
Smoothing Clickthrough Data for Web Search Ranking
Jianfeng Gao

*
, Wei Yuan

#
, Xiao Li

 *
, Kefeng Deng

$
, Jian-Yun Nie

#

*Microsoft Research, Redmond, USA, Email: {jfgao; xiaol}@microsoft.com;
$Microsoft, Search Technology Center, Beijing, China, Email: kefengd@microsoft.com;

#University of Montreal, Canada, Email: {yuanwei; nie}@iro.umontreal.ca

ABSTRACT
Incorporating features extracted from clickthrough data (called
clickthrough features) has been demonstrated to significantly
improve the performance of ranking models for Web search
applications. Such benefits, however, are severely limited by
the data sparseness problem, i.e., many queries and documents
have no or very few clicks. The ranker thus cannot rely strongly
on clickthrough features for document ranking. This paper
presents two smoothing methods to expand clickthrough data:
query clustering via Random Walk on click graphs and a dis-
counting method inspired by the Good-Turing estimator. Both
methods are evaluated on real-world data in three Web search
domains. Experimental results show that the ranking models
trained on smoothed clickthrough features consistently outper-
form those trained on unsmoothed features. This study demon-
strates both the importance and the benefits of dealing with the
sparseness problem in clickthrough data.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval; I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Experimentation

Keywords
Clickthrough Data, Smoothing, Random Walk, Discounting,
Learning to Rank, Web Search

1. INTRODUCTION

We consider the task of ranking Web search results, i.e., a set of
retrieved Web documents (URLs) are ordered by relevance to a
query issued by a user. In this paper we assume that the task is
performed using a ranking model (also called ranker for short)
that is learned on labeled training data, i.e., human-judged
query-document pairs. The ranking model is a function that
maps the feature vector of a query-document pair to a real-
valued relevance score. Such a learned ranking model is shown
to be superior to classical retrieval models [6, 11] largely due to
its ability to integrate both traditional criteria such as TF-IDF
and BM25 values, and non-traditional features such as hyper-
links.

In general Web search, a document can be described by
multiple text streams. Some of the most useful text streams for

Web search are (1) a content stream consisting of all the title and
body texts in a page, (2) an anchor stream consisting of all the
anchor texts of a page’s incoming links, and (3) a clickthrough
stream consisting of all the user queries that have click(s) on the
document. Recent research shows that incorporating features
extracted from the clickthrough stream (called clickthrough fea-
tures) could significantly improve the performance of ranking
models for Web search because the clickthrough stream can
provide complementary information about a user’s intention
[1].

However, clickthrough data typically suffer from the
sparseness problem. Two related aspects are involved. First,
for a query, users only click on a very limited number of docu-
ments, thus the clicks are not complete. We refer to it as the
incomplete click problem. Second, for many queries and docu-
ments, no click at all is made by users. We call this the missing
click problem. As a consequence, the clickthrough streams for
most of documents are either short or empty. Although one can
use such raw text streams to extract some clickthrough features
as in previous studies (e.g., [1, 6, 7]), their potential is severely
limited because of the following reasons: First, with incomplete
clicks, the click-related features that we can generate for a doc-
ument-query pair are also incomplete and unreliable. Second,
no clickthrough features can be generated for pairs without
clicks. In the rankers used in most previous studies [1, 6, 7],
this is equivalent to assigning zero values for clickthrough fea-
tures. In ranker training, the zero-valued features make a cate-
gorical difference between the documents with and without
clicks, and severely penalize the documents without clicks.
However, in reality, the “true” difference between these docu-
ments may be much smaller because a document could be un-
clicked for a variety of reasons even if the document is relevant.

The missing click problem bears a strong resemblance to the
problem of determining the frequency or probability of an un-
seen event, which has been well-studied in the context of esti-
mating n-gram language models [8]. Various smoothing tech-
niques have been proposed and successfully used to deal with
this problem, including clustering (by grouping observations
on similar n-grams) and discounting (by assigning some counts
to unseen n-grams) [8, 14]. In the case of clickthrough data, we
can consider a click for a document-query pair as an n-gram.
Then clickthrough data can also be smoothed in two directions:
by clustering similar queries or by assigning non-zero values to
the clickthrough features of unclicked documents through dis-
counting. In this paper, we propose to perform query clustering
via Random Walk on click graphs, and a discounting method
inspired by the Good-Turing estimator [13]. The Random Walk
method is intended to address the incomplete click problem. In
some particular settings, such as image retrieval [9] and query
classification [21], it has been shown that expanding clicks to
similar documents and queries via Random Walk can lead to
significant improvements. However, to our knowledge, no

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
.
Copyright 2009 ACM 1-58113-000-0/00/0004…$5.00.

study has been carried out on general Web search applications
showing a similar improvement. Our experiments show that
the expanded clickthrough data is noisy, and it should be used
with caution. Effective improvement is possible only when we
extract those features that are robust to noise for ranking. No-
tice that documents and queries with no click cannot be
enriched through Random Walk.

Thus, inspired by the Good-Turing method [13, 20], we
present a discounting method to estimate the values of the
clickthrough features for the documents without clicks.

Our experiments will show that both smoothing techniques
can significantly improve the retrieval effectiveness compared
to the utilization of raw clickthrough data. In particular, the
simple discounting method will prove to be effective on all the
three test datasets. This series of experiments strongly indicate
that sparseness is a crucial problem in clickthrough data, and
an appropriate solution to this problem allows us to better take
advantage of clickthrough data.

In the rest of the paper, Section 2 describes background in-
formation on clickthrough data and rankers. Section 3 presents
two smoothing techniques. Section 4 presents experiments.
Related work and conclusions are presented in Sections 5 and 6.

2. BACKGROUND

In this section, we first describe the clickthrough data we use
and the way a Web document is represented by a clickthrough
stream. Then, we present the clickthrough features to be incor-
porated in ranking models. Finally, we review the ranking
model used in our experiments. Notice that we focus on click-
through features in this paper. The features extracted from
other text streams will remain unchanged and be used in the
same manner as before.

2.1 Clickthrough Streams for Documents

Clickthrough data used in this study consists of a set of query
sessions that were extracted from one-year log files of a com-

mercial Web search engine. A query session contains a query
issued by a user and a rank list of (top-10) links browsed by the
same user (with or without click). Following the notations in
[18], a query session is represented by a triplet (q, r, c) consist-
ing of the query q, the ranking r presented to the user, and the
set c of links (documents) the user clicked on. Figure 1 shows a
query session for the query “web message”. The documents #2
and #9 are clicked by the user, and the dates and times of the
two clicks are also recorded.

Previous work has utilized clickthrough data as implicit
feedback for Web search ranking in two different ways. The
first approach is to derive training data from clickthrough data
directly [18, 19, 26]. In particular, [19] argued that relative pre-
ferences derived from clicks are reasonably accurate. For ex-
ample, in Figure 1, the document #2 is assumed to be more
relevant to the query “web message” than #1 because #2 is
clicked, and #1, though ranked higher than #2, is not clicked.
By doing so, one could derive a large amount of preference
pairs. Then a ranking algorithm, such as LambdaRank [6], can
be trained on such preference pairs.

The second category of work is to derive features from the
clickthrough data and incorporate them into a ranking model [1,
28]. Our approach belongs to this category. The method is
based on the assumption that all the queries that have clicks on
a document form a description of the document from users’
perspective. One can see an example of such a clickthrough
stream in Figures 2 for the document “webmessenger.msn.com”.
It consists of all the queries that have one or more clicks on the
document. In Figure 2, each line in a clickthrough stream con-
sists of a query and a clickthrough score Score(d, q), which can
be considered as the importance of the query q in describing the
document d, similarly to the TF-IDF scores. The score can be
derived from raw click information recorded in log files heuris-
tically. In our experiments, one of the simplest functions that
work well across all data sets is:

1. Message Web Design – Home
www.message.uk.com

2. MSN Web Messenger
webmessenger.msn.com
2008-11-01 15:01:15

3. High School Baseball Web
www.hsbaseballweb.come/message_boards.htm

4. Send a Wireless Web Message
messaging.sprintpcs.com

5. SprintPCS 2Way SMS
messaging.sprintpcs.com/sml/guestcompose.do

6. Email on the Web
webmail.netzero.net

7. USA MOBILITY
www.arch.com/message

8. Message Boards – rootsweb.com
boards.rootsweb.com

9. Yahoo! Messenger – Chat, Instant message
messenger.yahoo.com
2008-11-01 15:00:59

10. Yahoo! Message Boards – Home
messages.yahoo.com

Figure 1. The query session for the query “web message”. Marked
in bold are the links the user clicked on.

msn web 0.6675749
webmensseger 0.6621253

msn online 0.6403270
windows web messanger 0.6321526
talking to friends on msn 0.6130790

school msn 0.5994550
msn anywhere 0.5667575

web message msn com 0.5476839
msn messager 0.5313351

hotmail web chat 0.5231608
messenger web version 0.5013624

instant messager msn 0.4550409
browser based messenger 0.3814714

im messenger sign in 0.2997275
msn web browser download 0.0926431

msn passport 0.0035466
download msn messenger 6 0.0027844

install msn toolbar 0.0027248
msn people 0.0025993

… …

Figure 2. Fragments of the clickthrough stream for the link
http://webmessenger.msn.com

𝑆𝑐𝑜𝑟𝑒 𝑑, 𝑞 =
𝐶(𝑑, 𝑞, 𝑐𝑙𝑖𝑐𝑘) + 𝛽 ∗ 𝐶(𝑑, 𝑞, 𝑙𝑎𝑠𝑡_𝑐𝑙𝑖𝑐𝑘)

𝐶(𝑑, 𝑞)
, (1)

where 𝐶(𝑑, 𝑞) is the number of times that d is shown to the us-
ers when q is issued (so, 𝐶(𝑑, 𝑞) is sometimes called the number
of impressions), 𝐶(𝑑, 𝑞, 𝑐𝑙𝑖𝑐𝑘) is the number of times that d is
clicked for q, and 𝐶(𝑑, 𝑞, 𝑙𝑎𝑠𝑡_𝑐𝑙𝑖𝑐𝑘) is the number of times that
d is the temporally last click of q in clickthrough data. For ex-
ample, in Figure 1 the documents #2 and #8 are the clicks of the
query, but only #2 is the last click. Here, the weight β is a scal-
ing factor, empirically tuned (β = 0.2 in our experiments). Intui-
tively, if a document is the last click of a query, there is a higher
chance that the user is satisfied by this document and no addi-
tional document is necessary. Therefore, we boost the score of
the last-clicked documents in the above formula.

2.2 Clickthrough Features for Ranking

In modern Web search engines, search results are ranked based
on a large number of features extracted from query-document
pairs. Since a document is described by multiple text streams,
multiple sets of features can be extracted, one from each stream
(with respect to the query). Therefore, using clickthrough data
for ranking is equivalent to incorporating the clickthrough fea-
tures, which are extracted from the clickthrough steam, in the
ranking algorithm. As described in [1], during training, the
ranker can be learned as before but with additional features. At
runtime, the search engine would fetch the clickthrough fea-
tures associated with the given query-document pair and de-
termine a relevance score.

Figure 3 lists some of the most important clickthrough fea-
tures we used in our experiments, and describes how their val-
ues are computed from the clickthrough scores of the matched
queries (to an input query). Let us illustrate this by an example.
Consider a clickthrough stream consisting of 4 query-score
pairs, as follows.

Query Score
A B C D S1

B C A S2

E A B C D F S3

B A E S4

Now, given a 4-word input query A B C D, the values of the
clickthrough features are as follows.

StreamLength_w 16

StreamLength_q 4

WordsFound 1
PerfectMatches S1

CompleteMatches S1 + S2

ExactPhrases S1 + S3

Occurrences_1 S1 + S2 + S3 + S4
… …

2.3 Ranking Model and Quality Measure
in Web Search

Many rankers can be used to incorporate a set of features, such
as RankSVM [18], or RankNet [7]. In this study, we will use
LambdaRank. Details can be found in [6]. We only sketch it
here.

We assume that training data is a set of input/output pairs
(x, y). x is a feature vector extracted from a query-document
pair, where the document is represented by multiple text
streams as described in Section 2.1. We use about 300-400 fea-
tures extracted from content and anchor text streams, including
dynamic ranking features such as term frequency and BM25
value and static features similar to PageRank, as well as a set of
(44 or 30) clickthrough features. y is a human-judged relevance
score, from 0 to 4, with 4 as the most relevant.

LambdaRank is a neural net ranker that maps a feature vec-
tor x to a real value y that indicates the relevance of the docu-
ment given the query. For example, a linear LambdaRank
simply maps x to y with a learned weight vector w such that

𝑦 = 𝐰 ∙ 𝐱. Several non linear functions are provided in Lamb-
daRank. LambdaRank is particularly interesting to us due to
the way w is learned. Typically, w is optimized with respect to
a cost function using numerical methods if the cost function is
smooth and its gradient with respect to w can be computed
easily. In order for the ranker to achieve the best performance
in document retrieval, the cost function used should be the
same as, or as close as possible to, the measure used to assess
the final quality of the system. In Web search, Normalized Dis-
counted Cumulative Gain (NDCG) [17] is widely used as quality
measure. For a query q, NDCG is computed as follows:

𝒩𝑖 = 𝑁𝑖
2𝑟 𝑗 − 1

log 1 + 𝑗

𝐿

𝑗=1

, (2)

where 𝑟(𝑗) is the relevance level of the j-th document, and the
normalization constant Ni is chosen so that a perfect ordering
would result in 𝒩𝑖 = 1. Here L is the ranking truncation level
at which NDCG is computed. The 𝒩𝑖 are then averaged over a
query set. However, NDCG, if it were to be used as a cost func-
tion, is either flat or discontinuous everywhere. It thus presents
particular challenges to most optimization approaches that
require the computation of the gradient of the cost function.

LambdaRank solves the problem by using an implicit cost
function whose gradients are specified by rules. These rules are

StreamLength_w # of words in CS

StreamLength_q # of queries in CS

WordsFound Ratio between # of words in q that occur in CS
and # of words in q

CompleteMatches Sum of the scores of the queries in CS all of
whose words are included in q

PerfectMatches Sum of the scores of the queries in CS that
match q (as a single string)

ExactPhrases Sum of the scores of the queries in CS that
contain q as a substring

Occurrences_i Sum of the scores of the queries in CS that
contain the i-th (i = 1…N) word of q

Bigrams Sum of the scores of the queries in CS that
contain any word-pair in q

InorderBigrams Sum of the scores of the queries in CS that
contain any word-bigram in q

… …

Figure 3. Some clickthrough features used in ranking models,
where q is the input query, containing N query words (stop words
are removed); CS is the clickthrough stream that consists of a set of
query-score pairs.

called λ-functions. Burges et al. [6] studied several λ-functions
that were designed with the NDCG cost function in mind.
They showed that LambdaRank with the best λ-function out-
performs significantly a similar neural net ranker, RankNet [7],
whose parameters are optimized using the cost function based
on cross-entropy. In this paper, we will use LambdaRank with
a sigmoid function, as our ranker and we explore different
ways to integrate clickthrough features in it.

3. TWO SMOOTHING TECHNIQUES

An analysis of the data sets in all the three search domains of
our study reveals a severe sparseness problem of the click-
through data. Take the Japanese training data as an example.
Around 75% of 2.62 million samples (i.e., query-document pairs)
do not have any click (see Figure 4). That is, the clickthrough
features of about 1.95 million samples are assigned a zero value
(the missing click problem). For the rest of the data, the lengths
of the clickthrough streams have a very skewed distribution,
with a majority of samples having very short (< 5 queries) click-
through streams, as illustrated in Figure 4 (the incomplete click
problem).

These sparseness problems are largely attributable, on the
one hand, to the bias of the search results retrieved by an im-
perfect search engine (i.e., most users only see a few top, typi-
cally 10, search results and do not see the others), and on the
other hand, to the incomplete clicks by the user even if many
relevant documents are shown to the user. Both sparseness
problems have their counterparts defined and studied in the
machine learning research community. The missing click prob-
lem can be viewed as a particular example of the missing data
problem [22], and the incomplete click problem is related to
confidence-weighted learning presented in [10]. We will return
to the related work in Section 5.

This situation makes it clear that the raw clickthrough data
is imperfect and unreliable (in the sense that an unclicked doc-
ument is not necessarily non-interesting). Instead of using the
raw clickthrough data, a better approach is to derive a new

clickthrough data, which contains the “expected” clickthrough
features, in which the raw clickthrough features are generalized
or expanded to other documents. This idea is very similar to
smoothing in statistical language modeling (SLM). Many stu-
dies showed that the model trained with expected counts can
better capture the language usage than the raw counts. It can
then be expected that a similar processing on raw clickthrough
data could produce a similar effect.

Inspired by the smoothing techniques for SLM, we propose
two methods to smooth clickthrough data: clustering and dis-
counting.

3.1 Random Walk

Clustering techniques have been widely used in language
modeling to improve the reliability of probability estimation [5,
14, 15]. Consider a large text corpus containing N words in
which a word w1 occurs once and another word w2 occurs
twice. If a unigram model were built using maximum likelih-
ood estimation without smoothing, the model would say that
the probability that w2 occurs in a new text, P(w2), is twice as
large as that of w1, P(w1). However, these probabilities are not
reliable because they are estimated on few samples. Now sup-
pose that we could group similar words into clusters. Assume
that W1 and W2 are the clusters of w1 and w2, respectively. If W1
occurs 200 times, and W2 400 times, then one is more confident
to say that P(W2) is twice as large as P(W1).

The same idea can also be used to smooth clickthrough fea-
tures. Consider the StreamLength feature as an example. We
would not be confident to say that a document d1, with Stream-
Length_q = 2, is twice as popular as a document d2, with
StreamLength_q = 1. However, if we could expand the stream
with “similar” queries that are likely to click the same docu-
ment but are not recorded in log data for some reason, and
observe that the expanded streams of d1 and d2 are 200 and 100
in StreamLength_q, respectively, then we are more confident to
say that d2 is more popular. Similar idea applies to other click-
through features.

Now, the question is how to determine similar queries that
should have clicked on the document. One can use a similarity
defined according to query terms. However, this would unlike-
ly add very different queries into the click stream. Another
solution is to exploit co-clicks: queries for which users have
clicked on the same documents can be considered to be similar.
This principle has been successfully used in several studies
[e.g., 3, 9, 27]. We follow the same principle here, but use a dif-
ferent approach: instead of defining a static function of similari-
ty according to the number of co-clicks, we use random walk to
derive it dynamically. This approach has been successfully
used in [9]. Figure 5 gives an example that illustrates this idea.

Formally, we construct a click graph which is a bipartite-
graph representation of clickthrough data. We use 𝑞𝑖 𝑖=1

𝑚 to

represent a set of query nodes and 𝑑𝑗 𝑗 =1

𝑛
 a set of document

nodes. We further define an 𝑚 × 𝑛 matrix 𝑊 in which element

𝑊𝑖𝑗 represents the click count associated with 𝑞𝑖 ,𝑑𝑗 . This ma-

trix can be normalized to be a query-to-document transition

matrix, denoted by 𝐴, where 𝐴𝑖𝑗 = 𝑝(1)(𝑑𝑗 |𝑞𝑖) is the probability

that 𝑞𝑖 transits to 𝑑𝑗 in one step. Similarly, we can normalize

the transpose of 𝑊 to be a document-to-query transition matrix,

Figure 4. Length distribution of the clickthrough streams (with
StreamLength_q ≤ 20) in the Japanese training data, where x-axis is
the stream length, and y-axis is the number of training samples;
Bars at x = 0 shows the number of documents without click. Black
bars correspond to the raw click counts and grey bars to the
smoothed counts using Random Walk.

denoted by 𝐵, where 𝐵𝑗 ,𝑖 = 𝑝(1)(𝑞𝑖 |𝑑𝑗). It is easy to see that

using 𝐴 and 𝐵 we can compute the probability of transiting
from any node to any other node in 𝑘 steps. There are various
ways of evaluating query similarities based on a click graph,

e.g. using hitting time [25]. In this work, we use a simple meas-
ure which is the probability that one query transits to another
in 2s steps; and the corresponding probability matrix is given
by (𝐴𝐵)𝑠 . Although longer transitions could be used, the most
effective transitions are the first ones, and longer transitions
also raise the problem of efficiency. So, in our experiments, we
limit s to 1.

Based on this measure, we propose two heuristics for click-
through stream expansion. For each query 𝑞 in the original
clickthrough stream, we select up to 8 similar, previously ab-
sent queries to be added into the expanded stream. A newly

added similar query q’ must satisfy 𝑝 2 𝑞′ 𝑞 > 𝛼, where 𝛼 is
tuned empirically on validation data (𝛼 = 0.01 in all the expe-
riments in Section 4). Alternatively, we can select similar que-

ries if 𝑝 2 𝑞 𝑞′ > 𝛼. Empirical experiments show no signifi-
cant difference in using these two heuristics. In Figure 4, one
can observe the effect of Random Walk smoothing. The length
of clickthrough stream is generally increased and we can expect
more reliable clickthrough features to be extracted. However,
we observe that the number of streams of length 0 remains the
same because they are not affected by Random Walk smooth-
ing. The technique of discounting described in the next subsec-
tion aims to solve this problem.

3.2 Discounting

Many smoothing methods have been proposed in SLM to deal
with unseen words [13, 20]. Our method is inspired by the
Good-Turing estimator, which will be reviewed briefly.

Let N be the size of a sample text, and nr be the number of
words which occur in the text exactly r times, so that

𝑁 = 𝑟𝑛𝑟
𝑟

. (3)

Good-Turing’s estimate PGT for a probability of a word that
occurred in the sample r times is

𝑃𝐺𝑇 =
𝑟∗

𝑁
 (4)

where

𝑟∗ = 𝑟 + 1
𝑛𝑟+1

𝑛𝑟
. (5)

The procedure of replacing an empirical count r with an ad-
justed count r* is called discounting, and the ratio r*/r is a dis-
count coefficient. When applying Good-Turing discounting to

estimating n-gram language model probabilities, Katz [20] sug-
gested not discounting high values of counts, considering them
as reliable. That is, for r > k (typically k = 5), we have r*=r.

Notice that 𝑟 + 1 𝑛𝑟+1 is the total count of words with fre-

quency r+1. Let us denote it by Cr+1. Then Equation (5) can be

rewritten as:

𝑟∗ =
𝐶𝑟+1

𝑛𝑟
. (6)

One of the most straightforward manners of applying the
Good-Turing method to our case is to replace a raw click count,
such as 𝐶(𝑑, 𝑞, 𝑙𝑎𝑠𝑡) and 𝐶 𝑑, 𝑞, 𝑐𝑙𝑖𝑐𝑘_𝑙𝑎𝑠𝑡 in Equation (1), with
its adjusted count according to Equation (5). However, this
does not work here. While the clickthrough scores are derived
from the raw click counts, the values of the clickthrough fea-
tures are computed based on not only the clickthrough scores
but also the specific words in the clickthrough stream, as illu-
strated in Figure 3. If we were to adjust the raw click counts,
we would have expanded the clickthrough stream of a docu-
ment to an infinitely large set by assigning a non-zero score to
any possible query that does not have a click on the document.
This would make most of the features, whose values are based
on word or n-gram matching, meaningless. Therefore, instead
of discounting raw click counts as in the Good-Turing estima-
tor, we have developed a heuristic method, inspired by the
Good-Turing estimator, which directly discounts the click-
through feature values.

Let fr be the value of a clickthrough feature in a training
sample whose clickthrough stream is of length r, where the
length is measured as the number of the queries that have
click(s) on the document (i.e., StreamLength_q in Figure 3).
Assume that the feature values fr, for r > 0, have been smoothed
using the Random Walk based method described in Section 3.1.
To address the missing click problem, we only need to estimate
an adjusted clickthrough feature value f0*. Obviously, we have
f0 = 0 for all the raw clickthrough features.

Let f1,i, i = 1…n1, be the value of a feature in the i-th training
sample whose clickthrough stream is of length 1. The sum of f1,i

over all the training samples is 𝑓1,𝑖
𝑛1
𝑖=1 . Then, similar to Equa-

tion (6), f0* is computed as

𝑓0
∗ =

 𝑓1,𝑖
𝑛1
𝑖=1

𝑛0
. (7)

where n0 is the number of the samples whose clickthrough
streams are empty. Notice that the average value of f1 over all

training samples is 𝑓1
′ = 1/𝑛1 𝑓1,𝑖

𝑛1
𝑖=1 . Since 𝑛0 ≫ 𝑛1, as shown

in Figure 4, we have 𝑓1
′ ≫ 𝑓0

∗ > 𝑓0 = 0. That is, for each type of
clickthrough features, Equation (7) assigns a very small non-
zero constant if the feature is in a training sample whose click-
through stream is empty (i.e., the raw feature value is zero).
This will prevent the ranker from considering unclicked docu-
ments to be categorically different from clicked ones. As a con-
sequence, the ranker can rely more on the smoothed features.
Before we empirically test the impact of the smoothing method
in the next section, here is an example of illustrating why this
simple method might work.

Assume that given a query q, two documents, d1 and d2,
have been retrieved based on their content streams. Now, we
want to adjust their ranks based on their clickthrough streams
(i.e., using their clickthrough features such as PerfectMatches in
Figure 3). Assume that d1 has a lot of clicks and d2 has no click

Figure 5. Before expansion, document 𝑑3 has a clickthrough stream
consisting of query 𝑞2 only; after expansion, the clickthrough
stream is augmented with query 𝑞1 which has a similar click pat-
tern as 𝑞2.

because d2 is a new URL and we have not collected enough
click data for d2 yet. If PerfectMatches = 0 for both d1 and d2,
intuitively d2 should be ranked higher because the fact that q
does not match any queries, collected previously, which have
clicks on d2 seems to provide a piece of evidence that d1 might
be irrelevant, whereas there is no evidence about the
(ir)relevance of d2. Using the discounting smoothing method of
Equation (7), d2 would be ranked higher, in agreement with our
intuition.

4. EXPERIMENTS

4.1 The Data

We evaluated the two smoothing methods in three Web search
domains, namely (1) a person name search domain, which con-
sists of only person name queries, (2) a long query domain,

which consists of queries containing four or more words, and (3)
a Japanese query domain, which consists of queries users sub-
mitted to the Japanese search market. The statistics of these
data sets are shown in Tables 1 to 3. We chose English name
queries and long queries for our experiments because we've
collected large amounts of clickthrough data in these domains
and we believe that the clickthrough features, if their values
could be properly estimated, should lead to a significant im-
provement. We also evaluated our methods on Japanese que-
ries because our Japanese clickthrough data is an order of mag-
nitude smaller than English log data, but the human-labeled
Japanese training data is almost an order of magnitude larger
than the training data sets in the first two domains. We expect
that the different settings could help us know in what case our
methods perform well.

For each domain, we used two different data sets. They con-
tain queries that are sampled from the query log files of a
commercial Web search engine of two non-overlapping periods
of time. We used the more recent one as test set, and split the
older data set into two non-overlapping data sets: training and
validation sets. This setting provides a good simulation to the

realistic Web search scenario, where the ranking models in use
are usually trained on previously collected data.

In the name query and the long query experiments, we used
44 clickthrough features and other 374 features. These data are
extracted from the same en-click data, which is generated from
1-year query sessions as follows. Each query is associated to a
set of documents (URLs) clicked for it, together with the click
counts. For each query-document pair, we computed the counts
𝐶(𝑑, 𝑞), 𝐶(𝑑, 𝑞, 𝑐𝑙𝑖𝑐𝑘), and 𝐶(𝑑, 𝑞, 𝑙𝑎𝑠𝑡_𝑐𝑙𝑖𝑐𝑘), as listed in Equa-
tion (1). We only kept the pairs with C(d, q) ≥ 5 and we com-
puted the clickthrough scores according to Equation (1). In the
Japanese query experiments, we used 30 clickthrough features
and other 263 features. The clickthrough data set, jp-click in
Table 3, is generated from 1-year Japanese query sessions using
the same procedure as that of en-click.

In all the human-labeled data sets, each sample is labeled
on a 5-level relevance scale, 0 to 4, with 4 as the most relevant.
The performance of all the ranking models in our experiments
is measured by NDCG on the test sets. We report NDCG scores
at positions 1, 3 and 10, and the averaged NDCG score (Ave-
NDCG), which is the arithmetic mean of the NDCG scores at 1
to 10. We also performed significance test, i.e., t-test with a
significance level of 0.05. In the results reported in Tables 4 to 6
in Section 4.2, the difference between any pair of different
rankers is statistically significant.

4.2 Results

Table 4 shows the results of the name query experiments. All
the human-labeled data sets (in Table 1) consist of only person
name queries. Row 1 in Table 4 is the result of the baseline
ranker which is a 2-layer LambdaRank model with 10 hidden
nodes and a learning rate of 10-5, trained on name-train. It uses
374 features, i.e. without clickthrough features.

Row 2 is a LambdaRank model trained using the same pa-
rameter setting, but with an additional set of 44 clickthrough
features extracted from the raw data. We incorporated these
clickthrough features as follows. For each document in the
three human-labeled data sets (i.e., name-train, name-valid and
name-test), we built a clickthrough stream as shown in Figure 2.
Then for each query-document pair, we extracted the 44 fea-
tures by matching the query to the clickthrough stream of the
document, and computed the values of these features, as de-
scribed in Section 2.2. Finally, we appended these new click-
through features to each query-document pair.

Row 3 is the model trained on name-train where all the 44
clickthrough features have been smoothed using the Good-
Turing inspired discounting method, described in Section 3.2.

Coll. Description # qry. # doc/qry

en-click aggregated 1-year clickthrough data 35,374,184 3.4
name-train human-labeled training data 5,752 85
name-valid human-labeled validation data 476 154
name-test human-labeled test data 4,370 84

Table 1. Data sets in the name query domain experiments,
where # qry is number of queries, and # doc/qry is number of
documents per query.

Coll. Description # qry # doc/qry

en-click aggregated 1-year clickthrough data 35,374,184 3.4
long-train human-labeled training data 6,255 93
long-valid human-labeled validation data 532 159
long-test human-labeled test data 5,785 123

Table 2. Data sets in the long query domain experiments.

Coll. Description # qry. # doc/qry

jp-click aggregated 1-year clickthrough data 3,958,820 4.7
jp-train human-labeled training data 47,919 55
jp-valid human-labeled validation data 4,730 119
jp-test human-labeled test data 3,959 178

Table 3. Data sets in the Japanese query domain experiments.

Models NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-Rank-374 0.4981 0.5130 0.5716 0.5363
2 λ-Rank-418 0.5021 0.5163 0.5723 0.5381
3 2 + GT 0.5151 0.5240 0.5776 0.5452
4 2 + RW-44 0.5151 0.5198 0.5737 0.5409
5 2 + RW-02 0.5187 0.5275 0.5787 0.5472
6 3 + RW-44 0.5219 0.5242 0.5752 0.5448
7 3 + RW-02 0.5398 0.5403 0.5879 0.5595

Table 4. Test results on name-test. λ-Rank-374 is a ranker trained
using LambdaRank with 374 features; GT stands for the discounting
method inspired by the Good-Turing estimator; RW-44 is the query
smoothing method based on Random Walk, using 44 clickthrough
features, while RW-02 uses 2 clickthrough features.

Rows 4 and 5 are the models trained on the expanded click-
through features through Random Walk. Considering that the
query clusters generated by Random Walk are noisy, we also
consider using only a subset of the expanded clickthrough fea-
tures that are the most reliable as follows: We grouped these
features into two categories - query-dependent features and
query-independent features. The feature values of the former
have to be computed by matching query words to the words in
a stream, such as WordsFound and CompleteMatches in Figure
3. Since similar queries are generated automatically, the ex-
panded stream may contain arbitrary queries that are irrelevant
to the document. Therefore, the quality of the query-dependent
features is very sensitive to the quality of the clustering algo-
rithm, which unfortunately is by no means satisfactory on noisy
log data. The second category contains only two StreamLength
features, as in Figure 3 (number of words and number of que-
ries in the clickthrough stream). Their values can reflect the
popularity of a document from users’ perspective, similar to
BrowseRank [23]. More importantly, since the StreamLength
features do not take into account any specific word in a stream,
but simply measure its length, they are much more robust to
noise. Row 4 is the model trained using all the 44 expanded
clickthrough features, and Row 5 is the model trained using
only the two StreamLength features.

Rows 6 and 7 are similar respectively to the models in Rows
4 and 5, except that all the clickthrough features are further
smoothed using the discounting method.

Our results show that (1) as observed by other researchers,
incorporating clickthrough features improves the ranker signif-
icantly (Row 2 vs. Row 1); (2) as expected, smoothing can fur-
ther boost the ranking performance by a large margin in the
name domain experiments (Row 7 vs. Row 2); (3) interestingly,
the discounting method, though simple, brings a substantial
improvement; and (4) the Random Walk method works well
(Row 7 vs. Row 3) but not all the expanded query-dependent
clickthrough features are reliable and they should be used with

care1 (Row 7 vs. Row 6). Overall, both smoothing methods
work very well in the name domain experiments, and the com-
bination of the two smoothing methods lead to a 4.0% relative
improvement (or a 2.1% of absolute improvement) in
AveNDCG (Row 7 vs. Row 2), which is very significant even in

users’ perception2.
Table 5 shows the results of the long query experiments.

All the models were built similarly to those in Table 4, except
the parameters for the LambdaRank: here, we use a 2-layer
LambdaRank models with 15 hidden nodes and a learning rate
of 10-5, trained on long-train. The results are consistent with
those in the name query experiments. The combined smoothing
method still substantially outperforms the unsmoothed model
by 1.3% in AveNDCG (Row 7 vs. Row 2). There is, however,
one noticeable difference from the results in Table 4: The con-
tribution of the Random Walk method, which only uses the two

1 It is possible that a subset of the query-dependent features (after
some transformation) is useful for ranking. We have not fully
exploited each individual query-dependent feature, with differ-
ent transformations. We leave it to future work.

2 A user study conducted by Microsoft Live Search (p.c.) shows that
users start to sense the improvement of ranking when the NDCG
improvement is larger than 0.5%.

StreamLength features, is smaller than that of the discounting
method in the long query experiments: We see in Table 5 that
the discounting method contributed to a 0.82% improvement in
AveNDCG (comparing results in Row 3 vs. Row 2), which is
almost twice as large as that of the Random Walk method,
which is 0.46% (Row 5 vs. Row 2).

Table 6 shows the results of the Japanese query experiments.
All the models are trained similarly to those in Table 4. The
baseline ranker (Row 1) is a 2-layer LambdaRank models with
10 hidden nodes and a learning rate of 10-5, trained on jp-train,
with 263 features. 30 clickthrough features are used. Compar-
ing to the experimental settings of the other two search do-
mains abovementioned, in the Japanese experiments, the hu-
man-labeled training data is much larger and clickthrough data
is much smaller. This difference leads to some changes in the
results: the discounting method produces a smaller improve-
ment than on two other datasets and the Random Walk method
fails to bring any improvement. This result suggests the follow-
ing possible interpretations: (1) When the amount of human-
judged document-query pairs is very large, the advantage of
exploiting clickthrough data is reduced. (2) The smaller amount
of clickthrough data leads to much noisier expansion by the
Random Walk method. In this case, it is even better not to ex-
pand the data than to do it. Therefore, the impact of the Ran-
dom Walk method is more subject to the amount of click-
through data than that of the discounting method.

To sum up, our experimental results on the three datasets
suggest: (1) Incorporating clickthrough features can improve
the performance of rankers substantially. (2) Smoothing click-
through features can reduce the sparseness problem of these
features, and lead to some further, significant improvements. (3)
The discounting method, inspired by the Good-Turing estima-
tor, is simple and effective. It works very well across all the
data sets we tested. (4) The Random Walk method also helps in
some cases, but this depends more on the amount of raw click-
through data.

5. RELATED WORK

Although the sparseness problem of clickthrough data has been
reported in many recent studies [1, 9, 26, 28], no effective solu-
tion has been tested on real web search data. To the best of our

Models NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-Rank-374 0.4302 0.4341 0.4642 0.4456
2 λ-Rank-418 0.4486 0.4432 0.4697 0.4539
3 2 + GT 0.4520 0.4478 0.4728 0.4576
4 2 + RW-44 0.4507 0.4415 0.4675 0.4525
5 2 + RW-02 0.4538 0.4462 0.4710 0.4560
6 3 + RW-44 0.4473 0.4405 0.4667 0.4511
7 3 + RW-02 0.4563 0.4500 0.4748 0.4598

Table 5. Test results on long-test.

Models NDCG@1 NDCG@3 NDCG@10 AveNDCG

1 λ-Rank-263 0.5555 0.5427 0.5418 0.5424
2 λ-Rank-293 0.5589 0.5503 0.5525 0.5515
3 2 + GT 0.5658 0.5542 0.5500 0.5528
4 2 + RW-30 0.5595 0.5456 0.5425 0.5448
5 2 + RW-02 0.5603 0.5482 0.5471 0.5482
6 3 + RW-30 0.5639 0.5518 0.5456 0.5490
7 3 + RW-02 0.5631 0.5537 0.5485 0.5517

Table 6. Test results on jp-test.

knowledge, the Random Walk method reported in [9] is per-
haps the closest work to ours. However, [9] only tested the
method on the application of image search, leaving it unclear
whether it can be extended to general Web search. Click-
through data plays a much more important role in ranking
images than in ranking text documents in general Web search
because the content text streams of images are usually much
less informative. Radlinski et al. [26] argued that missing click
is due to the ranking bias of a search engine and proposed an
active learning method to collect more click data by modifying
the original ranking list. Given the large amount of missing
clicks, the extent to which the method could alleviate the miss-
ing click problem is questionable.

The missing click problem can be viewed as a special case of
the missing data problem that has been well-studied in the ma-
chine learning community (e.g., [4, 16, 22]). Various heuristics
have been proposed. In general, missing feature values are
replaced by integration over (e.g., the mean of) the correspond-
ing features whose value is available, weighted (or discounted)
by the appropriated distribution [2, 24]. Our discounting me-
thod is also a heuristic and shares some similarities with them.
One area of our future work is to explore the problem in a more
principled way such as the work presented in [12] (though their
method cannot be applied to our case directly), where missing
data in density estimation problems are dealt with by seeking a
maximum likelihood solution using the expectation maximiza-
tion algorithm.

 Another area worth exploring in the future concerns the in-
complete click problem. Incomplete click makes the feature
values unreliable for training. The Random Walk method tries
to improve the reliability of features via smoothing the feature
values before training. An alternative strategy is to take into
account the uncertainty of feature values during training.
Dredze et al. [10] introduced a class of online learning methods,
called confidence-weighted learning, where a measure of confi-
dence (reliability) of each feature is maintained during training
so that each feature weight can be updated separately accord-
ing to its confidence score.

6. Conclusions

Clickthrough data have proven useful for document ranking in
Web search. However, their sparseness prevents the ranker
from strongly rely on these data. In this paper, we have pre-
sented two smoothing techniques for expanding clickthrough
features: Discounting and Random Walk. We have demonstrat-
ed that they lead to significant improvements compared to the
utilization of raw clickthrough data. In particular, the dis-
counting method is simple, robust, and effective. This work
demonstrates both the importance and the benefits of dealing
with the sparseness problem of clickthrough data. In our future
work we will refine the smoothing techniques to reach the full
potential of clickthrough data.

7. REFERENCES

[1] Agichtein, E., Brill, E. and Dumais, S. 2006. Improving web
search ranking by incorporating user behavior information. In
SIGIR, pp. 19-26.

[2] Ahmad, S. and Tresp, V. 1993. Some solutions to the missing
feature problem in vision. In NIPS, pp. 393-400.

[3] Baeza-Yates, R. and Tiberi, A. 2007. Extracting semantic rela-
tions from query logs. In SIGKDD, pp. 76-85.

[4] Bishop, C. M. 1995. Neural networks for pattern recognition. Cla-
rendon Press, Oxford.

[5] Brown, P.F., Della Pietra, V. J., de Souza, P. V., Lai, J. C. and
Mercer, R. L. 1992. Class-based n-gram models of natural lan-
guage. Computational Linguistics, 18(4): 467-479.

[6] Burges, C. J., Ragno, R., & Le, Q. V. 2006. Learning to rank
with nonsmooth cost functions. In NIPS, pp. 395-402.

[7] Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M.,
Hamilton, and Hullender, G. 2005. Learning to rank using
gradient descent. In ICML, pp. 89-96.

[8] Chen, S. and Goodman, J. 1998. An empirical study of smooth-
ing techniques for language modeling. Technical Report TR-
10-98, Harvard University.

[9] Craswell, N. and Szummer, M. 2007. Random walk on the
click graph. In SIGIR. pp. 239-246.

[10] Dredze, M., Crammer, K. and Pereira, R. 2008. Confidence-
weighted linear classification. In ICML. pp. 264-271.

[11] Gao, J., Qin, H., Xia, X. and Nie, J-Y. 2005. Linear discrimina-
tive models for information retrieval. In SIGIR. pp. 290-297.

[12] Ghahramani, Z. and Jordan, M. I. 1994. Supervised learning
from incomplete data via an EM approach. In NIPS, pp.

[13] Good, I. J. 1953. The population frequencies of species and the
estimation of population parameters. Biomerika, 40 (3 -4): 237-
264.

[14] Goodman, J. 2001. A bit of progress in language modeling
(extended version). Technical Report MSR-TR-2001-72, Micro-
soft Research.

[15] Goodman, J. and Gao, J. 2000. Language model size reduction
by pruning and clustering. In ICSLP, pp. 176-182.

[16] Hastie, T., Tibshirani, R. and Friedman, J. 2001. The elements of
statistical learning. Springer-Verlag, New York.

[17] Jarvelin, K. and Kekalainen, J. 2000. IR evaluation methods for
retrieving highly relevant documents. In SIGIR, pp. 41-48.

[18] Joachims, T. 2002. Optimizing search engines using click-
through data. In SIGKDD, pp. 133-142.

[19] Joachims, T., Granka, L., Pan, B., Hembrooke, H. and Gay, G.
2005. Accurately interpreting clickthrough data as implicit
feedback. In SIGIR, pp. 154-161.

[20] Katz, S. M. 1987. Estimation of probabilities from sparse data
for the language model of a speech recognizer. IEEE Trans on
Acoustics, Speech and Signal Processing, ASSP-35(3): 400-401.

[21] Li, X., Wang, Y-Y. and Acero, A. 2008. Learning query intent
from regularized click graphs. In SIGIR, pp. 339-346.

[22] Little, R. J. A. and Rubin, D. B. 1987. Statistical analysis with
missing data. New York: John Wiley.

[23] Liu, Y., Gao, B., Liu, T., Zhang, Y., Ma, Z., He, S., and Li, H.
2008. BrowseRank: letting web users vote for page importance.
In SIGIR, pp. 451-458

[24] Lowe, D. and Webb, A. R. 1990. Exploit prior knowledge in
network optimization: an illustration from medical prognosis.
Network: Computation in Neural Systems, 1(3):299-323.

[25] Mei, Q., Zhou, D. and Church, K. 2008. Query Suggestion
Using Hitting Time. In CIKM, pp. 469-478.

[26] Radlinski, F., Kurup, M. and Joachims, T. 2007. Active explora-
tion for learning rankings from clickthrough data. In SIGKDD.

[27] Wen, J. Nie, J.Y. and Zhang, H. 2002. Query Clustering Using
User Logs, ACM TOIS, 20 (1): 59-81.

[28] Xue, G., Zeng, H-J., Chen, Z., Yu, Y., Ma, W-Y., Xi, W. and Fan,
W. 2004. Optimizing web search using web click-through data.
In CIKM, pp. 118-126.

http://research.microsoft.com/en-us/um/people/denzho/papers/sugg.pdf
http://research.microsoft.com/en-us/um/people/denzho/papers/sugg.pdf
http://research.microsoft.com/en-us/um/people/denzho/papers/sugg.pdf

