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Abstract This paper presents an alternative to cubic spline regularization and its weighted
form applied in solving inverse thermal problems. The inverse heat transfer problems are
classified as ill-posed, that is, the solution may become unstable, mainly because they are
sensitive to random errors deriving from the input data, necessitating a regularization method
to soften these effects. The smoothing technique proposed by cubic spline regularization
ensures that the global data tend to be more stable, with fewer data oscillations and dependent
on a single arbitrary parameter input. It also shows that the weighted cubic spline is able to
enhance filter action. The methods have been implemented in order for the search engine to
optimize the choice of parameters and weight and, thus, the smoothing gains more flexibility
and accuracy. The simulated and experimental tests confirm that the techniques are effective
in reducing the amplified noise by inverse thermal problem presented.

Keywords Cubic spline · Regularization · Ponderation · Inverse problem

Mathematics Subject Classification 65F22 · 65D07 · 65D10 · 80A23

1 Introduction

Recently, the application and theory of the Inverse Heat Transfer Problems (IHTP) have grown
increasingly to be found in almost all branches of science and engineering. Chemical, mechan-
ical, nuclear and aerospace engineers, statisticians, physicists, mathematicians, among others,
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are focused on the subject, even with their different needs and applications (Özisik and
Orlande 2000; Kim et al. 2006; Kabala 1997; Park et al. 1999; Kaipio and Fox 2011).

The IHTP are, however, classified as ill-posed. While the notion of a well-posed or
“well-designed” mathematical problem came in 1923 with discussions on the Hadamard’s
work (Hadamard 1923) in which the determining conditions are generally the existence
properties, uniqueness and (by implication) stability of solutions (Beck et al. 1985), which
the inverse problems do not. This occurs because the mathematical formulation of physical
processes in thermal sciences has an unknown amount of constants, such as temperature
measurements, heat flow, radiation intensity, among others (Orlande 2011).

Difficulties associated with IHTP occur by bringing solutions that can become unstable as
the results originated from measurements with inherent errors in analyses (Özisik and Orlande
2000), mainly because they have input data sensitive to random errors (Orlande 2011), as
inserted noise in the experimental data. During decades, it was believed that if any well-posed
conditions were disrupted, the problem would either be insoluble or generate meaningless and
unpractical results (Orlande 2011). This notion only changed with Tikhonov’s regularization
technique (Tikhonov and Arsenin 1977), Alifanov’s iterative regularization method (Ali-
fanov 1977, 1994) and Beck’s sequential function specification technique (Beck et al. 1985).

A successful solution of an inverse problem usually involves reformulating via association
with a well-posed problem. In most methods, the solution of IHTP is obtained by least
squares method. After 1960s and 1970s, many other methods were formalized in terms of
treatment capacity (Orlande 2011). The ideal regularization depends on the selection of the
appropriate algorithm and choice of specific parameters for each method, in order to achieve
the problem’s solution, for example, the best compromise between data recovery and signal
smoothing. Techniques such as moving average filtering, simplified least squares method (as
Savitzky and Golay), splines, Fast Fourier Transform and wavelet have been used for noise
treatment. The main purpose is the application of these methods to improve signal to noise
ratio (Jakubowska 2011).

Among the various regularization methods, smoothing by cubic spline presents efficient
results because it ensures a global smoothing of data and tends to decrease the probability
of data oscillations and increase stability. The regularization by splines is made from spline
functions which are obtained when a data set is divided into subintervals. Among the various
possible spline function divisions, order three provides good flexibility, being connected
by curves with continuous first and second derivatives in the internal points and their four
constants allow a good flexibility (Reinsch 1967).

Beyond the standard regularization by cubic spline, it is possible to modify an existing
method by adding a weight to intensify the filter action and trying to bring the most promising
results. So the aim of this study is to reconstruct as faithfully as possible the monitored
temperature of a thermal process, which suffers all the implications of inverse problems and
needs a strong regularization technique to soften the noise and delays caused by experimental
modeling, and is still efficient to maintain the original feature of the signal. This work
presents the efficiency of cubic spline regularization implemented by comparing it with
the pre-defined MATLAB® function and also an alternative form of weighted smoothing as
described by Green and Silverman (1994).

2 Derivative of the inverse problem

The mathematical model of thermal process in this work, aims at reconstructing the temper-
ature, is based on Oliveira et al. (2006), and considers heat accumulation and heat transfer

123



1164 L. H. Kubo, J. de Oliveira

between the medium and thermal sensor by convection and radiation—in this case, a ther-
mocouple; thus, the transduction equation:

MC
dT

dt
− h A(Tviz − Ts) − εσ A(T 4

∞ − T 4
s ) = 0 (1)

is defined by the encapsulation mass M (kg) and specific heat C (J/Kg K). The properties
of convection and radiation passing through area A (m2), respectively, are defined by h

(W/m2 K), convection coefficient and ε (dimensionless), emissivity and by the Stefan–
Boltzmann constant (σ = 5.670 × 10−8W/m2 K4). The heat conduction through the sensor
cable has been disregarded due to the negligible wire area.

Assuming that the sensor is immersed in medium, the equation that relates to the real
process temperature signal captured by the probe without encapsulation Tproc, and the indi-
cated temperature signal captured by the probe with encapsulation Tind, provides a delayed
and attenuated signal temperature, which may be written as:

MC
dTind

dt
− h A(Tproc − Tind) − εσ A(T 4

∞ − T 4
ind) = 0 (2)

where T∞ is the radiative transfer temperature.
Equation (2) can be expressed dividing both sides by h A and reorganizing the powers of

terms T∞ and Tind as:

τ
dTind

dt
− h A(Tproc − Tind) − γ (T∞ − Tind) = 0 (3)

where τ = MC
h A

denotes the sensor’s constant of time, that is, the accumulation of heat over the

heat transferred by convection caused by the temperature increase and γ ∼=
4εσ

h
( T∞−Tind

2 )3,
is the radiation coefficient which evaluates the intensity of convective heat transfer in com-
parison with radiative heat transfer.

Equation (3) expresses the relation between the indicated temperature, Tind, (reply) and
the process temperature, Tproc, (stimulus). The direct problem can be solved instantly through
calculation of the output (Tind) from the known input (Tproc).

Although encountering a solution to the corresponding inverse problem certainly is a
difficult task because of its inherent ill-conditioned nature, it indicates that the solution
of Tproc from Tind is strongly affected by the presence of experimental errors from Tind

measurements.
Then, by finite difference method, Eq. (3) can be discretized in time. Defining a time step

�t and a backward discretization scheme with indices n and n − 1 indicates that the variable
refers to times, respectively, t = n�t and t = (n − 1)�t , making possible to write:

τ

�t
(Tind,n − Tind,n−1) − (Tproc,n − Tind,n) − γn(T∞ − Tind,n) = 0 (4)

Then, the direct and inverse problems are, respectively, obtained:

Tind,n =
1

τn

�t
+ 1 + γn

(

Tproc,n + γnT∞ +
τ

�t
Tind,n−1

)

(5)

Trec,n = Tproc,n =
τ

�t
(Tind,n − Tind,n−1) + Tind,n − γn(T∞ − Tind,n) (6)

The reconstruction is effective, as shown in equation (Oliveira et al. 2006), so regulariza-
tion methods must be adopted; embedded noise in the signal is amplified by the derivative
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of the Eq. (3). The temperature obtained from the inverse problem equation (6) shall be
called reconstructed temperature (Trec) and shall not be confused with the actual process
temperature (Tproc).

3 Regularization method

The method proposed in this paper is a regularization algorithm by cubic spline implemented
in MATLAB® software. The smoothing has in its formulation the new function construction
by spline function that minimizes the difference between the distances of given and smoothed
points.

Considering Trec as the input data of a discrete model, the aim is to estimate a new sequence
that minimizes Eq. (7).

L = λ

n
∑

i=1

(
Trec,i − Treg,i

Trec,i

)2

+ (1 − λ)

∫ tn

t0

(T
′′

reg(t))
2dt (7)

where Treg represents new points already smoothed and λ is the parameter that controls the
smoothing.

The smoothing by cubic splines method described in this paper was based on publications
by Reinsch (1967), Pollock (1993) and Weinert (2009). Be the reconstruction temperature
in the time ti provided by:

Trec,i = Treg,i + ǫi (8)

where ǫ is the difference (error) between the smoothed data Treg obtained by applying the
regularization method and the original data Trec arising from the inverse problem equation
(6). In this case, the reconstruction of Treg will be to build a function S(t) that minimizes:

L = λ

n
∑

i=1

(
Trec,i − Treg,i

Trec,i

)2

+ (1 − λ)

∫ tn

t0

(S
′′

(t))2dt (9)

being n the number of points. The posterior term of Eq. (9) can be expressed as a sum of the
second derivatives of each of the intervals; therefore

∫ tn

t0

(S
′′

(t))2dt =

n−1
∑

i=0

∫ ti+1

ti

(S
′′

(t))2dt (10)

Each spline is composed of cubic segments, then the second derivative at any interval is a
linear function, with the independent term 2bi in ti , 2bi+1 in ti+1 and Hi = ti+1 − ti , so the
Eq. (10) becomes

∫ tn

t0

(S
′′

(t))2dt = 4

∫ hi

0

(

bi

(

1 −
t

Hi

)

+ bi+1
t

Hi

)2

dt (11)

Solving Eq. (11) provides the following:

4

∫ hi

0

(

bi

(

1 −
t

Hi

)

+ bi+1
t

Hi

)2

dt =
4Hi

3
(b2

i + bi bi+1 + b2
i+1) (12)
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1166 L. H. Kubo, J. de Oliveira

It is possible to rewrite the function S(t) and S
′′
(t) dependent on variables bi and Treg,i .

Considering the coordinates (ti , Treg,i ), (ti+1, Treg,i+1) and implied conditions:

Si (ti ) = Treg,i (13)

Si (ti+1) = Treg,i+1 (14)

S
′′

i (ti ) = 2bi (15)

S
′′

i (ti+1) = 2bi+1 (16)

Equation (13) is an identity and Eq. (14) is an equality. Equation (14) can be opened as a
cubic function, thus:

ai H3
i + bi H2

i + ci Hi + Treg,i = Treg,i+1 (17)

Isolation of ci term from Eq. (17) provides the following:

ci =
Treg,i+1 − Treg,i

Hi

− ai H2
i + bi Hi (18)

Equation (15) is an identity and Eq. (16) is an equality. Equation (16) can be opened as the
second derivative of Eq. (17) as:

2bi+1 = 6ai Hi + 2bi (19)

Isolation of ai term from Eq. (19) provides the following:

ai =
bi+1 − bi

3Hi

(20)

Substitution of Eq. (20) into (18) provides that:

ci =
Treg,i+1 − Treg,i

Hi

−
1

3
(bi+1 − 2bi )Hi (21)

Derivation of Eq. (17) and subsequent isolation ci provides the following:

3ai−1 H2
i−1 + 2bi−1 Hi−1 + ci−1 = ci (22)

Rearrangement of Eqs. (21) and (22) appears as the following:

bi−1 Hi−1+2bi (Hi−1+Hi )+bi−1 Hi =
3

Hi

(Treg,i+1−Treg,i )−
3

Hi−1
(Treg,i −Treg,i−1) (23)

In accordance with the condition of natural spline, the first and the last terms of vector b

are null, that is, b0 = bn = 0, with i = 1, 2, . . . , n − 1. A matrix system can be written from
Eq. (23):
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⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p2 H2 0 . . . 0 0
H2 p2 H3 . . . 0 0
0 H3 p4 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . pn−2 Hn−2

0 0 0 . . . Hn−2 pn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

[A]

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

b3
...

bn−2

bn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

{b}

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r1 f2 r2 0 . . . 0 0
0 r2 f3 r3 . . . 0 0
...

...
...

... . . .
...

...

0 0 0 0 . . . rn−2 0
0 0 0 0 . . . fn−1 rn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

[F]

⎡

⎢
⎢
⎢
⎢
⎢
⎣

Treg,1

Treg,2
...

Treg,n−1

Treg,n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

︸ ︷︷ ︸

{Treg}

(24)

where
Hi = ti+1 − ti (25)

pi = 2(Hi−1 + Hi ) (26)

ri =
3

Hi

(27)

fi = −

(
3

Hi−1
+

3

Hi

)

= −(ri−1 + ri ) (28)

Rewriting Eq. (24) in matrix notation:

[A]{b} = [F]{Treg} (29)

Using the same notation in Eq. (12) and replacing in Eq. (19), we obtain

L = λ{Trec}
−1({Trec} − {Treg})

2 +
2

3
(1 − λ)[A]{b}2 (30)

Isolation of {b} from Eq. (29) provides:

{b} = [A]−1[F]{Treg} (31)

Equation (31) contains two unknowns, {b} and {Treg} and, thus, the substitution of an
unknown by a known variable enables solution of the system. Substituting Eq. (31) into Eq.
(30), the terms from Eq. (32) become dependent on {Treg}:

L({Treg}) = λ{Trec}
−1({Trec} − {Treg})

2 +
2

3
(1 − λ)[A]−1[F]2{Treg}

2 (32)

Optimization of {Treg} values minimizes Eq. (32) by differentiation with the respective {Treg}

and the result equals zero, thus

− 2λ{Trec}
−1({Trec} − {Treg}) +

4

3
(1 − λ)[A]−1[F]2{Treg} = 0 (33)
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1168 L. H. Kubo, J. de Oliveira

Rearrangement of Eq. (33) and subsequent substitution into Eq. (31) provide

λ{Trec}
−1({Trec} − {Treg}) =

2

3
(1 − λ)[F]{b} (34)

Multiplying Eq. (34) by λ−1[F]{Trec} and rearrangement through its identity, Eq. (29)
becomes

([A] + μ[F]2)
︸ ︷︷ ︸

[E]

{b} = [F]{Trec}
︸ ︷︷ ︸

[D]

(35)

where

μ =
2(1 − λ)

3λ
(36)

Rewriting Eq. (35) and isolating vector {b} provides

{b} = [E]−1[D] (37)

With the value for vector {b}, the smoothing vector {Treg} can be obtained by

{Treg} = {Trec} − μ{b}[F] (38)

Thus, the data {Trec} will be smoothed by the following steps:

1. Assemble matrices [A] and [F] from Eq. (24) with values from Eqs. (25), (26), (27) and
(28);

2. Assemble matrices [E] and [D] according to Eq. (35);
3. Determine vector {b} from Eq. (37);
4. Calculate the regularization vector {Treg} with the previously chosen modified smoothing

parameter μ.

4 Spline cubic properties

In regularization by cubic spline, λ is the smoothing control parameter. The domain ranges
from zero to one, where λ = 0 considers that only the smoothing is taken into consideration,
and the spline function S(t) becomes a linear regression. At the other extreme, where λ = 1
the main concern is the proximity to the points, which forms a spline interpolation and
the function crosses the points accurately (Pollock 1993). The anticipated choice of the
lambda parameter allows a more flexible method for adjusting the different sets of data
that may require the technique. Besides the traditional regularization described in Sect. 3,
it is possible to add a weight to the formulation and emphasize the smoothing. A weighted
smoothing method was proposed by Green and Silverman (1994) and was based on Reisch’s
algorithm (Reinsch 1967).

The modified method requires an input vector w with elements wi , strictly positive, intro-
duced in Eq. (9):

L = λ

n
∑

i=1

wi

(
Trec,i − Treg,i

Trec,i

)2

+ (1 − λ)

∫ tn

t0

(S
′′

(t))2dt (39)

The method implementation consists of a matrix [W ] of {w} vector elements, which is
incorporated directly into the cubic spline smoothing algorithm in Eq. (35):

([A] + μ[F]2)[W ]−1

︸ ︷︷ ︸

[E]

{b} = [F]{Trec}[W ]
︸ ︷︷ ︸

[D]

(40)
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And thus add weight to the regularization. However, this work proposes a simpler and
more efficient addition of weight than described by Green and Silverman (1994), reducing
to zero the amount of weight matrix and incorporating the penalty in itself regularization
matrix constructed during the process.

This alternative weighting must be an integer natural non-zero number, and the higher the
constant the higher is the gains on smoothing. The weight is introduced on the right side of
Eq. (23):

bi−1 Hi−1 + 2bi (Hi−1 + Hi ) + bi−1 Hi

=

(
3

Hi

(Treg,i+1 − Treg,i ) −
3

Hi−1
(Treg,i − Treg,i−1)

)

w (41)

which corresponds to the elements from matrix [F]. In algorithm, the weight’s constant
multiplies the terms 3

Hi
and 3

Hi−1
in Eq. (27):

ri = w
3

Hi

(42)

5 Results and discussion

Figure 1 presents a test simulation, consisting of a sine wave (Tproc) representing the real
process temperature in which the signal captured by a thermocouple without encapsulation
is used as the method validation reference. The second signal simulation is the temperature
indicated (Tind), captured by a encapsulated thermocouple and, therefore, presents delays and
noise inherent from the process. The inverse problem equation (6), Sect. 2, obtained from Tind

reveals the reconstructed temperature Trec. Observation of Trec values shows high-frequency
components’ amplification, where most of the noise is contained. Thus, application of cubic
spline regularization on Trec values (with value λ = 0.5) provides the regularized temperature
(Treg). Finally, Trec smoothed by weighted cubic spline method, according to Eqs. (41) and
(42) in Sect. 4 (w = 2 and λ = 0.5), provides the weighted regularized temperature (Tregpond).

Comparative analysis between standard regularization method (Treg) and the func-
tion available by MATLAB® (Matlab) was conducted (Fig. 2), as well as another
between weighted regularization method (Tregpond) [Green and Silverman (1994) (TregGS),
(Fig. 3)]—the parameters used are the same as the Fig. 1 results. It is noticeable from both
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Fig. 1 Reconstruction and regularization of the simulated signal
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Fig. 2 Simulated signal standard regularization
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Fig. 3 Weighted form regularization of the simulated signal

plots that the temperature signals Treg and Tregpond are closer to the Tproc than the signals
TregGS and Matlab.

The results were analyzed after regularization between the process temperature Tproc and
regularized without penalty increase Treg, the Green and Silverman’s weighting (Green and
Silverman 1994), TregGS, and the alternative weighting, Tregpond, temperatures through the
root mean square error (RMSE):

E =

√
∑n

i=1(Tproc,i − Treg,i )2

n
(43)

The RMSE value provides an absolute agreement estimate between the process and the
regularized temperatures.

The weighted regularization may vary the formula’s parameter as 0 ≥ λ ≥ 1 and weight
w added to Eq. (42). Implementation of an optimized search system for parameter and weight
choice, based on RMSE, generated the values in Table 1.

The Tregpond plot for the lowest RMSE = 1.658, with w = 7 and λ = 0.6, can be seen
in Fig. 4. The plot contains discrepancy analysis of the implement regularization (Treg),
with λ = 0.5. It is noticeable that the weighted regularized curve approaches Tproc almost
perfectly, which is the main objective, to reconstruct the real process temperature.
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Table 1 Root mean square error (RMSE) and parameter variations

w\t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1 2.169 2.761 3.208 3.620 4.047 4.566 5.219 6.151 7.926

2 1.66 1.837 2.144 2.454 2.761 3.093 3.489 4.047 5.163

3 2.047 1.66 0 1.733 1.921 2.169 2.454 2.79 3.24 4.047

4 2.792 1.861 1.662 1.698 1.837 2.059 2.358 2.761 3.455

5 3.553 2.279 1.804 1.663 1.69 1.819 2.056 2.424 3.059

6 4.238 2.792 2.081 1.764 1.66 1.698 1.854 2.169 2.761

7 4.829 3.305 2.454 1.963 1.724 1.658 1.733 1.975 2.526

8 5.329 3.791 2.849 2.229 1.861 1.682 1.674 1.837 2.332

9 5.749 4.238 3.241 2.539 2.047 1.764 1.658 1.744 2.169

10 6.100 4.643 3.619 2.856 2.279 1.889 1.683 1.69 2.034

20 7.733 6.925 6.158 5.403 4.643 3.867 3.074 2.279 1.693

30 8.224 7.733 7.237 6.704 6.1 5.403 4.573 3.553 2.279
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Fig. 4 Comparison of standard smoothing and weighting described in the work

Table 2 Mean process times for
weight and absolute error

Amount of points 200 4000 10,000

Time Tregpond (s) 0.020 124.356 2158.600

Error Tproc/Tregpond 4.408 18.385 28.904

Time TregGS (s) 0.029 188.810 3296.400

Error Tproc/TregGS 4.972 20.950 33.226

The alternative weighted regularization was also compared with that described in Green
and Silverman (1994) as the efficiency reference and using the same weight values w = 2
and λ = 0.5.

To verify if the weighted regularization method described herein is more efficient than the
one proposed by Green and Silverman (1994), signals of different sizes (200, 400 and 10000
points) were simulated. The algorithm related to the time of execution as well as the absolute
error is shown in Table 2. The weighted regularization method showed the most promising
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results, either regarding the time of execution or the absolute error, because the implemented
algorithm does not require any additional matrices, besides smoothing the signal effectively.

6 Experimental tests

To prove the efficiency of the method and weighting, experimental tests were conducted with
hot air jets from a dryer Black & Decker Inc., model SC831B and 1500 W power. Being the
distance between the air jet and thermocouples s j = 0.15 m, the distance between the two
thermocouples s = 0.002 m and encapsulation is composed of long-lasting nail polish.

The data acquisition board used to capture the temperatures was made by National Instru-
ments Corporation and is the type Rack with connection USB CDAQ-9171 and analog input
module for thermocouples NI 9211 with four channels 80 mV, sampling 14 S/s and 24 bits of
resolution. For the measurement of temperature, thermocouples type K was used. The board
was connected to the computer, as data acquisition and storage measurements were recorded
with software NI-DAQMX and software LabVIEWTM (version 11.0) and subsequent evalu-
ation of these data collected.

Figure 5 represents the complete experimental set layout with hot air source, thermocou-
ples connected with data acquisition board and subsequent data acquisition and storage with
LabVIEWTM.

As shown in Fig. 6, composed of the experimental data from Fig. 5, the smoothing provided
by the software MATLAB® was able to reduce Trec peaks, but it was far from the Tproc target.
Although the weighted regularization proposed by Green and Silverman (1994) (TregGS) is

Fig. 5 Experimental work design
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Fig. 6 Experimental signal smoothing
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Fig. 7 RMSE of the weighting by Green and Silverman (1994) and the new weighting proposed at work

able to produce a stronger smoothing when compared to MATLAB® (Matlab), the standard
smoothing (Treg) implemented in this work has proved to be even better. To find the best
parameter and weight for the weighted regularization proposed herein, the search system
that was used follows the model exhibited in Table 1. Therefore, the lowest RMSE was
obtained (w = 9 and λ = 0.2) and shows that the proposed regularization was able to
smooth as well as keep the Tregpond in the same temperature range as Tproc. The addition and
search for the best parameter and weights, the weighted regularization Tregpond was able to
smooth and maintain the same temperature range as Tproc. The choice for the best parameter
and weight were made through the construction of a table following the model Table 1 and
the lowest RMSE indicated the values searched being w = 9 and λ = 0.2.

Figure 7 shows a point to point difference between the two weighted smoothing form
Tregpond and TregGS, using the RMSE value between the smoothing and the reference tem-
perature Tproc. As can be observed, the error of the proposed weighted smoothing method is
smaller than the described by Green and Silverman (1994), proving the efficiency of cubic
spline smoothing method implemented in this work.

7 Conclusion

This work proposed an alternative to the regularization method of cubic spline weighted
form applied in solving inverse thermal problems. The study involved the capture of a ther-
mal delayed and attenuated signal that has been reconstructed using the inverse model of
transduction equation. However, the reconstructed temperature differs significantly from the
real values, because of all the uncertainties associated with inverse problems requiring a
filter to soften the noise and delay the reconstructed signal. The method used was smoothed
by cubic spline and its weighted form. The ability to select the best technique was through
comparisons between standard regularization provided by MATLAB® and implemented in
Sect. 3, and the weighted regularization provided by Green and Silverman (1994) and the
new weighting method described in this paper (Sect. 4). The presented alternative weighting
method is simpler and more effective, because it does not compromise the algorithm exe-
cution time and is easy to comprehend by relying on a single nonzero positive value, and
without need for the construction and manipulation of large matrices. The simulated and
experimental examples presented in the work were able to undoubtedly illustrate the new
method’s efficiency.
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