 

functional analysis in which a mathematical function, 

anticipated to be able to follow the growth pattern, is fit-

ted. Fundamental to such analyses is the choice of func-

tion. It has been common to fit exponential, logistic 

and other mathematical functions of various forms to 

describe growth [15]. As noted in Hunt [14] and Shipley 

and Hunt [16], the problem with using specific functions 

is that the growth may not fit the assumed form and this 

led these authors and others [2, 5, 17–20] to recommend 

the use of splines to model growth. Shipley and Hunt [16] 

highlighted that it is often not possible to see deviations 

from the assumed functional form by examining a plot 

of the growth over time. Genetic markers have been suc-

cessfully detected using semiparametric smoothing of the 

data [2, 5]. On the other hand, one of the attractions of 

using mathematical functions is that the parameters asso-

ciated with them often have biological interpretations.

Here we outline and describe our experiences with two 

techniques for characterizing the dynamics of growth 

using data from HTP facilities. For both of these tech-

niques, growth might be characterized by fitting either 

mathematical growth functions or splines to remove the 

transient deviations that occur in such data. �e first 

technique is a computationally efficient method that we 

have developed and is called smoothing and extracted 

trait (SET) analysis. Essentially, the data for each individ-

ual is first smoothed and this is followed by the extraction 

of traits that are to be statistically analyzed. �e second 

will be referred to as longitudinal analysis, also known as 

repeated measurements or growth curve analysis. Here, it 

employs fixed and random regression models (FRM and 

RRM) that are based on natural cubic smoothing splines 

(FRMS and RRMS) [21, 22]. �e difference between 

FRM(S) and RRM(S) is that the intercepts and slopes 

are fixed for FRM(S) and, except for an overall intercept 

and slope, are random for RRM(S). Further, the statistical 

analysis will allow for unequal variance and autocorrela-

tion between time points. For both techniques, the issue 

of fitting a valid model is canvassed.

To illustrate the two techniques, the data from a 

tomato (Solanum lycopersicum) experiment [11] is used. 

�is experiment involved the eight combinations of four 

levels of zinc (Zn) addition (0, 10, 40, and 90 mg Zn  kg−1 

soil) and either the addition of an arbuscular mycorrhizal 

fungal (AMF) inoculum (+AMF) or of a mock inoculum 

(−AMF) to the soil in pots with a single plant. �e exper-

iment consisted of 32 potted plants that were placed in 

carts on the conveyor system within a Smarthouse (Aus-

tralian Plant Phenomics Facility, University of Adelaide), 

where they were imaged daily from 17 to 51  days after 

planting (DAP). While the previously reported results 

[11] cover only 27–43 DAP, the full data set was pro-

cessed and is the subject of the analyses reported here. 

‘Cart’ will be used as the generic term for the unit in this 

experiment, each physical cart holding a pot with a single 

plant.

Results
�e raw data obtained from the image processing is 

exhibited in the profile plots in Fig.  1. In addition to 

PSA, the continuous PSA absolute and relative growth 

rates (PSA AGR and PSA RGR) are shown, these being 

calculated by differencing consecutive PSA and ln(PSA) 

values, respectively. �ere is a marked “sawtooth” pattern 

evident in the PSA AGR and PSA RGR, this pattern not 

being evident in the PSA plot. �e results of analyzing 

the PSA by a SET-based and a longitudinal analysis of the 

tomato data are now described.

A SET-based analysis of the tomato data

For this analysis the PSA is first smoothed. We investi-

gated direct- and log-smoothing of the PSA using natural 

cubic splines for several values of the smoothing degrees 

of freedom (DF), as well as the fitting of a three-parame-

ter logistic curve. Log-smoothing with six DF was chosen 

to yield the smoothed projected shoot area (sPSA). �e 

continuous sPSA AGR and sPSA RGR are calculated by 

differencing consecutive sPSA and ln(sPSA) values. Fig-

ure 2 presents plots of these three responses. Using these, 

time intervals with end points at DAPs 18, 22, 27, 33, 39, 

43 and 51 were chosen. For the analysis, the sPSA val-

ues for each of these end points were extracted and the 

mean sPSA AGR and sPSA RGR calculated for each of 

the intervals DAP 18–22, 22–27, 27–33, 33–39, 39–43, 

43–51. �us there are seven single-DAP traits extracted 

for sPSA and six interval traits extracted for sPSA AGR 

and six for sPSA RGR.

Each of these 19 extracted growth traits was analyzed 

separately and a summary of the hypothesis tests carried 

out to determine the significance of the effects of Zn and 

AMF inoculation on these traits is given in Additional 

file 1: Table S1. �ey show that only Zn had a significant 

effect (p ≤ 0.05) on sPSA at DAPs 18 and 22; subsequent 

to these DAPs (viz. DAPs 27, 33, 39, 43 and 51), Zn and 

AMF interacted significantly (p ≤ 0.05) in their effect on 

sPSA. For sPSA AGR, there were significant (p ≤ 0.05) 

interactions of Zn and AMF for DAP intervals 22–27, 
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27–33 and 33–39, while for sPSA RGR there were sig-

nificant (p ≤ 0.05) interactions for DAP intervals 18–22, 

22–27, 39–43 and 43–51.

To illustrate these effects, predicted values for each 

of the responses sPSA, sPSA AGR and sPSA RGR are 

combined and each presented in its own plot in Fig. 3. 

It shows that generally DAP 18–22 was a period of 

increasing AGR; DAP 22–27 was a period of even faster 

increases in the AGR; DAP 27–33 was a period during 

which the AGR peaked; DAP 33–39 was a period of 

reduced growth; DAP 39–43 is the period of restricted 

watering and followed by a 2-day recovery period 

when growth had slowed even more; DAP 43–51 was a 

period in which the AGR did not change or decreased 

further. �e RGR, except for the first and last intervals, 

continued to decrease. �ere is little, if any, difference 

between the trends for the different Zn treatments over 

time for the plants grown in soils inoculated with AMF. 

For those grown with mock inoculation, the difference 

between the zero and 10 mg Zn  kg−1 additions is small; 

the differences between these two concentrations and 

the other two concentrations varies over time for the 

Fig. 1 Profile plots for unsmoothed projected shoot area (PSA) and growth rates. The PSA (a) is shown over DAP 17–51, as are the continuous 

absolute growth rate (AGR) (b) and relative growth rate (RGR) (c) calculated from the PSA. For each trait, AMF treatments occupy separate panes. 

Each line corresponds to one of the 32 carts, each with a potted plant. The dashed, vertical black line indicates the start of a 3-day interruption to 

watering
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sPSA, sPSA AGR and sPSA RGR. It can also be seen in 

Fig. 3 that the variance differs over time. However, each 

per-cart analysis involves a single time or time interval 

and the different variances between times are irrele-

vant to a single analysis.

�e six interval traits for each of sPSA, sPSA AGR 

and sPSA RGR were jointly analyzed, as described in 

Additional file  2. �e differences between the results 

of the joint analyses and those of the separate analyses 

just described are minor. However, the joint analyses 

were more difficult to perform than the separate anal-

yses. It would appear that, as long as comparisons are 

limited to predictions at the same time, then separate 

analyses are valid.

A longitudinal analysis of the tomato data

Each of PSA and ln(PSA) was subjected to a longitudi-

nal analysis, the aim of which was to obtain estimates 

of the trend over time of the PSA, PSA AGR and PSA 

RGR for each combination of Zn and AMF. �e analy-

sis fitted a mixed model to describe the behaviour of 

the complete set of values for one of the traits, without 

any pre-smoothing of the data. �e fitted mixed model 

employed an RRMS in that random nonlinear trends 

Fig. 2 Profile plots for the smoothed projected shoot area (sPSA) and growth rates. The sPSA (a) is shown over DAP 17–51, as are the continuous 

absolute growth rate (AGR) (b) and relative growth rate (RGR) (c) calculated from the sPSA. For each trait, AMF treatments occupy separate panes. 

The dashed, vertical black line indicates the start of a 3-day interruption to watering
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between individual carts were specified by fitting natu-

ral cubic smoothing splines with random intercepts 

and slopes, and a knot per observed DAP. Homogene-

ous splines were fitted so that the amount of smoothing 

was the same for all carts. �e mixed model also allowed 

for the residual variance to differ between DAPs and for 

there to be first-order autoregressive correlation between 

DAPs. For both PSA and ln(PSA), the variances differed 

significantly between the DAPs (p < 0.001) and the auto-

correlation was significant (p < 0.001), the estimated first-

order autoregressive correlation parameter being 0.88 for 

both PSA and ln(PSA). An FRMS, for which ten equally 

spaced knots was specified, was chosen to describe the 

trend for each combination of Zn and AMF using hetero-

geneous splines, that is, splines for which the amount of 

smoothing was allowed to differ between the combina-

tions. Analyses were conducted to investigate the simpli-

fication of the FFRMs and the results are summarized in 

Additional file  3: Tables S2 and S4. For the trends over 

time, the hypothesis tests for both PSA and ln(PSA) lead 

to the conclusion that the trends differed significantly 

between the combination of Zn and AMF. For PSA, het-

erogeneous splines for the different combinations of Zn 

and AMF were significant (p = 0.001) so that the amount 

Fig. 3 Results of the SET-based analyses, showing predicted sPSA (a), sPSA AGR (b) and sPSA RGR (c) for the chosen DAPs and time intervals. The 

error ribbons are the predicted values ± 0.5 LSD (α  =  0.05). Separated ribbons indicate a significant difference, in contrast to overlapping ribbons 

for which there is not a significant difference
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of smoothing differed between the treatments. For 

ln(PSA), the three forms of heterogeneous splines were 

not significant (p > 0.05), but the homogeneous splines 

differed significantly between the combinations of Zn 

and AMF (p = 0.002); the amount of the smoothing was 

the same for all Zn-AMF combinations, but the fitted 

curves differed. For both responses, the intercept varied 

significantly between the Treatments or combinations of 

Zn and AMF (p < 0.001).

�e predicted values obtained from the analyses are 

exhibited in Fig.  4. It is noticeable that the predicted 

PSA and the backtransformed predicted PSA differ: the 

(Least Significant Difference) LSD increases as the DAP 

increases for the backtransformed predicted PSA, so 

Fig. 4 Results of the longitudinal analyses, showing predicted PSA (a), PSA AGR (b), backtransformed PSA (c), and PSA RGR (d) for smoothing 

with 10 knots. The error ribbons are the predicted values ± 0.5 LSD (α  =  0.05). Separated ribbons indicate a significant difference, in contrast to 

overlapping ribbons for which there is not a significant difference
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that there are not the significant differences between the 

treatment with 40 mg kg−1 of added Zn and those with 

the lower levels of added Zn. �ere is some evidence 

in the residual plots in Additional file  3 of more outli-

ers from the analysis of ln(PSA). Most differences in the 

predicted PSA trend occur for the −AMF treatment; 

also, the 90  mg  kg−1 Zn treatment stands out from the 

other levels of Zn. �ese conclusions are similar to those 

reached from the SET-based analyses, although there are 

more significant differences for the SET-based analyses, 

especially for PSA RGR.

Assuming residuals have equal variance and are 

uncorrelated for the longitudinal analysis

An analysis in which the significant unequal variances 

and autocorrelation of the residuals are removed from 

the fitted PSA model was performed to demonstrate the 

kind of effect that the reduced model can have on the 

predictions and their standard errors. Additional file  3: 

Figure S9, compares the predictions and their standard 

errors under the full and reduced models. �e effect on 

the predictions is small, but there is a tendency for the 

standard errors to be somewhat larger under the reduced 

model as compared to those under the full model.

Discussion
Use descriptive plots to make evidence-based choices 

in deciding how to smooth growth data

An exploratory analysis is a crucial first step in analyz-

ing data and is descriptive in nature; it does not involve 

any formal statistical modelling. For longitudinal data, it 

is often founded on profile plots that include a profile of a 

trait for each physical unit or ‘subject’ in the experiment 

by graphing the trait values for each unit over time.

Figure  1 gives the profile plots of the PSA, PSA AGR 

and PSA RGR for the tomato experiment. �e “sawtooth” 

pattern evident in the PSA AGR and PSA RGR, but not 

the PSA, in Fig. 1 generally results from transient effects 

on the plants. �ey have been observed in all the experi-

ments conducted in the Smarthouses at the Australian 

Plant Phenomics Facility, University of Adelaide. Sec-

ondly, it is clear that growth is not exponential because 

the RGR is decreasing, rather than constant. However, it 

may be logistic prior to DAP 39, when a 3-day, uninten-

tional watering interruption occurred, because up to that 

point the AGR shows a single, symmetrical peak.

�ese profile plots are particularly useful because they 

provide an impression of the growth dynamics in the 

experiment, thus allowing an assessment of whether or 

not particular growth models may be appropriate for 

smoothing the data. �e primary function of smooth-

ing the PSA is to refine the description of the data by 

removing the transient effects evident in Fig. 1 in order 

to establish the underlying growth trajectories of the 

plants. Smoothing may be achieved by fitting (i) smooth-

ing splines or (ii) a mathematical function, usually in 

the form of a nonlinear model. Smoothing with splines 

involve the subjective process of deciding on the method 

of smoothing and the smoothing DF; otherwise, if a 

mathematical function is to be used, the particular func-

tion has to be chosen and this involves a similarly subjec-

tive process.

�e smoothing spline DF are somewhat analogous 

to the degree of a polynomial: smaller smoothing DF 

result in a smoother fit. Generally, the transient devia-

tions that occur in HTP facilities mandate that a high 

degree of smoothing be used, typically smoothing DF 

varying between four and six. Automated techniques 

for choosing the amount of smoothing, such as cross-

validation and mixed model fitting, do not result in suffi-

cient smoothing. Instead, we advocate an evidence-based 

choice of the amount of smoothing and the smooth-

ing method, with the aid of median-deviations plots of 

observed minus smoothed values of the PSA, PSA AGR 

and PSA RGR (Fig. 5). Median values above zero indicate 

either that the smoothed value is under-estimating the 

trend or that there is a positive transient effect; median 

values below zero indicate the opposite. Comparisons of 

unsmoothed and smoothed profile plots assist in decid-

ing between whether the estimation is faulty or a transi-

tory response has occurred (Fig. 6). �e underestimation 

of the initial PSA values and the overestimation of the 

initial PSA AGR and PSA RGR with direct smoothing 

when the degrees of freedom are small is, in our experi-

ence, common when the range of the PSA values being 

smoothed cover a range of two or more orders of mag-

nitude. It seems that this is due to the high degree of 

smoothing being imposed, in conjunction with the une-

ven influence of the smoothing penalty over this large 

range of values. In such cases, log smoothing is likely to 

be preferred, unless conclusions are to concentrate on 

time points beyond the first few time points and so the 

smoothed values for the initial DAPs can be discarded in 

subsequent analyses. �en the selection of the smoothing 

method should be based on the behaviour of the methods 

within the range of primary interest. It can happen in an 

experiment that there is an abrupt change in the growth 

rate, for example when the watering regime for at least 

some of the plants changes from restricted watering to 

full watering. In such cases the use of segmented smooth-

ing, where the data is divided into subintervals each of 

which is separately smoothed, may be more appropriate 

than smoothing the undivided data.

An alternative method of smoothing the data is to 

fit a mathematical function, such as a three- or four-

parameter logistic function. Such nonlinear models are 
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Fig. 5 Median deviations of observed minus smoothed PSA values. Each line corresponds to a smoothing scheme, a scheme being the 

combination of a smoothing method with a value for the DF. Median values above zero indicate that the smoothed value is under-estimating 

the trend or that there is a positive transient effect; median values below zero indicate the opposite. The dashed black envelope is 10% of the 

log-smoothed sPSA for six DF
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popular [15], and have the advantage that they attempt 

to represent the underlying mechanism. Pinheiro and 

Bates [23] catalogue as their advantages that they incor-

porate parameters (e.g. an asymptote) that have a natu-

ral biological interpretation, are more parsimonious in 

that they involve less parameters, and provide more reli-

able predictions outside the observed times. Against this, 

making predictions beyond the observed times is danger-

ous and is often not a requirement in the context of HTP. 

Further, the mechanistic property is only of advantage if 

the response is actually being generated by the hypoth-

esized mechanism. A particular problem for nonlinear 

models arises when treatments are applied during growth 

because it is difficult for nonlinear models to cope with 

Fig. 6 Comparison of the smoothed and raw PSA AGR (a) and PSA RGR (b) curves for six DF. The left hand panes were obtained by direct 

smoothing of the PSA RGR values using six smoothing DF, whilst the right hand panes are based on log smoothing. The central panes are derived 

from the raw, observed data. The vertical lines delineate intervals of reasonably homogeneous growth dynamics observed in the sPSA, sPSA AGR 

and sPSA RGR. The black line through the profiles is the median profile and the dashed lines are the outer whiskers (points outside the whiskers are 

potential outliers). The colours differ between the Zn treatments
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the changes in growth rates that ensue. �e tomato 

experiment provides an example of this difficulty, in this 

case resulting from the unintentional “treatment” due to 

the interruption to watering at DAP 39. In such cases, 

and more generally, the semiparametric approach has 

the advantage that it seeks to follow the observed trend. 

Further, it has been demonstrated here, and is elaborated 

upon below, that the semiparametric method is capable 

of producing a variety of biologically relevant param-

eters, including a number that are similar to those pro-

duced using nonlinear models. �e amount of smoothing 

achieved with nonlinear models is comparable with that 

achieved with smoothing splines using low smoothing 

DF. However, as noted previously mathematical func-

tions assume a form to the growth that may not apply in 

a particular case and a subjective choice of a function is 

necessary. �e tools that have been outlined for choosing 

the amount and method of smoothing can also be used to 

assess the applicability of particular mathematical growth 

functions.

It is emphasized that this smoothing process is a purely 

descriptive procedure and does not entail formal statisti-

cal inference. As a result no attempt is made to formally 

model the variance of the observed response around the 

smoothed trend at this stage.

Pro�le plots of the smoothed data are a useful descriptive 

tool and aid outlier identi�cation

Profile plots of the smoothed traits are useful as descrip-

tions of the original longitudinal data, particularly with 

the addition of loess smooths for each treatment, and as a 

diagnostic tool. For example, Fig. 2a is presented, in a dif-

ferent form, without loess curves and without the outlier, 

in Figure 3 in Watts-Williams et al. [11]; profile plots with 

loess curves are given in Figure 1 in Al-Tamimi et al. [2].

�e traces over time of each cart that make up a pro-

file plot (i) show the underlying growth trajectories (ii) 

display the variability in replicate plants, and (iii) make 

it easier to identify unusual (outlier) plants, the latter 

because the plots involve multiple observations of each 

plant. �e R package growthPheno [24] can include 

outer “whiskers” over time, such as are often included in 

boxplots; potential outlying data is indicated where lines 

move outside these whiskers. Other criteria that might be 

used in deciding if a plant is a potential outlier, and so 

a candidate for exclusion, include: (i) plants whose sPSA 

values are below, or above, a specified threshold value in 

a particular time interval, for example the last few days of 

imaging; (ii) plants whose sPSA AGR or sPSA RGR val-

ues are close to zero when the bulk of plants are not, or 

plants with excessive or haphazardly fluctuating growth 

rates. �e threshold values may well vary with different 

treatments. Generally, it is advisable to attempt to verify 

that something irregular happened with a particular plant 

before removing it. �us, lab books and images are exam-

ined for possible reasons for a plant’s exceptional behav-

iour to justify removal.

Extracting per-cart growth traits using the smoothed 

pro�le plots

Here the focus is on extracting PSA-based traits that 

capture the growth dynamics. For the SET process, 

smoothed profile plots, like those in Fig. 2, play a central 

role in determining the traits to be extracted. All three 

plots are examined to subjectively identify time inter-

vals during each of which growth dynamics appear to be 

homogeneous. For example, an interval might cover a 

period in which (i) the AGR was increasing for all plants, 

(ii) the AGR was increasing at a different rate as com-

pared to the previous interval, (iii) there is no increase in 

AGR, (iv) biomass did not change, (v) biomass decreased, 

(vi) the RGR is constant, (vii) there is a limited number 

of plant groups that differ in their growth dynamics, for 

instance two groups, one of which is growing rapidly 

and the other is growing much less during the proposed 

interval, or (viii) plant behaviour is generally inconsist-

ent. If treatments are applied during imaging then inter-

vals will need to be aligned with their application. For 

example, a treatment on a single day is likely to result in 

an interval stopping and another starting with the last 

imaging before treatment; a period of treatment is likely 

to necessitate one or more intervals covering the period. 

Once the intervals are chosen, the sPSA values for the 

end points of these intervals and the mean sPSA AGR 

and sPSA RGR for each interval are extracted. Such traits 

have been successfully used in QTL and GWAS analyses, 

as published results [2, 6, 7, 9, 25] demonstrate.

Other possible PSA-based extracted traits include 

the maximum growth rate, the time at which the maxi-

mum sPSA was reached or the time at which maximum 

growth rate was attained. Additional imaging variables, 

like maximum height and top view convex hull, could be 

used to form extracted traits. �e transpiration use effi-

ciency (TUE) [2], the water use index (WUI) [8] and total 

and individual leaf length [9] have also been employed as 

traits. Further, traits could be based on chemical meas-

urements or results from hyperspectral imaging data. All 

of these traits can be smoothed and have traits extracted 

over the entire period of imaging or for one or more 

intervals, in the same manner as the PSA.

Longitudinal analysis is popular, but producing a valid 

analysis is challenging

�e aim of the longitudinal analysis is to obtain esti-

mates of the time trend for the traits by fitting a model to 

describe the behaviour of the complete set of values for 
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one of the traits, without any pre-smoothing of the data. 

�e intuitively obvious approach to the analysis of HTP 

data is longitudinal analysis and it is often what is used, 

either via nonlinear models or smoothing splines. Such 

analyses have the advantage that the trend is exhibited 

continuously.

�e longitudinal analyses reported here have two com-

ponents: an analysis and a prediction component. For the 

analysis component, both the PSA and the logarithm of 

the PSA are analysed, the analysis of ln(PSA) only being 

necessary if the estimation of the PSA RGR is required. 

For the prediction component, the predicted values over 

time are obtained for the PSA and ln(PSA) from the 

results of the analysis component. �en the estimates of 

the trends over time are obtained for (i) the PSA AGR, 

using the predicted values from the analysis of the PSA, 

and for (ii) the PSA RGR, using the predicted values from 

the analysis of the ln(PSA). For each growth rate (GR), 

the predicted values for consecutive DAPs are differ-

enced. Calculating the GRs in this way maintains a con-

sistency between a GR and its parent trait and allows the 

calculation of the standard errors and LSD values from 

those for the parent trait.

An issue that commonly arises in connection with lon-

gitudinal analysis is how to adequately model the varia-

tion in the experiments. If this is not achieved then the 

standard errors and the appraisal of the significance of 

differences between predictions is likely to be in error. 

Examination of Fig. 2 reveals that the spread amongst the 

four replicates in the tomato experiment is not the same 

over the entire imaging period so that variances that dif-

fer between DAPs will need to be incorporated into the 

model. Also, general experience suggests that correlation 

between neighbouring DAPs is likely. �us, these aspects 

need to be modelled via covariance models. Random 

regression modelling can be used to model various covar-

iance functions for a particular set of data [26] and this 

has been extended to RRMS [27]. For example, genetic or 

phenotypic covariance functions might be modelled by 

specifying splines for the lines or for the individual sub-

jects in the experiment, respectively. �e subject-specific 

splines model phenotypic covariance. However, subject-

specific splines may not provide an adequate descrip-

tion of the phenotypic covariance at the subject level [21, 

28] and it may be necessary to allow for unequal vari-

ances and correlation between the times as well. Several 

authors [18–20, 29] have recently advocated the use of 

RRMs to characterize plant growth. However, the speci-

fication of the RRM is somewhat variable. Some authors 

are under the incorrect impression that there is no need 

to investigate the correlation structure of the residuals if 

subject-specific RRMs are used, and even that equal vari-

ances between times is unnecessary when using RRMs. 

Also, it is not necessarily appreciated that RRMs can 

be fitted at several levels and that only subject-specific 

RRMs contribute to the modelling of the residual covari-

ance structure. Here FRMSs were used at the treatment 

level and RRMSs were used at the subject level. However, 

the incorporation of unequal variance and first-order 

autoregressive correlation between DAPs in the mixed 

model was found to be necessary to adequately model 

the variation in the tomato experiment. Not including 

them in the model resulted in some overestimation of the 

standard errors.

Clearly, longitudinal mixed models can be quite com-

plex and fitting them can be quite difficult, even for a 

relatively simple example like the tomato experiment. 

Frequently models do not converge to a stable solu-

tion and so have to be abandoned, as happened with the 

tomato example. Also, fitting splines as an integral com-

ponent of the mixed model was not entirely successful in 

that the degree of smoothing appeared to be insufficient 

to deal with the amount of temporal variability in the 

data, a problem others have noted [18].

SET-based analyses avoid the complications 

of RRMS-based analyses, while both result in similar 

conclusions

�e SET-based method, like longitudinal analysis, can 

be employed in any situation in which there are (at least 

approximately) normally distributed, longitudinal meas-

urements to be analysed. However, for a SET-based 

analysis it is necessary that there are observations for a 

reasonable number of time points, of the order of ten or 

more. �ere were 35 in the tomato experiment. While we 

focus on PSA in this paper, as has already been discussed, 

the SET technique is not restricted to this trait.

A fundamental difference between SET-based and 

longitudinal analyses is that the parsimonious descrip-

tion of the growth dynamics in a trait is integral to SET-

based analysis. Nonetheless, optionally, summary growth 

parameters can be extracted post-analysis from the pre-

dictions obtained from a longitudinal analysis, including 

for specific intervals, as is done in a SET-based analysis. 

However, the significance of differences in the param-

eters is generally limited to those that are linear functions 

of the analyzed response and producing them may be 

convoluted. A SET-based analysis is a more straightfor-

ward option.

�ere is an intrinsic efficiency to analyzing intervals as 

compared to individual time points in that neighbouring 

time points are often highly correlated (for the tomato 

experiment, the estimated correlation for neighbouring 

time points was 0.88 and 0.77 for time points with a sin-

gle intervening time point). Consequently, the results of 

neighbouring time points will be similar and there will be 
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a larger number of hypothesis tests so that more falsely 

significant conclusions are likely.

Comparison of Figs. 3 and 4 reveals that the SET-based 

analysis has picked up essentially the same trends in the 

traits as the longitudinal analysis, albeit on a coarser 

scale, and results in similar conclusions. Crucial to 

achieving this is the choice of intervals for the SET-based 

analyses.

Not only are the results similar, but some of the prob-

lems noted for a longitudinal analysis are avoided in a 

SET-based analysis. �e pre-smoothing of the data allows 

the imposition of a greater degree of smoothing so that 

more of the transitory variation is removed. Because 

analyses are performed on per-cart traits, convergence of 

the fitting process is much less of an issue and the tech-

nique is computationally cheap. Valid results are more 

likely because the need to deal with correlation between 

times is avoided and heterogeneous variances across 

times is automatically accommodated. �e analysis of 

individual time points, as is proposed here and in Kwak 

et  al. [17], may have the problem that the correlation 

between time-points is not taken into account [18]; simi-

lar comments apply to a series of time intervals. However, 

it would appear, from the results of the study reported in 

Additional file  2 that, as long as comparisons are lim-

ited to predictions at the same time, then the proposed 

separate analyses are valid. However, one still needs to be 

alert to the possibility of unequal variances arising from 

different treatments; this often occurs with well-watered 

as compared to restricted watering of plants for example.

It also may be argued that the longitudinal analysis has 

the advantage of utilizing all of the data. However, the 

pre-smoothing process that is part of the SET-based anal-

ysis also uses all of the data. As for summarizing growth 

rates within intervals using interval estimates of growth 

rates for smoothed data, the proposed estimator is the 

weighted average of that data for all of the time points in 

the interval. It is true that, for an interval, this simplifies 

mathematically to the difference between the smoothed 

values for the interval end points. However, neighbouring 

observed values have contributed to these values through 

the smoothing process and anomalous time points can 

be avoided by ensuring that they are not chosen as end 

points for intervals. In any case, the same calculations 

would be performed on predictions from longitudinal 

analyses to produce equivalent interval growth rates.

Choosing between a SET-based and a longitudinal analysis

Which of these two methods is used to analyze the lon-

gitudinal data from an experiment will depend upon 

the objectives of the experiment, the practicalities of 

the situation and the preferences of the researchers. A 

SET-based analysis is better suited than longitudinal 

analysis to situations in which at least one of the follow-

ing applies: (i) an objective is to provide a parsimonious 

description of growth, perhaps, focusing on differences 

in specific intervals (ii) biologically relevant traits are to 

be extracted for subsequent analysis, a common objective 

of the functional analysis of growth data that our method 

also facilitates, or (iii) an analysis that is computationally 

less demanding or based on a simpler model, while still 

capturing the essential features of the exhibited growth 

dynamics, is wanted. A longitudinal analysis is appropri-

ate when the objective is solely to characterize the broad 

growth trajectory and one is able or prepared to under-

take the analysis. �e SET-based technique has been 

used successfully in a number of published analyses [2, 3, 

6–9, 11, 25, 30]. On the other hand, a difficult longitu-

dinal analysis was used when a broad description of the 

growth trajectories with error intervals for the different 

treatments was required [31].

Subjectivity in growth analyses

Subjectivity in growth analyses arises in choosing an 

analysis method and in the models employed in the 

analysis:

1. It occurs at the outset of a growth analysis with the 

need to decide whether a SET-based or a longitudinal 

analysis is to be conducted. As we discussed in more 

detail above, the objectives of the researchers and 

their preferences have a role to play in  making this 

decision.

2. A subjective element is involved, for both SET-based 

and longitudinal analyses, in the choice of the models 

to be used to describe (i) the growth trend and (ii) 

the variation in the experiment. For modelling the 

growth trend, the objective is to identify a model that 

follows the underlying growth trajectory as accurately 

as possible. For this, there is the subjective choice 

between nonparametric smoothing and growth mod-

els in the form of mathematical functions. For non-

parametric functions, subjectivity arises in selecting 

the method of smoothing and the associated smooth-

ing parameters. For growth models, the particular 

form of mathematical function is often subjectively 

selected. We have suggested median deviations plots 

as a means of making these choices evidence-based. 

�e choice of a variation model is somewhat more 

vexed, especially for a longitudinal analysis. �e 

model needs to account for spatial variation in the 

data, unequal variance between treatments and cor-

relation and unequal variances between time points. 

Because the occurrence of these different forms 

of variation varies between experiments, a set of 

potential models that cover the anticipated forms of 
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variation in an experiment is subjectively identified. 

Choosing a model from this set that is appropriate to 

describing the data can be based on hypothesis tests 

and diagnostic plots of residuals.

3. It may be an objective of the analysis to produce esti-

mates of growth parameters in order to obtain a par-

simonious description of specific aspects of growth 

with a view to comparing different lines and/or treat-

ments with respect to these parameters. When a 

mathematical function is used to model the growth, 

the possible growth parameters are often restricted 

to those based on the parameters for the selected 

growth model, As an example, the parameters for 

the three-parameter logistic described in “Methods” 

section under the heading “Data smoothing” are the 

upper asymptote, the time at which half the asymp-

tote is reached and a scale parameter that is approxi-

mately the time elapsed between reaching half and 

three-quarters of the asymptote. In addition to the 

subjectivity involved in selecting a mathematical 

function, the choice of one or more of these param-

eters, or others derived from them, as summaries of 

particular aspects of growth has a subjective com-

ponent. When splines are used to model the growth, 

the number of growth parameters available is con-

siderable, as has been outlined in the discussion of 

the extraction of per-cart growth traits. In the same 

manner as for choosing aspects of growth to summa-

rize when mathematical functions are used to model 

growth, subjectivity applies in making these choices 

when splines are used to model growth.

Conclusions
We have compared two methods for analyzing data from 

HTP facilities: SET-based and longitudinal analyses, 

both of which used cubic smoothing splines to describe 

the trend in the traits of interest over time, although the 

SET-based analysis also investigated the use of a logistic 

curve.

It has been demonstrated that features of the SET-

based method include that it focusses attention on spe-

cific time periods and produces traits that can be subject 

to further analysis. SET-based analyses are easier to 

perform than longitudinal analyses and the technique is 

flexible, efficient, valid and widely applicable. �us, the 

SET-based analysis will appeal to those researchers who 

want to perform a valid growth analysis without hav-

ing to contend with the complications associated with 

longitudinal analyses, or for whom focusing on growth 

in distinct time periods will allow them to test relevant 

scientific hypotheses. �e SET-based analysis has been 

successfully employed for several published phenotypic 

analyses [2, 3, 6–9, 11, 25, 30]. We have developed the R 

package growthPheno [24] that facilitates the SET.

On the other hand, if a traditional analysis is chosen, 

it is necessary to carefully consider the modelling of the 

variation in the experiment. �is is crucial to ensuring 

that the p-values used in model selection and hypothesis 

testing are correct and in obtaining accurate estimates of 

the standard errors to be employed in assessing predic-

tion differences.

Methods
Plant growth and data acquisition

�e 32 pots involved in the experiment were placed into 

32 carts on the conveyor system within a Smarthouse at 

the Australian Plant Phenomics Facility, University of 

Adelaide, where they occupied two lanes by 16 positions. 

�ere were four replicates of each treatment and a ran-

domized complete-block design was used to assign the 

treatments. �e plants were imaged daily from 17 to 51 

DAP using RGB cameras. From these images the PSA of 

the plant was obtained by summing the areas as meas-

ured (in kilopixels or kpixels) from two side views at an 

angular separation of 90° and a view from above [2]. �is 

resulted in 1120 PSA values, which are used as a meas-

ure of plant biomass, having been shown to be related to 

plant fresh weight for numerous species [2, 12, 32–34]. 

Note that watering was unintentionally interrupted for 

3 days (39–41 DAP inclusive).

Calculating growth rates

�e AGR and RGR between two time points, tj followed 

by tk, can be calculated as follows [14]:

If there are observations at several time points between 

tj and tk, it can be proved that the weighted mean of the 

AGRs and RGRs for all pairs of observed time points in 

the interval tj to tk, is given by the formulae in (1), when 

the weight for each GR being averaged is the time range 

for each GR. Such a GR is referred to as an interval GR 

and those for successive time points are called continu-

ous GRs. �at is, the AGR and RGR for a time interval 

from tj to tk that covers several subintervals are given by 

Eq. (1). �e formulae can be adapted to traits other than 

PSA. �us, if a WUI has been obtained for a set of time 

points, then the continuous and interval WUIs can be 

derived from the AGR formula. �is method avoids the 

(1)

AGR(tj ,tk) =

PSAtk − PSAtj

tk − tj
and

RGR(tj ,tk) =

ln
(

PSAtk

)

− ln

(

PSAtj

)

tk − tj
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problematic assumption of a homogeneous GR for the 

interval, as required for the use of linear regression as 

outlined in Paine et al. [15].

�e growth rates can also be calculated using the first 

derivatives of the smoothing splines. However, not all 

software provides them and they are more complicated 

to use, especially for obtaining interval GRs. Further, dif-

ferencing is the only way to calculate observed or raw 

GRs.

SET procedures

A SET-based analysis, as exemplified for the tomato 

data, involved the six steps shown in Fig. 7. �e first five 

of these steps, the SET, amount to data preparation for 

the remaining analysis step. In the SET, the raw data is 

explored, smoothed and cleaned to obtain a data set that 

has had transient deviations from trend removed by the 

smoothing and has had outlying plants that can be iden-

tified as being unambiguously flawed, removed �ey are 

graphics intensive, as is also advocated by others [15].

Fig. 7 Outline of the SET-based analysis processes and outputs. The first five steps are the SET and the remaining set is the analysis step. The solid 

lines indicate a move onto the next step in the process, the dashed lines indicate the production of outputs by the process and the dotted lines 

indicate input into a step in the process
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�e SET was done using growthPheno [24] and 

nlme [35], both of which are packages for the R statistical 

computing environment [36]. �e functions used from 

these packages are those that allow the simultaneous pro-

cessing of all plants from an experiment. �ey require a 

single column for (i) a plant identifier, (ii) the times for 

each observation, (iii) each of the factors specifying the 

treatment associated with an observation, and (iv) each 

of the traits. �e package growthPheno has options 

that allow the specification of the handling of missing 

values. While the traits that we are using as examples are 

botanical in nature, the software is not restricted to pro-

cessing this type of trait.

Import, select and derive longitudinal data

�e data from processing the images of the plants in the 32 

carts in the tomato experiment over DAP 17–51 was sup-

plied in an Excel file and imported into R [36]. �e trait of 

interest is the projected shoot area (PSA); the PSA values 

were used to derive the continuous absolute growth rates 

(AGRs) and relative growth rates (RGRs) for adding to the 

data, a continuous growth rate (GR) being a GR obtained 

for each time of imaging. Based on Eq. (1), the continuous 

AGR was calculated by taking the difference between suc-

cessive PSA values and the continuous RGR calculated by 

taking the difference between the logarithms of successive 

values, the time difference being one day; a value for the 

first imaging time is not produced for either GR.

Exploratory analysis

Profile plots for PSA, PSA AGR and PSA RGR have been 

produced for the exploratory analysis, a profile plot for 

a trait containing a line for the trait values over time for 

each cart.

Data smoothing

�e PSA values are to be smoothed either by fitting 

natural cubic smoothing splines or by fitting a three-

parameter logistic function to the data for each cart. For 

smoothing using splines, there is a choice of two meth-

ods: (i) log-smoothing for which splines are fitted to the 

natural logarithms of the PSA values for each cart and 

then backtransforming the fitted values, i.e. by taking the 

exponentials of the fitted values; (ii) direct smoothing, for 

which the spline is fitted to the untransformed data. In 

addition, the smoothing DF must be specified. �e equa-

tion for a three-parameter logistic function is given by

where φ1 is the upper asymptote, φ2 is the time at which 

half the asymptote is reached and φ3 is a scale parameter 

that is approximately the time elapsed between reaching 

PSAt = φ1

/{

1 + exp
[

−(t − φ2)
/

φ3

]}

,

half and three-quarters of the asymptote. It is noted 

that, if there is missing data for one or more time points, 

imputed smoothed values can be obtained for them.

To choose the smoothing method and smoothing DF 

for the tomato experiment, median-deviations plots were 

generated for smoothed data obtained from the PSA, PSA 

AGR and PSA RGR by (i) both direct and log smoothing 

in combination with four, five, six and 12 smoothing DF, 

and (ii) the fitting of a three-parameter logistic curve.

�e median deviations plots for PSA are in Fig. 5, while 

the complete set is in Additional file  1: Figures  S1–S3. 

For these plots, the median deviations are obtained by 

(i) calculating the deviation, observed minus smoothed 

value, for each plant at each time point, and (ii) calculat-

ing the median of the deviations at a single time point for 

the plants to be plotted in a single pane of the graph. One 

would expect the magnitude of the deviations to increase 

as the smoothing DF decreases, because there is, as ever, 

a trade-off between the amount of smoothing and the 

magnitude of the deviations from the observed trend.

�e median deviations of the observed PSA values 

from directly smoothed PSA values for four, five and six 

smoothing DF deviate markedly from the observed data, 

especially prior to DAP 31; the median deviations for the 

logistic also have larger negative values up to DAP 23, 

especially for the +AMF treatment. �e deviations in 

this earlier period have many values that are in excess of 

10% of median smooth PSA values. It seems that direct 

smoothing with these DF underestimates the initial trend 

and the logistic overestimates it. Log smoothing with 

smoothing DF equal to four or five and the logistic tend 

to produce the largest deviations post DAP 25, while the 

logistic unsurprisingly produces large deviations post 

DAP 47. In these latter periods overestimation seems to 

be occurring. On the other hand, Additional file  1: Fig-

ures S2 and S3, reveal that the PSA AGR and PSA RGR 

are underestimated prior to DAP 23, particularly when 

direct smoothing is used with small smoothing DF. �is 

is to be expected given that the PSA values range from 

1.75 to 185.50 kpixels.

Taking into account all of the plots presented in Addi-

tional file 1, log smoothing with six smoothing degrees of 

freedom is chosen for representing the PSA trend over 

DAPs 17–51. �is differs from the previously reported 

analysis [11], where direct smoothing with six smooth-

ing DF were used because the statistical analyses focused 

on DAP 27–43. To confirm this choice, a comparison 

of the results of direct and log smoothing for PSA, PSA 

AGR and PSA RGR when six smoothing DF are used is 

made using Additional file  1: Figures  S4–S6, with the 

comparison for PSA AGR and PSA RGR also shown in 

Fig. 6. �ese profile plots have the feature that the medi-

ans of the data for each pane of the plot are included 
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as a black line and the outer “whiskers” are included as 

dashed black lines. �e lower (upper) outer whisker 

is the median minus (plus) 1.5 times the interquartile 

range, the interquartile range being the 75th quartile 

minus the 25th quartile of the data. Points outside the 

outer whiskers are regarded as potential outliers. �e 

largest difference between the two smoothing schemes 

occurred with sPSA RGR, where direct smoothing with 

small smoothing DF is clearly over-estimating the RGR 

in the first 3 days. �e effect of the unintentional water-

ing interruption from DAP 39–43 on subsequent growth 

is apparent, especially in the GRs. �is is a situation in 

which segmented smoothing may have been appropriate. 

However, the smoothed trend lines for log smoothing 

with six DF appear to follow adequately the overall trend 

through this period. Besides, smoothing a short interval, 

such as DAP 43–51, is problematic and in this case there 

is a large decrease in the PSA AGR for DAP 44, especially 

for −AMF.

Data cleaning

In the tomato experiment, there was a plant in the +AMF 

treatment that was obviously much slower growing 

than other plants (see Additional file  1: Figures  S4 and 

S5, where this plant is outside the lower outer whisker 

at times). It was a small plant whose AGR was low, but 

whose RGR was similar to other plants and so does not 

show in Fig. 6. It had low AMF root colonization and a 

random mutated shoot phenotype, which could explain 

why its behaviour was consistent with a plant that was 

not inoculated with AMF. As before [11], we have omit-

ted the plant from the analyses reported here.

Extracting per‑cart growth traits

�e plots in Fig. 2 and the Log-6 plots in Fig. 6 and Addi-

tional file 1: Figures S4–S6 were examined by statisticians 

and researchers to subjectively identify time intervals 

during each of which growth dynamics appear to be 

homogeneous. �e vertical dashed lines in Additional 

file 1: Figures S4–S6 and in Fig. 6 mark the chosen inter-

vals: DAP 18–22 was a period of increasing AGR; DAP 

22–27 was a period of even faster increases in the AGR; 

DAP 27–33 was a period during which the AGR peaked; 

DAP 33–39 shows a relatively constant rate of decrease in 

the AGR; DAP 39–43 is the period of restricted watering 

and followed by a 2-day recovery period; DAP 43–51 was 

a period in which the AGR is flat but fluctuating wildly. 

Traits can be formed from the values of sPSA, sPSA AGR 

and sPSA RGR for time-interval end points and the mean 

values of the sPSA AGR and sPSA RGR over each of the 

time intervals. �us, there are potentially 33 extracted 

traits:

1. sPSA, sPSA AGR and sPSA RGR at DAPs 18, 22, 27, 

33, 39, 43, 51;

2. the sPSA AGR and sPSA RGR for each of the inter-

vals DAP 18–22, 22–27, 27–33, 33–39, 39–43, 43–51.

Analyzing per‑cart growth traits

Of the 33 extracted traits, those for sPSA AGR and 

sPSA RGR at DAP end points will be omitted, leaving 

19 extracted traits to be analyzed. �e per-cart model 

fitting involves fitting a mixed model to each of these 

traits and incorporates terms to account for (i) the spa-

tial variation that affected the experiment and  (ii) the 

effect of treatments on the phenotypic response. �e 

mixed model is of the following form:

where y is the response vector of values for the trait 

being analysed, β is the vector of fixed effects, u is the 

vector of random effects, and e is the vector of residual 

effects. Both X and Z are design matrices, correspond-

ing to β and u, respectively.

For the maximal model for a per-cart trait for the 

tomato experiment, the fixed-effect vector β is parti-

tioned into subvectors as follows: 
[

µ βB βZ βA βZA
]

 , 

where μ is the overall mean parameter and the β sub-

vectors are, respectively, the subvectors of Block (B) 

parameters, Zn (Z) parameters, AMF (A) parameters, 

and parameters for Zn-AMF combinations (ZA). �ere 

are no random effects and the residual vector e is 

assumed to be normally distributed with mean vector 0 

and variance σ2I32, where σ2 is the residual variance and 

I32 is the identity matrix of order 32 i.e. the residuals 

are independently distributed with the same variance 

for all. To check this latter assumption residual-ver-

sus-fitted-values and normal probability plots were 

obtained for all traits (see Additional file 1: Figures S7–

S25). �ere was no evidence of substantial departure 

from the equal variance and normality assumptions.

�e R packages asreml [37] and asremlPlus [38] 

were used to fit the mixed model to the 19 extracted 

traits. Wald F-statistics, with Kenward and Roger [39] 

calculation of their denominator degrees of freedom, 

were obtained to assess the significance of the fixed 

effects involving Zn and AMF. �ese packages were 

also used to produce predicted values and their stand-

ard errors, the latter used to compute LSD (α =  0.05) 

values for comparing pairs of predicted values.

An additional analysis was performed for each 

of sPSA, sPSA AGR and sPSA RGR. For each, their 

extracted traits were combined and a joint analysis 

conducted.

(2)y = Xβ + Zu + e
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�e following tips are offered, based on our experience 

with using the SET method:

1. When the smoothing DF are two, a straight line is fit-

ted, and when the smoothing DF equals the number 

of observed time points the fitted curve goes through 

all of the observed points ([40], Section 3.3.4). Hence, 

the smoothing DF are usually greater than two and 

less than the number of observed time points, the 

actual value depending on the amount of smoothing 

desired.

2. When looking for bias arising from the smoothing 

of individuals, perhaps using the median deviations 

plots, pay particular attention to either end of the 

observed range of times and when there are sudden 

changes in trend.

3. Collect data before and after the times during which 

the interest in growth is concentrated. Always smooth 

all of the data for a plant, even if interest is restricted 

to a subinterval of the observed times. One reason 

for this is to avoid the bias in the smoothing that can 

occur at either end of the period of observation.

4. When examining deviations plots it is expected that 

there will be periodic patterns in the deviations, these 

being due to the removed transient effects.

5. Facet profile plots so that differences between the 

facets are maximized.

6. Choose intervals based on the growth dynamics, it 

not being necessary for the intervals to be equal in 

size. Although the original trait and its AGR and 

RGR should be examined, it often happens that the 

AGR is the most important guide. Focus on broad 

patterns in the trends.

7. Examine the profile plots for likely sources of differ-

ential variance and for anomalous individuals.

Longitudinal analysis

�e aim of the longitudinal analysis was to obtain esti-

mates of the trend over time of the PSA, PSA AGR and 

PSA RGR for each combination of Zn and AMF by fitting 

a model to describe the behaviour of the complete set of 

values for one of the traits, without any pre-smoothing 

of the data. Only the first two and the fourth steps of a 

SET analysis were relevant to the longitudinal analysis, 

because it was carried out on the raw, cleaned data. It has 

two components: an analysis and a prediction compo-

nent. For the analysis component, both the PSA and the 

logarithm of the PSA are analysed, the analysis of ln(PSA) 

only being necessary if the estimation of the PSA RGR is 

required. For the prediction component, the predicted 

values over time are obtained for the PSA and ln(PSA) 

from the results of the analysis component. �e estimates 

of the trends over time are obtained for (i) the PSA AGR, 

using the predicted values from the analysis of the PSA, 

and for (ii) the PSA RGR, using the predicted values from 

the analysis of the ln(PSA). For each GR, the predicted 

values for consecutive DAPs are differenced. Calculating 

the GRs in this way maintains a consistency between a 

GR and its parent trait and allows the calculation of the 

standard errors and LSD values from those for the parent 

trait.

In the analysis component, as in the per-cart analysis, 

splines were used to describe the trend. Variation at the 

cart (subject) level was modelled using (i) RRMSs, in 

which random nonlinear trends between individual carts 

were specified by fitting natural cubic smoothing splines 

with random intercepts and slopes, with a knot per 

observed DAP and homogeneous splines fitted so that 

the amount of smoothing was the same for all carts, (ii) 

unequal cart variance between DAPs, and (iii) first-order 

autoregressive correlation between different DAPs. An 

FRMS was used to describe the trend over time for each 

combination of Zn and AMF; it employed heterogeneous 

splines, that is, splines for which the amount of smooth-

ing was allowed to differ between the combinations. 

However, the same number of equally spaced knots was 

specified for these splines, although four analyses were 

conducted with one of 10, 15, 20 or 35 knots.

�e mixed model on which the analysis of these two 

traits is based is of the form given in Eq. (2). �e maximal 

model for this analysis includes a subject-specific RRMS, 

a subject being a Block-Cart combination. It has the 

fixed-effect vector β partitioned into subvectors as fol-

lows: 
[

µ βB βZ βA βZA βD βDB βDZ βDA βDZA
]

 , where 

μ is the overall mean parameter and the β subvectors are, 

respectively, the subvectors of Block (B) parameters, Zn 

(Z) parameters, AMF (A) parameters, parameters for Zn-

AMF combinations (ZA), DAP (D) parameters, parame-

ters for DAP-Zn combinations (DZ), parameters for 

DAP-AMF combinations (DA), and parameters for DAP-

Zn-AMF combinations (DZA). �e incidence matrix X is 

partitioned to conform to the partition of β. �at is, the 

maximal fixed model involves a full three-factor interac-

tion model for the factors Zn, AMF and DAPs, which 

provides an unsmoothed representation of the differ-

ences in the trend over the DAPs for the different Zn-

AMF combinations. To specify the RRMS, and using 

“xD” to signify a centred, numeric covariate for the cate-

gorical factor DAPs, the random effects vector u is parti-

tioned as 
[

uBC uBCxD uBCspl(xD)

]

 , where uBC is the 

subvector of Block-Cart random effects, uBCxD is the sub-

vector of random DAP slopes over xDAP for each Block-

Cart combinations and uBCspl(xD) is the subvector of 

random spline coefficients of the spline basis functions 

for xDAP for each Block-Cart combination. �e 
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incidence matrix Z is partitioned to conform to the parti-

tion of u. �e vector 
[

uBC uBCxD

]

 is assumed to be nor-

mally distributed with mean vector 0 and variance 

�xD ⊗ I32 , where �xD is 2 × 2 matrix specifying the vari-

ances and covariance of the intercepts and slopes and I32 

is an identity matrix of order 32, the number of Block-

Cart combinations. �e vector uBCspl(xD) is assumed to be 

normally distributed with mean vector 0 and variance 

σ
2
BCspl(xD)GBCspl(xD) , where GBCspl(xD) is a matrix derived 

from the knot points for the fitted spline. �e residual 

vector e is assumed to be normally distributed with mean 

vector 0 and variance �1120, where, for y ordered by 

Block-Cart then DAP, all elements are zero except for 32 

diagonal blocks, one for each Block-Cart combination, 

�e variance matrix for the ith Block-Cart, �i , is 35 × 35 

and allows for different variances for different DAPs and 

first-order autoregressive correlation between DAPs i.e. 

correlation that decreases according to a power law as 

the number of intervening DAPs between a pair of DAPs 

increases. Formally,

where σj is the cart standard deviation on the jth 

DAP and ρ|tk−tj| is the correlation between DAPs tk and 

tj, being the correlation between consecutive DAPs, 

ρ, raised to the power equal to the number of DAPs 

between the two DAPs. In terms of variation, this model 

allows for Block differences, random variation between 

carts, random variation between carts in the curved 

trend over the DAPs that each follows and random devia-

tions from this trend on a particular DAP for a particular 

cart; this last variation varies from one DAP to the next 

and there is correlation between observations on differ-

ent DAPs that is strongest for consecutive DAPs.

�e model selection strategy for a response proceeded 

in stages as follows:

1. Select the model to describe the spatial and tempo-

ral variation present in the response �e maximal 

mixed model was fitted to the response. �en tests 

of whether the random model could be simplified 

were carried out: is unequal variance between times 

needed? Is the autocorrelation significant? Can 

the spline component for variation in time trends 

between carts be removed to leave a random linear 

�i =
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term? If variance components were estimated to be 

very close to zero, they were either removed, if they 

were single-component terms, or fixed at 1 × 10
−4 , if 

they were one of the DAP variances. �e latter is jus-

tified in that it is indicating that the variation in vari-

ance for that DAP is derived entirely from variance 

in the curved trend. Unsmoothed predictions for the 

combinations of Zn, AMF and DAPs are obtained 

from this model.

2. Explore the amount of smoothing to apply to the 

FRMS describing the time trend of each combi-

nation of Zn and AMF For this, the three-factor 

model for Zn, AMF and DAPs was reparameter-

ized to specify an FRMS that includes fixed linear 

and random spline terms, based on xDAP a centred, 

numeric covariate for the DAPs, and random devia-

tions terms for DAPs; heterogeneous spline terms 

for each combination of Zn and AMF were speci-

fied leading to separate variance components for 

each combination and hence different amounts of 

smoothing for them. �at is, the partition of β was 

modified to 
[

µ βB βZA βxDZA
]

, where the βZA con-

tains the intercept parameters for each combination 

of Zn and AMF and βxDZA contains the fixed slope 

parameters over xDAP for each combination of Zn 

and AMF. �e random vector u is partitioned into 
[

uhet(ZA)spl(xD) uZAD uBC uBCxD uBCspl(xD)

]

 , where 

uhet(ZA)spl(xD) is the subvector of random spline coef-

ficients of the spline basis functions for xDAP with 

heterogeneous variance components for each Zn-

AMF combination and uZAD is the subvector of ran-

dom deviations from the fitted curved trend for each 

Zn-AMF-DAPs combinations �e degree of smooth-

ing was altered by fitting the FRMS with 10, 15, 20 

or 35 equally-spaced knots for the Zn by AMF by 

spl(xDAP) term, uZAspl(xD). For each fit, a test for the 

significance of the random deviations was conducted.

3. Choose the number of knots by obtaining the predic-

tions for different amounts of smoothing for each 

trait and calculate GRs from each set of predictions 

�e predictions for the observed values of xDAP in 

combination with the levels of Zn and AMF were 

obtained, along with the predictions and LSD (5%) 
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for comparing predictions at the same DAP. �e pre-

dictions and half-LSD intervals were plotted for each 

of the four knot numbers and subjectively compared. 

�e calculation of the predicted growth rates were 

obtained by taking differences between consecutive 

predictions of either the PSA or the ln(PSA). �e 

LSD (5%) for the predicted growth rates were cal-

culated from those of the corresponding primary 

response, PSA or ln(PSA). Also, to examine the fit of 

these (smoothed) predictions, plots of the trend devi-

ations were produced, the trend deviations being the 

difference between the unsmoothed predictions and 

the smoothed predictions. �ese are analogous to the 

median deviations used in the SET.

4. Look to simplify the FRMS describing the effect of 

Zn and AMF on the trend over DAPs Firstly, for 

the chosen number of knots, a test of significance 

was conducted to determine if the ZAD random 

deviations were significant; if they were not sig-

nificant, they were dropped from the model. �en 

tests of significance were made to compare models 

with heterogeneous spline terms for each Zn-AMF 

combination, heterogeneous spline terms for each 

AMF level, heterogeneous spline terms for each Zn 

level and a single, homogeneous spline term across 

all Zn-AMF combinations. If none of the models 

with heterogeneous spline terms was significant, 

then a third parameterization of the model was fit-

ted, this one incorporating interactions between 

(i) Zn, (ii) AMF, and (iii) the Zn by AMF interac-

tion with xDAP and spl(xDAP) and DAPs, where 

each spline term has a single, homogeneous spline 

component. In this case the partition of β was 

modified to 
[

µ βB βZ βA βZA βxDZ βxDZA βxDZA
]

 

and that for the random vector u to 
[

uZspl(xD)

uAspl(xD) uZAspl(xD) uZD uAD uZAD uBC uBCxD uBCspl(xD)

]

 . 

�e difference between this and the previous param-

eterization is that main effect terms for Zn and AMF 

have been included for each of the intercepts, slopes 

and splines. For each response, a test of significance 

was conducted to determine if the ZAD random 

deviations were significant; if they were not signifi-

cant, they were dropped from the model and tests 

of the ZD and MD random deviations conducted, 

dropping any nonsignificant deviations. On comple-

tion of these tests, a test was conducted to establish 

whether the ZAspl(xD) spline term was significant; if 

it was not significant, it was dropped from the model 

and tests of the Zspl(xD) and Mspl(xD) spline terms 

conducted, dropping any nonsignificant spline terms. 

�e predictions from the fitted models were obtained 

for the Zn-AMF combinations over the observed 

DAPs and the growth rates calculated from them.

Again, the R packages asreml [37] and asreml-

Plus [38] were used to fit the mixed models to both 

response variables. Testing for variance terms used 

Restricted Maximum Likelihood Ratio Tests (REMLRT), 

the calculation of the p-value being adjusted when the 

test involved a variance component constrained to be 

nonnegative [21]. Wald F-statistics, with Kenward and 

Roger [39] calculation of their denominator degrees of 

freedom, were obtained to assess the significance of the 

fixed effects. �ese packages were also used to produce 

predicted values and their standard errors, the latter used 

to compute LSD (α = 0.05) values for comparing pairs of 

predicted values.

To investigate the adequacy of the fitted models, 

residual versus-fitted-values, boxplots of the residual for 

each DAP and normal probability plots of the residu-

als were obtained and are presented in Additional file 3: 

Figures  S10–S15. �e residual versus-fitted-values and 

residual boxplots appear to be satisfactory, there not 

being any evidence of heterogeneity of variance. How-

ever, the normal probability plots indicate that the nor-

mality assumption underlying the longitudinal analysis is 

not met. On the other hand, the shape made by the resid-

uals in the plot indicates that the data are symmetrically 

distributed. It is concluded that the results of the analyses 

will be approximately correct, especially given the large 

number of observed values in each analysis.
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traits. The results of the joint analysis. A comparison of the predictions and 

LSDs from the separate and joint analyses. 

Additional �le 3. Supporting material for the longitudinal analysis. Four 
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four plots showing the deviations between unsmoothed and smoothed 

predictions. A table of Wald F-statistic p-values and a summary table of 

the variance model hypothesis testing for each of PSA and ln(PSA) for the 

full variance model. A table of Wald F-statistic p-values for each of PSA 

and ln(PSA) for the reduced variance model. Two plots comparing the 

predictions and standard errors obtained under the full and reduced vari-

ance models. Residual-versus-fitted-values, residual boxplots for different 

DAPS and normal probability plots for the longitudinal analysis of PSA and 

ln(PSA). 

Additional �le 4. R scripts and data for preparing the tomato data 

and carrying out the reported analyses. The data is provided in the file 

tomato.dat.csv, but in R is also available with the growthPheno 
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package. The script global.r provides settings, constants and func-

tions that are used across all scripts and is executed at the beginning of 

most scripts. The script SET.r gives the code for obtaining the smoothed 

longitudinal data (Steps 1–4 of the SET process). Cart.dat.r extracts 

the per-cart.traits (Step 5 of the SET process). Cart.anal.r analyses 

the per-cart data and Cart.predict.r obtains the predictions 

based on the selected models (Step 6 of the SET-based analysis). Cart.

joint.r performs the extra joint analysis of per-cart traits. Longi.

anal.r fits several models to all the tomato data for PSA and ln(PSA) 

in order to establish a variance model for each and then, for the selected 

variance model, the number of knots for the splines describing the curved 

trend for each combination of Zn and AMF is varied (Stages 1–2). Longi.

predict.r obtains the predictions for the different numbers of knots 

(Stage 3). Longi.trend.r investigates the effect of Zn and AMF on 

the time trend when 10 knots are used and does diagnostic checking of 

the residuals (Stage 4); it also fits a reduced variance model that assumes 

equal variances for different DAPs and zero correlation between DAPs.
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