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Abstract. For nonparametric estimation of a smooth regression function, local linear
fitting is a widely-used method. The goal of this paper is to briefly review how to use this
method when the unknown curve possibly has some irregularities, such as jumps or peaks,
at unknown locations. It is then explained how the same basic method can be used when
estimating unsmooth probability densities and conditional variance functions.
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1. Introduction

In regression analysis the aim is to describe the functional influence that a covariate

random variable X has on a random variable of interest Y . One is forced to rely

on nonparametric methods if no prior knowledge is available on the functional form

of the relationship. The available nonparametric methods are kernel methods, local

polynomial fitting, spline estimation and wavelet-based methods, among others. All

these methods have been studied in detail when the unknown curves possess some

degree of smoothness (often in terms of differentiability). Special attention has to

be paid when using smoothing methods to estimate functions that show certain

irregularities, such as jumps, peaks, cusps, etc.

In this paper we focus on local linear fitting and review how this method can be

adapted in a simple way to estimate a regression curve that possibly shows jumps

at an unknown number of points (of unknown locations). This is done in Sections 2

*This research was supported by GOA/07/04-project of the Research Fund KULeuven.
Support from the IAP research network nr. P6/03 of the Federal Science Policy, Belgium,
is also acknowledged.
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and 3. From this basic estimation procedure, one can further derive an appropriate

estimator when the unknown curve shows peaks, as outlined in Section 4. Further

extensions consist in estimating a non-smooth density and in estimating a conditional

variance function in a regression setup. These are briefly discussed in Section 5.

2. Local linear curve fitting and smoothing

In this section we briefly review some basic properties of local linear fitting, in

particular those that will have a link with results presented later on for non-smooth

curves.

Consider the simplest form of a nonparametric regression model:

(2.1) Y = m(X) + ε,

where a classical assumption on the error term ε is that the conditional expecta-

tion of ε given X = x is zero and the conditional variance of ε given X = x is

σ2(x) (> 0 and finite). Consequently, under this model setup, we have m(x) =

E(Y |X = x), the conditional mean function (also referred to as the mean regression

function). The aim is then to estimate this unknown function from the observations

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) from model (2.1):

(2.2) Yi = m(Xi) + εi,

with the error terms εi being independent random variables having the same distri-

bution as ε.

The idea behind local linear fitting is very simple. If the interest is in estimating the

regression functionm(·) at a given point x then approximate the unknown curvem(·)

locally—in a neighbourhood of x—by a linear function, and fit this linear function

via least squares. In other words, using

(2.3) m(z) ≈ m(x) + m′(x)(z − x) ≡ a + b(z − x)

for z in a neighbourhood of the given point x, we arrive at the minimization problem

(2.4) minimizea,b

n
∑

i=1

{Yi − (a + b(Xi − x))}2Kh(Xi − x),

where Kh(u) = h−1K(u/h) is a rescaled version of a given kernel function K, and

h = hn > 0 is a bandwidth parameter. Commonly K is chosen to be a symmetric

probability density function. The bandwidth parameter h controls the size of the
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(approximating) neighbourhood while K determines the weight assigned to each ob-

servation within that neighbourhood. This is illustrated in Fig. 2.1. The weight func-

tion is shown as the dotted curve and boundaries of the neighbourhood are indicated

as vertical dashed lines. The Epanechnikov kernel K(u) = 0.75(1 − u2)1{|u| 6 1} is

used in the illustration.

The resulting estimators

(2.5) (â0(x), â1(x)) = argmin
a,b

n
∑

i=1

{Yi − (a + b(Xi − x))}2Kh(Xi − x)

have nice and simple expressions

â0(x) =

n
∑

i=1

K
(Xi − x

hn

)w2,K − w1,K(Xi − x)

w2,Kw0,K − w2
1,K

Yi,

â1(x) =

n
∑

i=1

K
(Xi − x

hn

)w0,K(Xi − x) − w1,K

w2,Kw0,K − w2
1,K

Yi

where wk,K =
n
∑

i=1

K((Xi −x)/hn)(Xi −x)k, k = 0, 1, 2 is a sample version of the kth

moment of the kernel function K.
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Construction of local linear estimator

Figure 2.1. Some simulated data and construction of the local linear estimator at x = 0.5.
Solid curve: true curve; dotted curve: the weights for estimation at x = 0.5.

Note that with (â0(x), â1(x)) one gets simultaneously an estimator for the regres-

sion function m(x) as well as for its derivative m′(x). Local linear fitting, and more

generally local polynomial fitting (obtained by approximating in (2.3) by a poly-

nomial function), have been studied in full detail during the last decades, and the

merits of this smoothing method are very well understood. See for example Fan
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and Gijbels [5] and references therein. Since the early nineties the method has been

successfully applied in a variety of settings including more complex ones such as time

series and multivariate analysis.

When studying the asymptotic behaviour of the local linear estimator (â0(x),

â1(x)) one should make the distinction between the interior region and the bound-

ary regions. Suppose, without loss of generality, that the design points Xi are in the

interval [0, 1], i.e. that the density of X , denoted by fX(·), has support [0, 1]. To ex-

plain the consequences, suppose that the support of the kernel function is [−1/2, 1/2].

With x fixed this means that points y which are such that (y−x)/h ∈ [−1/2, 1/2], or

equivalently, x− 1/2h 6 y 6 x + 1/2h, will get a nonzero weight Kh(y − x) assigned

by the kernel function. If x is such that either x−1/2h < 0 or x+1/2h > 1 then this

means that the kernel assigns weights to points y outside the interval [0, 1]. These

cases, x < 1/2h and x > 1 − 1/2h, therefore deserve some special attention. This

leads to the distinction between

interior region: [hn/2, 1 − hn/2];

boundary region: [0, hn/2) ∪ (1 − hn/2, 1].

One of the merits of local linear fitting is that the method leads to consistent

estimates of the regression function and its derivative even in the boundary regions.

Moreover, the rate of convergence of the regression estimator is the same in the

boundary region as in the interior region. The latter is in contrast to, for example,

the Nadaraya-Watson estimator (Nadaraya [22] and Watson [30]) that suffers from

a slower convergence rate in the boundary regions. Although there is no difference

in convergence rates in both regions, there are some small differences noticeable in

the asymptotic behaviour in both type of regions.

As can be found e.g. in Ruppert and Wand [27] and Fan and Gijbels [5], the

Mean Squared Error (MSE) of the local linear estimator â0(x) in the interior region

x ∈ [hn/2, 1 − hn/2] is given by

(2.6) MSE(â0(x)) =
[h2

n

2
m′′(x)Bc,K

]2

+
σ2(x)

fX(x)

1

nhn
Vc,K + o

(

h4
n +

1

nhn

)

where

Bc,K =

∫ 1/2

−1/2

u2K(u) du = vc,2, vc,j =

∫ 1/2

−1/2

ujK(u) du(2.7)

and

Vc,K =

∫ 1/2

−1/2

K2(u) du.
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Here the index c stands for ‘central’ referring to the fact that the estimator uses

datapoints that fall in the interval [x−hn/2, x+hn/2], an interval ‘centered’ around x.

Consider now a fixed point x in the left boundary region [0, hn/2). We can write

x = τhn with 0 6 τ < 1/2,

where the quantity τ is nothing but the distance of the point x from the left-

endpoint 0. For this point the MSE of the local linear estimator is given by

(2.8) MSE(â0(x)) =
[h2

n

2
m′′(0+)Bc,K(τ)

]2

+
σ2(0+)

fX(0+)

1

nhn
Vc,K(τ) + o

(

h4
n +

1

nhn

)

where now

Bc,K(τ) =
v2

c,2(τ) − vc,1(τ)vc,3(τ)

vc,2(τ)vc,0(τ) − v2
c,1(τ)

(2.9)

and

Vr,K(τ) =

∫ 1/2

−τ

( vc,2(τ) − u vc,1(τ)

vc,2(τ)vc,0(τ) − v2
c,1(τ)

)2

K2(u) du,

where vc,j(τ) =
∫ 1/2

−τ ujK(u) du.

For right boundary points, i.e. for x = 1 − τhn with −1/2 < τ 6 0, there are

similar kinds of expressions. See Fan and Gijbels [5].

From the mean squared error expressions in (2.6) and (2.8) it is clear that the

differences in the first-order asymptotic behaviour are in these constants, depending

on K and on τ appearing in the squared bias and variance. To give some idea about

the differences in these constants we plot in Fig. 2.2 the ratios B2
c,K(τ)/B2

c,K as well

as Vc,K(τ)/Vc,K as functions of τ for three different kernels: the Gaussian kernel,

the Epanechnikov kernel and the uniform kernel. Clearly, all ratios of squared biases

are below 1, whereas all ratios of variances are above 1. So at a boundary point, the

bias tends to be smaller and the variance bigger. At the left-boundary point 0 these

ratios become B2
c,K(0)/B2

c,K and Vc,K(0)/Vc,K . In Tab. 2.1 we list these values for

the three kernels in Fig. 2.2.

kernel ratio B2
c,K(0)/B2

c,K ratio Vc,K(0)/Vc,K

Gaussian 0.5659 6.3308

Epanechnikov 0.3352 7.4966

uniform 0.2500 8.0000

Table 2.1. The ratios B2c,K(0)/B2c,K and Vc,K(0)/Vc,K for the Gaussian, the Epanechnikov
and the uniform kernel.
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Figure 2.2. Behaviour of the ratios of the constant factors in squared bias (left) and in
variance (right).

3. Smoothing and jump preservation

The asymptotic expressions in Section 2 are of course derived under some (suf-

ficient) assumptions. One of them is that the unknown function m has the second

order derivative.

What happens now if the unknown function has some irregularities? The sim-

plest type of irregularities are discontinuities or jump points. So, suppose that the

function m in the regression model (2.1) is such that it jumps at points sj in [0, 1],
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with jump magnitudes dj , j = 1, . . . , M . The number of jump points M is finite but

unknown.

For simplicity of presentation we will from now on concentrate on fixed and equi-

spaced design, xi = i/n (and hence fX = 1). We further act as if there were only one

jump point. All these assumptions are imposed only for simplicity of presentation

and can be relaxed (e.g. to random design).

Suppose that the unknown function m has a jump of size d at location s ∈ (0, 1).

When applying the local linear estimator to the data from model (2.1) with this

regression function, the resulting estimator will be unsatisfactory since it will smooth

out (or ‘blur’) completely the jump point. Intuitively this is clear since the estimator

uses the data in the interval [x − hn/2, x + hn/2], and when x is close to a jump

point then this neighbourhood contains the data from the right-hand side of the

jump-location as well as from the left-hand side of that location. See also the top

panel of Fig. 3.1. This effect is also clear from the first-order asymptotic MSE-

expressions provided in the first row of Tab. 3.1. These asymptotic results were

established by Hamrouni [16] and Grégoire and Hamrouni [13].

How to get to a consistent estimator in this case? Suppose that the point x is close

and to the left of the jump point s. In that case, we should avoid using the data from

the right-hand side of x (since they would blur the effect of the jump). Similarly,

if the point x is close to the jump point s but situated to the right of it, then we

should avoid using the data from the left-hand side of x. This naturally leads to the

consideration of a left local linear estimator and a right local linear estimator. More

precisely, defining two one-sided kernels from the kernel K by putting

Kl(x) = K(x) ∀x ∈ [−1/2, 0), Kr(x) = K(x) ∀x ∈ [0, 1/2],

one considers the left (l) and right (r) local linear estimates of m and m′:

(âl,0(x), âl,1(x)) = argmin
a,b

n
∑

i=1

[Yi − a − b(xi − x)]2Kl

(xi − x

hn

)

,

(âr,0(x), âr,1(x)) = argmin
a,b

n
∑

i=1

[Yi − a − b(xi − x)]2Kr

(xi − x

hn

)

.

For each fixed point x we consider three local linear estimators: the central local

linear estimator, the left local linear estimator and the right local linear estimator.

Important to note is that they use the data from different neighbouring regions: the

central estimator uses the data in [x−hn/2, x+hn/2], whereas the left and right local

linear estimators rely solely on the data in [x−hn/2, x) and [x, x+hn/2] respectively.

Fig. 3.1 depicts the construction of the three estimators at the point x = 0.49, the

neighbourhoods used and the kernel weights (dotted curves at the bottom).
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Figure 3.1. Construction of the central, left and right local linear estimators for a simulated
dataset at the point x = 0.49 close and to the left of the jump point s = 0.5.
Solid line: true regression function.

The asymptotic behaviour of these three estimators at a point x in the region of

continuity ofm is well known. Indeed, the behaviour of the left estimator corresponds

to the behaviour of the central estimator at a left-boundary point (with τ = 0), as

given in (2.8). Note that we deliberately used the same notation τ in Section 2,

although the setup is different. Further, the first-order asymptotic behaviour of the

184



three estimators in a neighbourhood of the jump point s is summarized in Tab. 3.1.

For details see Hamrouni [16] and Gijbels et al. [12].

left neighbourhood right neighbourhood
estim. x continuity point of jump point of jump point

x = s+ τhn with τ ∈ [− 1
2
, 0) x = s+ τhn with τ ∈ [0, 1

2
]

âc,0(x) [
1

2
h2nm′′(x)Bc,K ]

2

[

d
∫

1/2
|τ |

K(u) du
]2 [

−d
∫−|τ |
−1/2

K(u) du
]2

+ σ2

nhn
Vc,K + σ2

nhn
Vc,K + σ2

nhn
Vc,K

âl,0(x) [
1

2
h2nm′′(x)Bl,K ]

2 [1
2
h2nm′′(s−)Bl,K ]

2

[

−d
∫−|τ |
−1/2

Kl(u)

+ σ2

nhn
Vl,K + σ2

nhn
Vl,K ×

vl,2−vl,1u

vl,0vl,2−v2

l,1

du
]2

+ σ2

nhn
Vl,K

âr,0(x) [
1

2
h2nm′′(x)Br,K ]

2

[

d
∫

1/2
|τ |

Kr(u) [1
2
h2nm′′(s+)Br,K ]

2

+ σ2

nhn
Vr,K ×

vr,2−vr,1u
vr,0vr,2−v2

r,1

du
]2

+ σ2

nhn
Vr,K + σ2

nhn
Vr,K

Table 3.1 First-order asymptotic Mean Squared Error expressions for the central, left and
right local linear estimators.

The constants in the asymptotic bias and variance are

Bl,K =
v2

l,2 − vl,1vl,3

vl,0vl,2 − v2
l,1

, Vl,K =

∫ 0

−1/2

K2(u)
[ vl,2 − vl,1u

vl,2vl,0 − v2
l,1

]2

du,

Br,K =
v2

r,2 − vr,1vr,3

vr,0vr,2 − v2
r,1

, Vr,K =

∫ 1/2

0

K2(u)
[ vr,2 − vr,1u

vr,2vr,0 − v2
r,1

]2

du,

Bc,K =

∫ 1/2

−1/2

u2K(u) du = vc,2, Vc,K =

∫ 1/2

−1/2

K2(u) du

with

vl,j =

∫ 0

−1/2

ujKl(u) du, vr,j =

∫ 1/2

0

ujKr(u) du, vc,j =

∫ 1/2

−1/2

ujK(u) du.

For a continuity point the ratios of these constants were provided in Tab. 2.1, indi-

cating a smaller bias but a bigger variance for the left and right estimators. From

the expressions in Tab. 3.1 it is clear that for x in a continuous region, it is prefer-

able to use the central estimator, and for x near a jump point s one should use the

left or right estimator. The crucial question is then how to decide upon these three

estimators in a data-driven way (we do not know whether and where a jump occurs).

A very simple idea here is to use the Weighted Residual Sums of Squares (WRSS)
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as goodness-of-fit measures, namely

(3.1) WRMSj(x) =

∑

i

[Yi − âj,0 − âj,1(xi − x)]2Kj(
xi−x

h )

∑

i

Kj(
xi−x

h )

for j = c, l, r where we denote Kc = K.

The first order asymptotic behaviour of these diagnostic quantities is given in

Tab. 3.2 and can be found in Qiu [24], Lambert [18] and Gijbels et al. [12]. It

has been shown that the remainder terms in these asymptotic results tend to zero

uniformly in x. The quantities C2
τ,c, Cτ,l and Cτ,r are defined in terms of K and of τ ,

the distance from the jump point s. See the previous cited work for their definitions.

left nhd of jump point right nhd of jump point
quantity x continuity point x = s+ τhn x = s+ τhn

with τ ∈ [− 1
2
, 0) with τ ∈ [0, 1

2
]

WRMSc(x) σ2 σ2 + d2C2τ,c σ2 + d2C2τ,c

WRMSl(x) σ2 σ2 σ2 + d2C2τ,l

WRMSr(x) σ2 σ2 + d2C2τ,r σ2

diff(x) 0 d2C2τ,c d2C2τ,c

Table 3.2. First-order asymptotic behaviour of theWeighted Residual Sum of Squares quan-
tities.

Important is to look at the maximum of the pairwise differences between the three

estimators:

(3.2) diff(x) = max(WRMSc(x) − WRMSl(x), WRMSc(x) − WRMSr(x)).

The first-order asymptotic behaviour of this difference type of diagnostic is provided

in the last line of Tab. 3.2. This also serves as a motivation for considering the diag-

nostic quantities in (3.1). For details see Lambert [18] and Gijbels et al. [12]. Clearly

the difference quantity in (3.2) allows for making a data-driven choice between the

central local linear estimator on the one hand and on the left and right local linear

estimator on the other. This all together motivated the estimator

(3.3) m̂(x) =























































âc,0(x) if diff(x) 6 u

âl,0(x) if diff(x) > u and

WRMSl(x) < WRMSr(x)

âr,0(x) if diff(x) > u and

WRMSl(x) > WRMSr(x)

(âl,0(x) + âr,0(x))/2 if diff(x) > u and

WRMSl(x) = WRMSr(x),
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where u > 0 is a threshold parameter, and where the last line is added for finite-

sample situations. The chance of the last event to happen tends to zero as n tends

to infinity.

McDonald and Owen [20] and Hall and Titterington [15] also considered the three

types of estimators but did not get to direct estimation of the unknown curve with a

data-driven decision rule. Qiu [24] only considered the left and right estimators and

combined them using similar diagnostic quantities. See also Qiu [25].

A theoretical study (including strong consistency with rate and asymptotic nor-

mality) as well as simulation studies (including comparisons with wavelet-based pro-

cedures, among others) for the estimator in (3.3) can be found in Lambert [18] and

Gijbels et al. [12]. Practical choices of h and u are provided there. Lambert [18] also

gives evidence that the estimation method is applicable to random design and to het-

eroscedastic regression models, with σ2(x) instead of a constant σ2. The estimation

procedure is quite appealing due to its simplicity and its theoretical foundations.

A generalization of the method to the case of estimation of non-smooth regression

surfaces is given in Gijbels et al. [11].

4. Regression smoothing and peak preservation

Jump discontinuities are of course not the only type of irregularities that can occur

in a function. The method reviewed in Section 3 can also be used for nonparametric

estimation of a regression curve that shows possibly a spiky-behaviour. A spike can

be formalized as a discontinuity in the derivative of the function.

So suppose we have a regression model (2.1) in which m is differentiable but

possibly has an unknown number of points Mp at which the derivative function is

discontinuous. For simplicity of presentation we focus on the case of one point s at

which the derivative function m′ has a discontinuity of size d′. An example of such

a spiky function and a simulated dataset from model (2.1) is given in Fig. 4.1 (solid

curve). A question is whether one can improve upon the local linear estimator for

the derivative function m′, namely âc,1(x) as defined in (2.5)? In Fig. 4.1 the local

linear estimator for the displayed dataset is plotted for two values of the bandwidth

parameter. Note the considerable underestimation in the peak area.

We recall the asymptotic MSE for the estimator â1,c for points in the interior

region [x − hn/2, x + hn/2],

MSE(â1(x)) =

[

h2
n

6

{

m(3)(x) + 3m′′(x)
f ′

X(x)

fX(x)

}

B1
c,K

]2

(4.1)

+
σ2(x)

fX(x)

1

nh3
n

V 1
c,K + o

(

h4
n +

1

nh3
n

)
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where

B1
c,K =

(
∫ 1/2

−1/2

u2K(u) du

)(
∫ 1/2

−1/2

u4K(u) du

)−1

= vc,2 v−1
c,4

and

V 1
c,K =

(
∫ 1/2

−1/2

u2K2(u) du

)(
∫ 1/2

−1/2

u2K(u) du

)−2

.

For points in the boundary region the rate of convergence is lower, since in that

region the bias will be of order hn instead of h2
n. See Fan and Gijbels [5]. Hence,

this is also the order that we can hope to obtain for an estimator of m′, based on

local linear fitting, in a neighbourhood of a spike.
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Local linear estimator

Figure 4.1. A function with a spike and simulated data (n = 200). The true curve (thin
solid curve) and local linear fits for two values of h (dotted and dashed curves).

From the asymptotic properties of the local linear estimator one can see that the

central local linear estimator is a consistent estimator at s, but that the rate of

convergence of the estimator in a neighbourhood of the spike is of lower order than

in regions where the function m′ is differentiable. Indeed, by analogy with what

happens in boundary regions for local polynomial fitting, the central local linear

estimator has a bias of order hn there, instead of h2
n. Hence there is room for

improvement. Tab. 4.1 indicates the rate of the first-order asymptotic bias of the

central, left and right estimators. The quantities Q0
j (K, τ), j = c, r, l and alike, used

and denoted in a generic way, are defined in terms of the kernel K and the distance

τ to the location s of the spike. See Desmet and Gijbels [4] for detailed expressions.
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estimator left neighbourhood of spike right neighbourhood of spike

Bias(âr,0(x)) hn d′ Q0
r(K, τ) h2

n Q0
r(K)

Bias(âc,0(x)) hn d′ Q0
c(K, τ) hn d′ Q0

c(K, τ)

Bias(âl,0(x)) h2
n Q0

l (K) hn d′ Q0
l (K, τ)

Bias(âr,1(x)) d′ Q1
r(K, τ) hn Q1

r(K)

Bias(âc,1(x)) d′ Q1
c(K, τ) d′ Q1

c(K, τ)

Bias(âl,1(x)) hn Q1
l (K) d′ Q1

l (K, τ)

Table 4.1. Behaviour of the bias of the estimators in various regions.

The basic ideas of the previous section can be applied, but an appropriate diag-

nostic quantity is needed. A good candidate is

(4.2) W̃RSSj(x) =

∑

i

[Yi − âj,0 − âj,1(xi − x)]2Kj

(xi − x

h

)

∑

i

(xi − x)2Kj

(xi − x

h

)
, j = c, r, l.

A theoretical study of the behaviour of this diagnostic quantity and its use in an es-

timation procedure is established in Desmet and Gijbels [4]. With these W̃RSSj(x)’s

we indeed have quantities that are such that the differences of them are, in the first

order, independent of n, hn and σ2 but dependent on the size of the jump in the

derivative (i.e. d′) and of the distance of x from the location of the spike. Hence,

these quantities allow for detecting locations at or near a spike, analogously to the

quantities WRMSj(x)’s in the case of discontinuities. Further research is done for

combining the above ideas with the details of the method in Section 3 to come to an

estimation procedure that is applicable for curves that show both jumps and peaks.

5. Further applications

In this section we briefly discuss two other applications of the method exposed in

Section 3.

5.1. Estimating a non-smooth density

We now consider the situation of having i.i.d. observationsX1, X2, . . . , Xn from X

with density function fX unknown. A well-known and widely used nonparametric

estimator of fX is the Parzen-Rosenblatt kernel density estimator (Parzen [23] and

Rosenblatt [26])

(5.1) f̃X(x) :=
1

nhn

n
∑

i=1

K
(Xi − x

hn

)

,
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where K and h = hn > 0 are respectively a given symmetric probability density

function and a bandwidth parameter.

When the support of fX is bounded from below or above, then it is well known

that the classical estimator f̃X(x) is not a consistent estimator at the boundary

point. This is illustrated in Fig. 5.1 for exponential density.
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Kernel density estimator

Figure 5.1. Kernel density estimator (dotted line) for exponential density, for n = 200.
Dashed curve: estimator obtained by applying the reflection method.

Several types of remedies have been proposed in this case. There are reflection-type

methods proposed by Schuster [29], transformation methods such as those discussed

in Marron and Ruppert [19] and boundary-kernel type methods as discussed in, for

example, Jones and Foster [17]. In Fig. 5.1 we plot (as a dashed curve) a kernel

density estimate using the reflection method by Schuster [29]. For this method one

either needs to know the support of the density, or to estimate it in the first step.

This is in contrast with the method proposed below, where estimation is done in one

single step.

The aim of this application part is to show that the method of Section 3 can

easily be used to produce a consistent estimator for fX when this function has a

discontinuity at a boundary point. Moreover, and more importantly, the method

can also be applied when having a density that possibly shows some discontinuities

in the interior region as well. Fig. 5.2 depicts such a density, namely fX(x) =

0.5 exp(x)I{x < 0} + exp(−2x)I{x > 0}.

The problem of density estimation is first transformed into a regression problem.

Consider an interval [a, b] that contains all observationsX1, X2, . . . , Xn. We partition

this interval into N subintervals {Ik; k = 1, . . . , N} of equal length δ = (b − a)/N .
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Figure 5.2. A density with a jump point at 0 of size 0.5.

For each of the intervals Ik we take

xk = a +
b − a

N

(

k −
1

2

)

center of Ik,(5.2)

yk =
1

nδ

n
∑

i=1

I{xk − δ/2 6 Xi 6 xk + δ/2},

where yk is the proportion of the data falling in the interval Ik divided by δ. We

have that nδyk is binomially distributed with parameters n and pk =
∫

Ik
fX(x) dx.

Therefore

E(yk) =
1

nδ
npk =

1

δ

∫

Ik

fX(x) dx =
1

δ

∫ xk+δ/2

xk−δ/2

fX(x) dx ≈ fX(xk),

Var(yk) =
1

n2δ2
npk(1 − pk) =

1

nδ

pk

δ
(1 − pk) ≈

1

nδ
fX(xk).

Hence, estimation of fX can be viewed as a nonparametric heteroscedastic regres-

sion problem with m(x) = fX(x) and σ2(x) ≈ (1/nδ)fX(x), with available data

{(xk, yk); k = 1, . . . , N}.

An important remark here is that if fX has a jump discontinuity, then this will

also be the case with the variance function. This is an extra complication which one

cannot ignore. Strictly speaking we have no theoretical justification for the method

(yet). A possibility is to use Anscombe’s variance stabilizing transformation (see

Anscombe [1]) which replaces yk by

y∗
k =

√

2nδyk +
3

8
,
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and then, based on the data (xk, y∗
k), one estimates gX(x) ≈ 2

√

fX(x)nδ + 3
8 . Taking

the inverse then leads to an estimate for fX . This rather naive approach seems to lead

to an estimator with a satisfactory finite-sample behaviour. See also Lambert [18].

Further research is needed to establish the impact of the variance transformation on

the heteroscedasticy of the problem and on the estimation procedure.

As an illustration we apply this method to the density in Fig. 5.2. We simulated

200 samples of size n = 500 from this density, and applied the above method with the

Epanechnikov kernel taking δ = 0.556. Depicted in Fig. 5.3 is the mean estimated

curve (from the 200 samples) and the 5th and 95th percentile curves (based on the

sample Mean Integrated Squared Error performance). For showing more details we

present a zoom-in of the results around the jump area. We clearly see that the

proposed estimator improves upon the conventional density estimator.
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Figure 5.3. Simulation results for the density in Fig. 5.2 for n = 500. Left: Conven-
tional kernel density estimator; right: Proposed estimator. Mean curve (dashed
curve), 5th and 95th percentile curves (dashed curves) from 100 samples.

The results on the exponential density in Fig. 5.1 are shown in Fig. 5.4.

5.2. Estimating non-smooth conditional mean and variance function

We now return to the regression model in (2.1). Sections 2, 3 and 4 focused on the

estimation of the mean regression function m(·) in the smooth and the non-smooth

case, respectively. Often the interest is not only in estimation of the conditional mean

function but also of the conditional variance function, i.e. in σ2(x) = Var(Y |X = x).

There is quite numerous literature on nonparametric estimation of smooth variance

functions. See, for example, Gasser et al. [8], Hall et.al. [14], Müller and Stadt-

müller [21], Ruppert et al. [28] and Fan and Yao [6], among others. All these papers

however assume that both the conditional mean and variance function are smooth

functions. It is of interest to look at the situation where possibly m(·) and/or

σ2(·) could show irregularities, say jump points. Testing for breakpoints simulta-

neously in m and σ2 has been the subject of the recent work by Gao at al. [7]. There
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Figure 5.4. Simulation results for the exponential density in Fig. 5.1 for n = 200: proposed
estimator. Mean curve (dashed curve), 5th and 95th percentile curves (dashed
curves) from 100 samples.

are many papers concerning testing procedures for testing for continuity of m(·).

See for example Gijbels and Goderniaux [9], [10] among others, and a recent paper

by Antoch et al. [2] where local linear estimation is used for testing for continuity

of m(·) allowing also for a possibly non-smooth conditional variance function.

When m(·) and σ2(·) both might have jump points, a possible approach would be

to use the estimation procedure exposed in Section 3 together with the variance esti-

mation procedure of Fan and Yao [6]. This would then result in using the estimator

in (3.3) to get an estimator m̂(·) and then to use the residuals

r̂i = (Yi − m̂(Xi))
2

in the second step proceeding with local linear fitting of these pseudo-observations.

This is the approach followed by Casas and Gijbels [3].
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