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Abstract 

We propose a new anisotropic diffusion filter for denoising low signal-to-noise (SNR) molecular images.  

This filter, which incorporates a median filter into the diffusion steps, is called an anisotropic median-diffusion 

filter. This hybrid filter achieved much better noise suppression with minimum edge blurring compared to the 

original anisotropic diffusion filter when it was tested on an image created based on a molecular image model. The 

universal quality index, proposed in this paper to measure the effectiveness of denoising, suggests that the 

anisotropic median-diffusion filter can retain adherence to the original image intensities and contrasts better than 

other filters. In addition, the performance of the filter is less sensitive to the selection of the image gradient threshold 

during diffusion, thus making automatic image denoising easier than with the original anisotropic diffusion filter. 

The anisotropic median-diffusion filter also achieved good denoising results on a piecewise-smooth natural image 

and real Raman molecular images.  
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I. INTRODUCTION 

 Molecular imaging techniques such as fluorescent imaging, isotope radiation imaging, Raman imaging, and 

positron emission imaging are becoming increasingly important for visualizing and analyzing biophenomena. 

Molecular imaging makes it possible to visualize the distributions of interesting molecules or chemicals, which are 

transparent using other modalities. It also becomes possible to measure quantitative information, such as the 

molecular concentration. However, because recorded molecular images often suffer from a low SNR, image 

denoising is an important prelude to visual interpretation or automated analysis. It is highly desirable that the 

filtering process suppresses the noise, while simultaneously retaining adherence to the original image intensities and 

contrasts, and in particular, preserving information-bearing structures such as edges. Therefore, quality control in the 

denoising process is necessary.  

  The anisotropic diffusion filter, first proposed by Perona and Malik [1], is a nonlinear filter which purports 

to smooth a noisy image without blurring the edges. The diffusion equation for image u is given by 

])([ uucdiv
t
u ∇⋅∇=

∂
∂ , (1)
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where∇ u is a local image gradient and c(∇ u) is the diffusion coefficient, which is a function of the local gradient. 

The anisotropic diffusion filter has been broadly used for edge detection [2-4], image segmentation [5, 6], and noise 

smoothing [7-15], often yielding better results than traditional filters such as the moving average or median filters or 

other edge-preserving filters [16].  

The idea behind the anisotropic diffusion filter is to evolve from a noisy image g(x,y) a family of 

increasingly smooth images u(x,y,t), indexed by diffusion parameter t, to estimate the original image. The diffusion 

coefficient c(∇ u) in equation (1) is sometimes called the “edge-stopping” function, which largely dictates the 

behavior of the filter. The diffusion coefficient is set such that the filter in equation (1) diffuses the image more in 

smooth areas and less near the edges. The diffusion coefficient has an argument, the local image gradient, which 

measures the local edge strength.  However, the response of the gradient to the noise element may compete with or 

exceed the edge response, in which case the diffusion function cannot distinguish between image structure and noise 

contribution. Therefore, the basic anisotropic diffusion filter in equation (1) usually fails to deliver adequate results 

in low SNR images; the result either fails to eliminate noise, or leaves the edges significantly blurred [13, 17]. 

In this paper, we propose an anisotropic median-diffusion filter which is specifically intended for denoising 

low SNR images, and which is particularly suitable for piecewise smooth images such as those encountered in 

molecular imaging. In Section II, a molecular image model is described. Based on this model, a cell phantom is 

created as the test image for the modified anisotropic diffusion filter. Section III proposes the use of the universal 

image quality index [18] to measure the effectiveness of image denoising. The anisotropic median-diffusion filter is 

presented in Section IV. Comparisons of this modified filter with the traditional anisotropic diffusion filter are given 

in Section V. Finally, the conclusion and remarks are included in Section VI. 

 

II. MOLECULAR IMAGE MODEL 

 A molecular image illustrates the distribution of a certain molecule. Since the molecules are usually limited 

within certain areas, a molecular image can often be divided into several regions. A region with a high molecular 

concentration appears bright while regions with low molecular concentration appear dark. The intensity within a 

region usually changes gradually while the average intensities between the different regions are quite dissimilar. For 

such an image, we can use a piecewise-smooth model to describe it, which we will write as  
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where the si(x,y) indicates a smooth region of f(x,y).  

We create a 128x128-pixel phantom according to the model. This phantom, illustrated in figure 1, 

represents a molecular image of a cell. In the phantom, the image is divided into five regions: the background, the 

cytoplasm, the nucleus, the mitochondria, and the endoplasmic reticulum (ER). In the phantom we assume the 

“interesting” molecules are distributed in the cell nucleus, mitochondria, and ER regions, but not in the cytoplasm 

region. The concentration of the molecules in the nucleus region is Gaussian distributed. The concentration of the 

molecules in the ER region is linearly distributed, with the highest concentration at the right end. The concentration 

of the molecules in the mitochondria region is uniform. The entire image has a Gaussian distributed background 

illumination.  

A (noiseless) piecewise-smooth image is usually insensitive to a median filter. This is because a median 

filter eliminates primarily sudden, transient spikes, while leaving sudden, sustained edges undisturbed. Moreover, 

the median filter does not significantly perturb the intensities in smooth regions. Figure 2 shows the result of the 

piecewise image shown in figure 1 following filtering by a 3x3 median filter. Except at the corners of the ER and 

mitochondria regions, no features in this piecewise-smooth image were corrupted by the median filter. The quality 

index Q (discussed in Section III) of the filtered image relative to the original image is 0.997 (on a range from -1 to 

1, where 1 is the best possible). Moreover, the filtered image does not degrade much if the median filter is applied 

repetitively. 

 

III. INDEX FOR MEASURING THE QUALITY OF DENOISE FILTER 

A simple noise model is used in this paper. A recorded molecular image g(x,y) is assumed to be corrupted 

by a zero mean Gaussian white noise n(x,y): 

( ) ( ) ( )yxnyxfyxg ,,, += .  

 The goal of a denoising filter is to estimate an image u(x) from the y(x) such that the u(x) is as close to the 

original image f(x) as possible. Many indices have been proposed to measure the efficiency of a denoising filter. The 

most popular are the mean square error (MSE), the mean absolute error (MAE), the signal-to-noise ratio (SNR), and 

the peak signal-to-noise ratio. Recently, Wang and Bovik [18] proposed a universal image quality index (Q) that 

(2)

(3)
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demonstrates a much better correlation with subjective quality as measured on human subjects. The index Q 

between the estimated image u and the original image f is quite simply defined as: 

andQQQQ ,321 ⋅⋅=  

( ) ( ) 2232221
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where µf and µu are the local image means in f and u and where and σf
2 , σf

2 , and σfu are local variances and 

covariances of f and u, respectively. The first item Q1 measures the degree of local linear correlation between f and 

u; the second item Q2 measures the similarity of the mean luminance between f and u; and the third item Q3 

measures the resemblance of the local contrast between the two images. The dynamic range of Q is between [-1, 1]. 

The best value of 1 is achieved only when u = f locally. 

The three components of Q provide a complete profile of the local quality of a denoising filter. In practice, 

Qs are first estimated in local regions using a sliding window and then combine together to create an overall global 

image index.  Therefore, Q is very sensitive to local, transient image degradations, as well as to global degradations. 

  

IV. THE ANISOTROPIC MEDIAN-DIFFUSION  FILTER 

A discrete form of the anisotropic diffusion filter described in equation (1) was proposed by Perona and 

Malik [1] as follows: 

[ ]n
jiWWEESSNN

n
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n
ji ucucucucuu ,,
1

, 4 ∇⋅+∇⋅+∇⋅+∇⋅⋅+=+ λ ,  

where λ ∈  [0,1] controls the rate of diffusion. Usually a small value λ is used to avoid destabilizing the diffusion 

process. The letters N, S, E, W (north, south, east and west) describe the direction of the local gradient. The local 

gradient is calculated using nearest-neighbor differences: 
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Research in the anisotropic diffusion filter has been oriented toward understanding the characteristics of the 

diffusion coefficient c(∇ u) and then improving the performance of the diffusion filter [19-22]. In this paper, we use 

(4)

(5)

(6)

(7)
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the Tukey biweight norm as the diffusion coefficient proposed by Black et al. [22]. The normalized (magnitude) 

Tukey biweight diffusion coefficient is defined as:  

( ) ( )




 ≤∇



 ∇−=∇

otherwise

KuKu
KKuc

0

551
16
25

,
22

 

where K is a constant that is tuned for a particular application. This constant is the threshold of the local gradients, 

and determines if a local edge is detected. The flux function φ(∇ u) is defined as: 

( ) ( ) uKucKu ∇⋅∇=∇ ,,φ . 

The diffusion coefficient and the flux function are plotted in figure 3. This figure together with equations (6) and (7) 

suggests that when the local gradient between a current pixel and its neighborhood pixel is smaller than the 

threshold K, the neighborhood pixel is classified as belonging to the same smooth region as the current pixel. 

Therefore, the neighborhood pixel is actively involved in the smoothing of the current pixel. However, when the 

local gradient is greater than K but less than K5 , the neighborhood pixel is considered to be more distant from the 

pixel being analyzed in the current smooth region, therefore, such a neighborhood pixel will have less contribution 

in the smoothing of the current pixel. When the local gradient is greater than K5 , the neighborhood pixel is 

determined to belong to another region, possibly on the other side of an edge. Thus the involvement of this 

neighborhood pixel in the smoothing is eliminated to avoid edge blurring. Determining a good value of K for a noisy 

image is critical for the performance of these filters. 

Perona and Malik suggested using Canny's "noise estimator" [23] to determine K.  Torkamani-Azar and 

Tait [13] used the mean of the absolute gradient as K.  Black et al. [22] determined K from the median absolute 

deviation. All of these methods intend to separate the gradient generated by the noise from the gradient generated by 

the edges. However, in low SNR images, the average gradient generated by the noise is comparable to or even larger 

than the edge gradients. Under such a condition, determining a proper K to smooth the noise while retaining the 

edges is quite difficult. Taking K to be too small will result in a filter that fails to satisfactorily eliminate the overall 

noise element, especially large noise spikes (see figures 5(b) and 9(b)). Taking K to be large can lead to edge 

blurring while still failing to reduce large noise spikes (see figures 5(c), 5(d), 9(c) and 10(c)). 

We propose to use a median filter in combination with a small K in the diffusion process. In other words, 

after diffusion via equation (6), a median operation (defined as follows) is used to remove large noise spikes: 

(8)

(9)
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where W is the window for the median operator (such as a 3x3 square).  

This modified anisotropic diffusion filter we call the anisotropic median-diffusion filter. With each 

diffusion step, areas having small gradient are smoothed, while areas with large gradient (from edges or noise 

spikes) relative to surrounding areas are left unchanged. When the large gradients are generated by large noise 

spikes, these spikes will be removed effectively by the subsequent median filter. However, if the large gradients are 

generated by edges, the median filter will not affect them. With each iteration step, low-level noise is smoothed by 

diffusion, while impulsive noise is removed by the median filter. This process is demonstrated in figure 4. A 

constant image with unit variance Gaussian noise was created to illustrate the change of the image histogram (or 

equivalent to noise histogram in this case) with the diffusion steps. The noise histogram (dotted line) after an 

anisotropic diffusion step indicates that the low-level noise increases and the median-level noise decreases, while the 

high-level noise remains the same. While the diffusion process smoothes the relative low-level noise, at the same 

time it equivalently makes the relative high-level noise further “stand out” from the surroundings and thus easily 

removed by the following median filter. The noise histogram (dashed line) after the subsequent median filter shows 

that all the relative high-level noise (than surroundings) was greatly eliminated. In a word, the anisotropic diffusion 

and the median filter work in a complementary way to gradually eliminate the overall noise element without blurring 

the edges (refer to figures 5(f), 9(d) and 10(d)). 

The open-close and close-open filters were suggested by Acton [17] to be used in a way similar to the 

median filter proposed here. These two morphological filters have the similar function of removing noise spikes. 

However, they do not perform as well as the median filter in this application (refer to figure 5(e)). 

The threshold K in the anisotropic median-diffusion filter is determined with the histogram of the gradient 

of a noisy image as the reference. However, the anisotropic median-diffusion filter is not sensitive to the exact value 

of K. As long as K is much less than the standard deviation of the gradient (hopefully less than the edge gradient), 

while not too small to stop the smoothing process, the denoising results will be similar.  

 

V. EXPERIMENTAL RESULTS AND COMPARISONS 

Experiments were carried out on the phantom images with different SNRs. The intensity of the phantom 

image was normalized into [0,1] for easy comparison. The SNR formula used is: 

(10)
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where σ[f(x,y)] and σ[f(x,y)] indicate the standard deviations of the original image f(x,y) and noise n(x,y), 

respectively. 

 Figure 5 compares the denoising capability with different anisotropic diffusion filters. The degraded image 

is shown in figure 5(a) with the SNR of 5 dB. Figure 6 is the histogram of the gradient throughout the image in 5(a). 

As expected, there is no way to separate the gradient of the edges from the gradient of the noise. The standard 

deviation of the gradient is 0.19. Figures 5(b), 5(c), and 5(d) illustrate images filtered using the traditional 

anisotropic diffusion filter with different K values. In figure 5(b) K is set to 0.09, which is approximately half of the 

standard deviation of the gradient. This filtered image shows both impulsive noise spikes and large “noise spots,” 

which are due to improper smoothing of impulsive noise. In figure 5(c) K is set to 0.19, which is the standard 

deviation of the gradient. The filtered image removed most of the impulsive noise spikes but not the large “noise 

spots.” In addition, edge blurring becomes evident. When K = 0.38, which is twice the standard deviation of the 

gradient, the edge blurring becomes significant. The big “noise spots” still remain in the filtered result. Clearly, 

traditional anisotropic diffusion filtering does not deliver adequate results in low-SNR images such as these.  

A pair of open-close and close-open filters (alternatively used in the diffusion) was used to smooth the 

image in figure 5(a) as proposed in [17]. The filtered image in Figure 5(e) shows an obvious illumination distortion 

relative to the original image. In addition, several “noise spots” still remain on the filtered image. The trend of 

quality indexes Q, Q1, Q2, and Q3 versus iterations is illustrated in figure 7. The plot of Q2 obviously illustrates that 

the mean illumination became worse after using the open-close/close-open diffusion filter. 

Figure 5(f) illustrates the results obtained using the anisotropic median-diffusion filter, where K = 0.03, 

which is much smaller than the standard deviation of the gradient. This image yields an excellent estimate of figure 

1. The quality indexes achieved by the different filters are compared in Table 1. Figure 8 illustrates the trend of 

quality indexes Q, Q1, Q2, and Q3 versus iteration number. In contrast to the quality indexes in the open-close/close-

open diffusion filter, figure 8 shows that all three quality measurements: correlation, mean luminance and contrast 

are gradually improved with the progress of iterations.  

 The anisotropic median-diffusion filter was tested again on the phantom degraded to SNR = 0 dB. Because 

of the large noise variation in this image, the standard deviation of the gradient is 0.34, larger than that of the 5 dB 

(11)
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SNR image. However, the same K value (0.03) was used to smooth the image when using the anisotropic median-

diffusion filter. The results shown in figure 9 illustrate improved performance of the anisotropic median-diffusion 

filter relative to the traditional algorithm. This example also suggests that selection of the threshold K is fairly 

robust, with the filter performance not being very sensitive to changes in K. The robustness of the K selection will 

make it easy for automatic image denoising.  

The anisotropic median-diffusion filter was also tested on a piecewise-smooth natural image as shown in 

figure 10(a). This egg image was degraded to the SNR of 0 dB by adding zero mean Gaussian noise as illustrated in 

figure 10(b). The result of applying a traditional anisotropic diffusion filter (K = 0.2) is shown in figure 10(c). It also 

displays “noise spots” as in the phantom case. The filtered image using the new filter is much better at noise 

suppression, as illustrated in figure 10(d). 

 

Table 1. Summary of the Quality Index Q of the filtered image after using different filters  

Noisy Images Filters K 
Iterations Noisy Image 

Q Index* 

Filtered Image 

Q Index* 

Traditional anisotropic diffusion 0.09 100 0.18 0.25 

Traditional anisotropic diffusion 0.19 100 0.18 0.38 

Traditional anisotropic diffusion 0.38 100 0.18 0.34 

Anisotropic open-close-diffusion  0.03 100 0.18 0.29 

Phantom 

Image 

SNR = 5 dB 

Anisotropic median-diffusion 0.03 100 0.18 0.68 

Traditional anisotropic diffusion 0.17 200 0.11 0.17 

Traditional anisotropic diffusion 0.34 200 0.11 0.30 

Anisotropic open-close-diffusion  0.03 200 0.11 0.13 

Phantom 

Image 

SNR = 0 dB 
Anisotropic median-diffusion 0.03 200 0.11 0.52 

Traditional anisotropic diffusion 0.20 100 0.12 0.53 Egg Image 

SNR = 0 dB Anisotropic median-diffusion 0.03 100 0.12 0.66 

* The index Q was calculated relative to the original images. 
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 Finally, we applied the anisotropic median-diffusion filter on Raman images depicting the drug distribution 

in single tumor cells [24-25]. Drug distribution in a cell can help to characterize the mechanisms of a drug as well as 

to evaluate the drug efficacy. Figure 11(a) shows a breast cancer cell that has been exposed to Taxol for one hour 

(Taxol is an anticancer drug that is often used to treat breast cancer). No drug information is shown in this 

conventional microscopic image. A Raman image was taken to show the Taxol distribution within the boxed area of 

the cell. Figure 11(b) illustrates the recorded Raman image, which is very noisy. The traditional anisotropic 

diffusion filter was first applied to smooth the image with K = 0.1. The result is shown in figure 11(c), which still 

contains impulsive noise spikes.  Moreover, the edges were blurred somewhat compared to the filtered image in 

figure 11(d). However, the smoothed image using the proposed anisotropic median-diffusion filter (K = 0.02) in 

figure 11(d) shows better noise suppression and edge retention.    

 Figure 12(a) shows another breast cancer cell that has been exposed to Taxol for 1.75 hours. In this 

experiment, the Raman instrumentation was improved so that the field of view of Raman imaging was increased to 

cover the whole cell. Figure 12(b) is the corresponding Raman image of the cell to show the Taxol distribution. The 

traditional anisotropic diffusion filter was first applied to smooth (50 iterations) the image with K = the standard 

deviation of the image gradient. The result is shown in figure 12(c), which still contains impulsive noise spikes. The 

traditional anisotropic diffusion filter was then applied to smooth (still 50 iterations) the image with K = three times 

of the standard deviation of the image gradient. The result is shown in figure 12(d), which does not contain 

impulsive noise spikes anymore. However, large “noise spots” remains, which was also seen in the experiment of 

synthetic images when K was increased. The result of using the proposed anisotropic median-diffusion filter is 

shown in Figure 12(e) with K = the standard deviation of the image gradient. By only using only five iterations, the 

smoothing result appears (although no objective criteria is available) better than the results in Figure 12(c) and (d). 

The smoothed Raman image in Figure 12(e) was further processed by correcting the non-uniform illumination, 

subtracting the background, deconvoluting the 3-D blurring, and eliminating the fluorescence signal gives the 

Raman image in Figure 12(f) [25], it shows the Taxol distribution within the cell. This experiment suggests that 

anisotropic median-diffusion is more efficient than the traditional anisotropic diffusion filter. This advantage could 

allow the application of diffusion filter extend to video processing.       
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VI. CONCLUSION 

In this paper we have proposed a new anisotropic diffusion filter for denoising low SNR images, which 

incorporates a median filter into the diffusion step. This hybrid filter apparently achieves much better noise 

suppression with minimum edge blurring compared to the original anisotropic diffusion filter. A universal quality 

index suggests that this filter retains adherence to the original image intensities and contrasts better than other filters. 

In addition, this filter is less sensitive to the selection of the image gradient threshold during diffusion, thus making 

automatic image denoising easier than with the original anisotropic diffusion filter. This filter is also more efficient 

than the original anisotropic diffusion filter, thus making the application of diffusion filter in video processing 

feasible. This new filter is particularly useful for low-SNR molecular images such as fluorescence, Raman, isotope 

radiation and positron emission images. 
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Figure 1. A phantom to represent a cellular molecular image.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The result of the phantom in figure 1 filtered by a 3x3 median filter. 
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Figure 3. The diffusion function (a, Eq. 8) and the normalized flux function (b, Eq. 9) 
with K = 0.1.   
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Figure 4. Histogram change of a constant image plus Gaussian noise (with unit variance)
during anisotropic median-diffusion. Solid line: the original histogram of the Gaussian
noise image. Dotted line: the histogram after the first anisotropic diffusion step. Dashed
line: the histogram after the subsequent median filter. 
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Low SNR image denoising using different anisotropic diffusion filters.
(a) phantom from figure 1 degraded SNR = 5 dB. (b), (c), (d) filtered images
using traditional anisotropic diffusion filter with K = 0.09, 0.19, and 0.38,
respectively. (e) filtered image using anisotropic open-close-diffusion filter with
a 3x3 window, where K = 0.03. (f) filtered image using anisotropic median-
diffusion filter with a 3x3 window, where K = 0.03.  All the filters run 100
iterations in the diffusion. 



 

Revised, February, 2

18

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3
x 10

4

 

 

 

 

 

 

 

 

 

 

Figure 6. Histogram of the gradient for the noisy image in figure 5(a) 
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(a) (b)

(c) (d)
Figure 7. Quality indexes (a) Q, (b) Q1, (c) Q2 and (d) Q3 vs. iteration number
during smoothing of the image in figure 5(a) with the anisotropic open-close-
diffusion filter.  
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Figure 8. Quality indexes (a) Q, (b) Q1, (c) Q2 and (d) Q3 vs. iteration number
during smoothing of the image in figure 5(a) with the anisotropic median-
diffusion filter.    
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(a) (b)

(c) (d)
 

 

Figure 9.  (a) phantom shown in figure 1 degraded to SNR = 0 dB. (b),
(c) filtered images using traditional anisotropic diffusion filter with K =
0.17, 0.34, respectively. (d) filtered image using the anisotropic
median-diffusion filter with a 3x3 window, where K = 0.03. All the
filters run 200 iterations in the diffusion. 
 

 

 

(c) (d)

(b)(a)
 
Figure 10.  (a) natural piecewise smooth image of eggs. (b) image in
(a) degraded to 0 dB SNR. (c) filtered image using traditional
anisotropic diffusion filter with K = 0.2. (d) filtered image using
anisotropic median-diffusion filter with a 3x3 window and K = 0.03.
The filters run 100 iterations in the diffusion. 
02 

 



 

Revised, February, 200

21

 

 

 

             

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)
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(d)
Figure 11.  (a) Conventional microscopic image of a breast cell which
has been exposed to Taxol for one hour. (b) The recorded Raman image
corresponding to the boxed area of the cell. (c) filtered image using
traditional anisotropic diffusion filter with K = 0.1. This filter ran 20
iterations in the diffusion. (d) filtered image using anisotropic median-
diffusion filter with a 3x3 window and K = 0.02. This filter ran 10
iterations in the diffusion. 
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(a) (b)

(c) (d)

(e) (f)
Figure 12.  (a) Conventional microscopic image of a breast cell which
has been exposed to Taxol for 1.75 hours. (b) The recorded Raman
image corresponding to the cell. (c) filtered image using traditional
anisotropic diffusion filter with K = the standard deviation of the image
gradient. This filter ran 50 iterations in the diffusion. (d) filtered image
using traditional anisotropic diffusion filter with K = three times the
standard deviation of the image gradient. This filter ran 50 iterations in
the diffusion (e) filtered image using anisotropic median-diffusion filter
with a 3x3 window and K = the standard deviation of the image
gradient. This filter ran 5 iterations in the diffusion. (f) Raman image
shows the Taxol distribution within the cell after further processing
(correction of the non-uniform illumination, subtract background, 3-D
deconvolution, and eliminate fluorescence signal) the Raman image in
(e).   
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